首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting miRNA microarray expression profiling on normal lung versus adjacent lung cancers from transgenic mice. We found that miR-136, miR-376a, and miR-31 were each prominently overexpressed in murine lung cancers. Real-time RT-PCR and in situ hybridization (ISH) assays confirmed these miRNA expression profiles in paired normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression antagonized miR-31–mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing normal and malignant human lung tissues. Together, these findings revealed that miR-31 acts as an oncogenic miRNA (oncomir) in lung cancer by targeting specific tumor suppressors for repression.  相似文献   

2.
MicroRNAs (miRNAs) can function as tumor suppressors and might provide an efficient strategy for annihilating cancer. Specific miRNAs can be reintroduced into tumor cells to complement the loss of tumor suppression activities. The “miRNA replacement therapy” is based on the concept that the reintroduction of miRNAs depleted in cancer cells reactivates cellular pathways that lead to therapeutic responses. Here, we report the development of miRNA delivery formulation using synthesized miR-520e. This formulation proved to be effective either locally or systematically. MiR-520e accumulation becomes evident in tumor cells and then exerts anti-proliferative function. Meanwhile, intravenous delivery of formulated miR-520e does not induce any deregulation in cytokine levels and liver enzymes. Taken together, our results shed new lights on the concept that systematic delivery of synthetic mimics for tumor suppressor miR-520e and provide potential implications for miRNA therapy in clinic.  相似文献   

3.
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and significantly associated with poor prognosis and high risk of recurrence. miR-34a has been identified as a potent tumor suppressor whose expression is dramatically downregulated in TNBC. Currently, rectification of miRNA abnormality serves as a novel tumor therapeutic strategy. miR-34a is thus used as powerful antitumor agent for miRNA-based therapy against TNBC. However, miRNA-based antitumor therapy is challenged by effective targeted delivery of miRNA. In the present study, nanodiamond (ND), protamine (PS) and folic acid (FA) were used to construct ND-based layer-by-layer nanohybrids through a self-assembly approach for targeted miR-34a delivery in TNBC cells and xenograft TNBC tumors. We found that the targeted delivery of miR-34a remarkably suppressed cell proliferation, migration and induced the apoptosis of TNBC cells in vitro and inhibited tumor growth in vivo via down-regulating Fra-1 expression. The data suggest a great potential of ND-based nanohybrids for targeted intratumoral delivery of miR-34a for TNBC therapy.

The construction of nanodiamond-based layer-by-layer nanohybrids.  相似文献   

4.
Recent reports have linked the expression of specific microRNAs (miRNAs) with tumorigenesis and metastasis. Here, we show that microRNA (miR)-16, which is expressed at lower levels in prostate cancer cells, affects the proliferation of human prostate cancer cell lines both in vitro and in vivo. Transient transfection with synthetic miR-16 significantly reduced cell proliferation of 22Rv1, Du145, PPC-1, and PC-3M-luc cells. A prostate cancer xenograft model revealed that atelocollagen could efficiently deliver synthetic miR-16 to tumor cells on bone tissues in mice when injected into tail veins. In the therapeutic bone metastasis model, injection of miR-16 with atelocollagen via tail vein significantly inhibited the growth of prostate tumors in bone. Cell model studies indicate that miR-16 likely suppresses prostate tumor growth by regulating the expression of genes such as CDK1 and CDK2 associated with cell-cycle control and cellular proliferation. There is a trend toward lower miR-16 expression in human prostate tumors versus normal prostate tissues. Thus, this study indicates the therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection and suggest that systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.  相似文献   

5.
Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with tumor-targeting single-chain antibody fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and microRNA (miRNA) into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently downregulated the target genes (c-Myc/MDM2/VEGF) in the lung metastasis. Two daily intravenous injections of the combined siRNAs in the GC4-targeted nanoparticles significantly reduced the tumor load in the lung. miRNA-34a (miR-34a) induced apoptosis, inhibited survivin expression, and downregulated MAPK pathway in B16F10 cells. miR-34a delivered by the GC4-targeted nanoparticles significantly downregulated the survivin expression in the metastatic tumor and reduced tumor load in the lung. When miR-34a and siRNAs were co-formulated in GC4-targeted nanoparticles, an enhanced anticancer effect was observed.  相似文献   

6.
7.
While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted delivery of a miRNA with tumor suppressor function, let-7g. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase Axl (GL21.T), here we describe the development of aptamer-miRNA conjugates as multifunctional molecules that inhibit the growth of Axl-expressing tumors. We conjugated the let-7g miRNA to GL21.T and demonstrate selective delivery to target cells, processing by the RNA interference machinery, and silencing of let-7g target genes. Importantly, the multifunctional conjugate reduced tumor growth in a xenograft model of lung adenocarcinoma. Therefore, our data establish aptamer-miRNA conjugates as a novel tool for targeted delivery of miRNAs with therapeutic potential.  相似文献   

8.
9.
Recurrence and metastasis result in a poor prognosis for breast cancer patients. Recent studies have demonstrated that microRNAs (miRNAs) play vital roles in the development and metastasis of breast cancer. In this study, we investigated the therapeutic potential of miR-34a in breast cancer. We found that miR-34a is downregulated in breast cancer cell lines and tissues, compared with normal cell lines and the adjacent nontumor tissues, respectively. To explore the therapeutic potential of miR-34a, we designed a targeted miR-34a expression plasmid (T-VISA-miR-34a) using the T-VISA system, and evaluated its antitumor effects, efficacy, mechanism of action, and systemic toxicity. T-VISA-miR-34a induced robust, persistent expression of miR-34a, and dramatically suppressed breast cancer cell growth, migration, and invasion in vitro by downregulating the protein expression levels of the miR-34a target genes E2F3, CD44, and SIRT1. In an orthotopic mouse model of breast cancer, intravenous injection of T-VISA-miR-34a:liposomal complex nanoparticles significantly inhibited tumor growth, prolonged survival, and did not induce systemic toxicity. In conclusion, T-VISA-miR-34a lead to robust, specific overexpression of miR-34a in breast cancer cells and induced potent antitumor effects in vitro and in vivo. T-VISA-miR-34a may provide a potentially useful, specific, and safe-targeted therapeutic approach for breast cancer.  相似文献   

10.
MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion–induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified.  相似文献   

11.
Many reports have indicated that the abnormal expression of microRNAs (miRNAs) is associated with the progression of disease and have identified miRNAs as attractive targets for therapeutic intervention. However, the bifunctional mechanisms of miRNA guide and passenger strands in RNA interference (RNAi) therapy have not yet been clarified. Here, we show that miRNA (miR)-582-5p and -3p, which are strongly decreased in high-grade bladder cancer clinical samples, regulate tumor progression in vitro and in vivo. Significantly, the overexpression of miR-582-5p or -3p reduced the proliferation and invasion of UM-UC-3 human bladder cancer cells. Furthermore, transurethral injections of synthetic miR-582 molecule suppressed tumor growth and metastasis in an animal model of bladder cancer. Most interestingly, our study revealed that both strands of miR-582-5p and -3p suppressed the expression of the same set of target genes such as protein geranylgeranyltransferase type I beta subunit (PGGT1B), leucine-rich repeat kinase 2 (LRRK2) and DIX domain containing 1 (DIXDC1). Knockdown of these genes using small interfering RNA (siRNA) resulted in the inhibition of cell growth and invasiveness of UM-UC-3. These findings uncover the unique regulatory pathway involving tumor suppression by both strands of a single miRNA that is a potential therapeutic target in the treatment of invasive bladder cancer.  相似文献   

12.
We developed, synthesized, and tested a multifunctional nanostructured lipid nanocarrier-based system (NLCS) for efficient delivery of an anticancer drug and siRNA directly into the lungs by inhalation. The system contains: (1) nanostructured lipid carriers (NLC); (2) anticancer drug (doxorubicin or paclitaxel); (3) siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) siRNA targeted to BCL2 mRNA as a suppressor of nonpump cellular resistance and (5) a modified synthetic analog of luteinizing hormone-releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells. The NLCS was tested in vitro using human lung cancer cells and in vivo utilizing mouse orthotopic model of human lung cancer. After inhalation, the proposed NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact and also significantly decreasing the exposure of healthy organs when compared with intravenous injection. The NLCS showed enhanced antitumor activity when compared with intravenous treatment. The data obtained demonstrated high efficiency of proposed NLCS for tumor-targeted local delivery by inhalation of anticancer drugs and mixture of siRNAs specifically to lung cancer cells and, as a result, efficient suppression of tumor growth and prevention of adverse side effects on healthy organs.  相似文献   

13.
Recent studies have indicated that side population (SP) cells, which are an enriched source of cancer stem cells (CSCs), drive and maintain many types of human malignancies. SP cells have distinguishing biological characteristics and are thought to contribute to metastasis, therapy resistance, and tumor recurrence. In the present study, the miRNA expression profiles of SP cells and non-SP cells were compared using miRNA array analysis. Both let-7 and miR-31 were significantly down-regulated in SP cells compared to non-SP cells. The results were confirmed by real-time PCR. Engineered repression of miR-31 caused marked repression of both lung cancer SP cell and non-SP cell growth in vitro. In contrast, engineered repression of let-7 caused marked promotion of both lung cancer SP and non-SP cells growth in vitro. Cell cycle studies further revealed that reduced miR-31 could inhibit SP cell proliferation by a cell cycle arrest in the G0/G1 phase, whereas reduced let-7 induced SP cell proliferation by accelerating G1/S phase transition. Notably, reduced miR-31 prevented SP cell differentiation, whereas reduced let-7 promoted SP cell differentiation under differentiation conditions. These findings indicate that reduced miR-31 and let-7 are involved in maintaining the balance between differentiation and quiescence in SP cells.  相似文献   

14.
Introduction: MicroRNA (miRNA) is a small non-coding RNA, which negatively regulates the expression of many target genes, thereby contributing to the modulation of diverse cell fates. Recent advances in molecular biology have revealed the potential role of miRNAs in tumor initiation, progression and metastasis. Aberrant regulation of miRNAs has been frequently reported in a variety of cancers, including gastrointestinal tumors, suggesting that cancer-related miRNAs are promising as novel biomarkers for tumor diagnosis and are potential target genes for cancer gene therapy against gastrointestinal tumors.

Areas covered: The review focuses on the role of specific miRNAs (miR-192/194/215 and miR-7) in the differentiation of gastrointestinal epithelium and on the role of tumor-suppressive (miR-34, miR-143, miR-145) and oncogenic miRNAs (miR-21, miR-17-92 cluster) in gastrointestinal tumors. Furthermore, the potential role of miRNAs as novel biomarkers and target genes for cancer gene therapy against gastrointestinal tumors are discussed. We will also outline the potential clinical application of miRNAs for tumor diagnosis and cancer gene therapy against gastrointestinal tumors.

Expert opinion: Exploration of tumor-related miRNAs would provide important opportunities for the development of novel cancer gene therapies aimed at normalizing the critical miRNAs that are deregulated in gastrointestinal tumors.  相似文献   

15.
Vaccinia virus, once widely used for smallpox vaccine, has recently been engineered and used as an oncolytic virus for cancer virotherapy. Their replication has been restricted to tumors by disrupting viral genes and complementing them with products that are found specifically in tumor cells. Here, we show that microRNA (miRNA) regulation also enables tumor-specific viral replication by altering the expression of a targeted viral gene. Since the deletion of viral glycoprotein B5R not only decreases viral pathogenicity but also impairs the oncolytic activity of vaccinia virus, we used miRNA-based gene regulation to suppress B5R expression through let-7a, a miRNA that is downregulated in many tumors. The expression of B5R and the replication of miRNA-regulated vaccinia virus (MRVV) with target sequences complementary to let-7a in the 3′-untranslated region (UTR) of the B5R gene depended on the endogenous expression level of let-7a in the infected cells. Intratumoral administration of MRVV in mice with human cancer xenografts that expressed low levels of let-7a resulted in tumor-specific viral replication and significant tumor regression without side effects, which were observed in the control virus. These results demonstrate that miRNA-based gene regulation is a potentially novel and versatile platform for engineering vaccinia viruses for cancer virotherapy.  相似文献   

16.
Despite tremendous efforts worldwide from clinicians and cancer scientists, pancreatic ductal adenocarcinoma (PDA) remains a deadly disease for which no cure is available. Recently, microRNAs (miRNAs) have emerged as key actors in carcinogenesis and we demonstrated that microRNA-21 (miR-21), oncomiR is expressed early during PDA. In the present study, we asked whether targeting miR-21 in human PDA-derived cell lines using lentiviral vectors (LVs) may impede tumor growth. We demonstrated that LVs-transduced human PDA efficiently downregulated miR-21 expression, both in vitro and in vivo. Consequently, cell proliferation was strongly inhibited and PDA-derived cell lines died by apoptosis through the mitochondrial pathway. In vivo, miR-21 depletion stopped the progression of a very aggressive model of PDA, to induce cell death by apoptosis; furthermore, combining miR-21 targeting and chemotherapeutic treatment provoked tumor regression. We demonstrate herein for the first time that targeting oncogenic miRNA strongly inhibit pancreatic cancer tumor growth both in vitro and in vivo. Because miR-21 is overexpressed in most human tumors; therapeutic delivery of miR-21 antagonists may still be beneficial for a large number of cancers for which no cure is available.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号