首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Kim HJ  Hwang SJ  Kim BK  Jung KC  Chung DH 《Immunology》2006,118(1):101-111
Oral tolerance is the systemic unresponsiveness induced by orally administered proteins. To explore the roles of natural killer T (NKT) cells in oral tolerance, we induced oral tolerance to ovalbumin (OVA) in NKT cell-deficient mice. In CD1d-/- mice, the induction of tolerance to orally administered high- or low-dose OVA was impaired. Dendritic cells (DCs) in the Peyer's patches (PPs) of CD1d-/- mice fed OVA showed high expression of major histocompatibility complex (MHC) class II and B7 molecules, whereas DCs of control mice fed OVA expressed low levels of these molecules. The adoptive transfer of NKT cells restored oral tolerance and induction of tolerogenic DCs in the PPs and spleens of CD1d-/- mice. Moreover, interleukin (IL)-10 and transforming growth factor (TGF)-beta1 production in vitro were reduced in cells from the spleen and PPs of CD1d-/- mice compared with those of control mice fed OVA. The numbers of OVA-specific CD4+ KJ1-26+ T cells were significantly reduced in the PPs and spleens of DO11.10 mice fed OVA. In contrast, OVA-specific CD4+ KJ1-26+ T cells were not deleted in the PPs or spleens of DO11.10 CD1d-/- mice. In conclusion, NKT cells were found to play an indispensable role in oral tolerance by inducing regulatory T cells, and clonally deleting antigen-specific CD4+ T cells.  相似文献   

2.
CD4(+)CD25(+) regulatory T cells are thought to be generated in the periphery as well as in the thymus. We sought to determine the roles played by CD4(+)CD25(+) T cells and transforming growth factor-beta (TGF-beta) in the induction and maintenance of tolerance generated by oral antigens in BALB/c mice. We found that oral administration of a high dose of ovalbumin (OVA) suppressed OVA-specific proliferation and antibody production in BALB/c mice depleted of CD25(+) cells. In contrast, the unresponsiveness induced by lower doses of OVA was only partially blocked by CD25 depletion prior to feeding. Depletion of CD4(+)CD25(+) cells after mice were orally tolerized did not reverse the tolerant status, indicating that these cells were not required to maintain the established tolerance. Furthermore, the induction of oral tolerance was not hampered by the administration of TGF-beta-neutralizing antibodies. However, in mice depleted of CD25(+) cells, anti-TGF-beta-neutralizing antibodies blocked the induction of tolerance, regardless of whether the mice followed the high- or low-dose regimens of oral OVA. CD25 depletion together with TGF-beta neutralization led the expansion of OVA-specific CD4 T cells against the subsequent antigen challenge, and each treatment alone did not. Our findings indicate that CD4(+)CD25(+) T cells and TGF-beta play a complementary role in the induction of oral tolerance, at least in part, by regulating the expansion of antigen-specific CD4 T cells.  相似文献   

3.
The mucosal immune system is exposed to non-self antigens in food and the gut microbiota. Therefore, the recognition of orally ingested non-self antigens is suppressed in healthy individuals to avoid excessive immune responses in a process called “oral tolerance”. The breakdown of oral tolerance has been cited as a possible cause of food allergy, and amorphous silica nanoparticles (nSP) have been implicated in this breakdown. As nSP are widely used in foodstuffs and other products, exposure to them is increasing; thus, investigations of any effects of nSP on oral tolerance are urgent. This study evaluated the effects of nSP30 (particle diameter =?39?nm) on immunological unresponsiveness induced in mice with oral ovalbumin (OVA). Specifically, production of OVA-specific antibodies, splenocyte proliferation in response to OVA, and effects on T-helper (TH)-1, TH2, and TH17 responses (in terms of cytokine and IgG/IgE subclass expression) were evaluated. nSP30 increased the levels of OVA-specific IgG in OVA-tolerized mice and induced the proliferation of OVA-immunized splenocytes in response to OVA in a dose-related manner. nSP30 also increased the expression of OVA-specific IgG1, IgE, and IgG2a, indicating stimulation of the TH1 and TH2 responses. The expression of interferon (IFN)-γ (TH1), interleukin (IL)-4 and IL-5 (TH2), and IL-17 (TH17) was also stimulated in a dose-related manner by nSP30 in splenocytes stimulated ex vivo with OVA. The induction of tolerance by OVA, the production of anti-OVA IgG antibodies, and proliferation of splenocytes in response to OVA was inhibited by nSP30 in conjunction with OVA and was dose-related. The nSP30 enhanced TH1 and TH2 responses that might prevent the induction of oral tolerance. Overall, this study showed that the abrogation of OVA-induced oral tolerance in mice by exposure to nSP30 was dose-related and that nSP30 stimulated TH1, TH2, and TH17 responses.  相似文献   

4.
Valpha14i natural killer T cells (NKT cells) are a CD1-restricted subset of NKT cells that express an invariable Valpha14+ Jalpha281+ alphabeta T-cell receptor. To determine whether the absence of Valpha14i NKT cells from the graft affects the development of acute GVHD, we induced GVH reactions using Jalpha281(-/-) mice as donors in the C57BL/6-->(C57BL/6 x DBA/2)F1-hybrid strain combination. Recipients of grafts from Jalpha281(-/-) donors were not protected from either the morbidity or the severe wasting syndrome associated with the development of acute GVHD, but the concentrations of some T helper 1 (Th1) and Th2 cytokines were different from those seen in recipients of grafts from wild-type donors. Interferon-gamma was seen earlier (day 4) in recipients of grafts from Jalpha281(-/-) donors but did not reach the concentrations seen in recipients of grafts from wild-type donors on day 8 (P < 0.02). On day 8, the amount of tumour necrosis factor-alpha released into the serum following the injection of a small amount of lipopolysaccharide was lower in recipients of grafts from Jalpha281(-/-) donors (P < 0.02). The amount of interleukin (IL)-5 was also lower in recipients of grafts from Jalpha281(-/-) donors, when compared to the concentration seen in recipients of grafts from wild-type donors (P < 0.002). IL-13 was seen in recipients of grafts from Jalpha281(-/-) donors but not in recipients of grafts from wild-type donors. Our findings show that the absence of donor Valpha14i NKT cells is associated with lower concentrations of some Th1 cytokines. We also observed higher IL-13 concentrations and lower IL-5 concentrations in recipients of grafts from Jalpha281(-/-) donors indicating a variable effect on Th2 cytokine production.  相似文献   

5.
We previously showed that although systemic administration of α‐galactosylceramide (αGalCer) or agonistic anti‐CD40 induced functional maturation of dendritic cells (DC) in mesenteric lymph nodes, only the former treatment succeeded in breaking the induction of oral tolerance. In this study, we looked for the essential factor responsible for the disruption of oral tolerance. We found that lamina propria (LP)‐DC was responsible for the oral OVA presentation and that Peyer's patch was not essential for the induction of oral tolerance. Therefore, we investigated the role of LP‐DC. Treatment with αGalCer but not with anti‐CD40 induced the full maturation of LP‐DC at an early time point. This functional activation of LP‐DC was mediated by strong activation of NKT cells that reside abundantly in the small intestinal lamina propria (SI‐LP) and interferon‐γ partially contributed to the LP‐DC activation. LP‐DC isolated from αGalCer‐treated OVA‐fed mice induced the differentiation of naïve CD4+ T cells into Th1 and Th2 and was associated with the reduced Foxp3+ population. In contrast, LP‐DC isolated from anti‐CD40‐treated OVA‐fed mice failed to generate Th cell differentiation but induced more Foxp3+ CD4+ T cells. Our results demonstrate that triggered by NKT cells in SI‐LP, functional maturation of Ag‐capturing DC from SI‐LP is necessary for the abrogation of oral tolerance induction.  相似文献   

6.
NKT cells play contradictory roles in vivo, both regulating autoimmunity and activating immunity to intracellular pathogens and tumors. In this study, we studied the effect of NKT cell activation on the induction of systemic tolerance by oral administration of antigen. Administration of alpha-galactosylceramide (alphaGC) at the time of oral ovalbumin (OVA) feeding completely blocked the OVA-specific tolerance induced by both high- and low-dose regimens in BALB/c mice. In the mesenteric lymph nodes (MLN) of alphaGC-treated mice, the proliferation of OVA-specific T cells was greater than that seen in the MLN of vehicle-treated mice in vivo. The administration of alphaGC triggered the full maturation of mesenteric dendritic cells (DC), which were in turn responsible for the enhanced division of OVA-specific T cells in vitro. To further determine whether the costimulation provided by DC in alphaGC-treated mice was responsible for the reversal of oral tolerance in vivo, mice were given alphaGC together with anti-CD80 and anti-CD86 blocking Ab. OVA-specific systemic tolerance was restored in mice given the blocking Ab, even when they simultaneously received alphaGC. Therefore, oral tolerance can be reversed via costimulation by DC that have been triggered to fully mature by the administration of alphaGC.  相似文献   

7.
We used gammadelta TCR-deficient (TCRdelta(-/-)) mice to examine the role of gammadelta T cells for induction of mucosal responses and systemic tolerance to high versus low doses of oral antigen. When either TCRdelta(-/-) or TCRdelta(+/+) mice were immunized orally with a high dose of ovalbumin (OVA) prior to parenteral challenge, systemic IgG and IgE antibody responses were markedly reduced in both types of mice, while mucosal IgA responses were reduced only in the TCRdelta(-/-) mice. Reduced T cell proliferative responses and delayed-type hypersensitivity were seen in TCRdelta(-/-) and TCRdelta(+/+) mice given the high dose of OVA. Antigen-induced T(h)1 and T(h)2 cytokine production by splenic CD4(+) T cells was severely inhibited in orally tolerized TCRdelta(-/-) and TCRdelta(+/+) mice. In contrast, while oral tolerance associated with increased levels of IL-10 synthesis was induced by a low dose of OVA in TCRdelta(+/+) mice, the TCRdelta(-/-) mice were not tolerized and failed to produce IL-10. Our findings indicate that gammadelta T cells play a significant immunoregulatory role in IL-10-mediated, low-dose oral tolerance induction, but are not essential participants in the induction of systemic tolerance to orally introduced antigens given in larger doses.  相似文献   

8.
To clarify the essential role of NKT cells in allergy, we investigated the contribution of NKT cells to the pathogenesis of eosinophilic airway inflammation using alpha-galactosylceramide (alpha-GalCer), a selective ligand for NKT cells. Although continuous administration of alpha-GalCer during ovalbumin (OVA) sensitization increased OVA-specific IgE levels and worsened eosinophil inflammation, a single administration of alpha-GalCer at the time of OVA challenge completely prevented eosinophilic infiltration in wild-type mice. This inhibitory effect of alpha-GalCer was associated with a decrease in airway hyperresponsiveness, an increase in IFN-gamma, and decreases in IL-4, IL-5 and IL-13 levels in the bronchoalveolar lavage fluids. Analysis of lung lymphocytes revealed that production of IFN-gamma increased in NK cells, but not in T or NKT cells, following alpha-GalCer administration. Induction of vascular cell adhesion molecule-1 in the lungs of wild-type mice was also significantly attenuated by treatment with alpha-GalCer. These effects of alpha-GalCer were abrogated in J alpha281-/- mice, which lack NKT cells, and in wild-type mice treated with anti-IFN-gamma Ab. Hence, our data indicate that alpha-GalCer suppresses allergen-induced eosinophilic airway inflammation, possibly by inducing a Th1 bias that results in inhibition of eosinophil adhesion to the lung vessels.  相似文献   

9.
The effect on antigen (Ag)-specific Th2 response as well as IgE production of continuous oral administration of micro-doses of Ag was investigated. Transgenic (Tg) mice carrying the α β-T cell receptor (TCR) genes specific for ovalbumin (OVA) peptide fragment 323 – 339 were continuously fed with micro-doses of OVA (100 μg/day) for 14 days. Mice were first immunized by OVA in alum and pertussis toxin 7 days before the oral feeding and given a second immunization 1 day after the oral treatment. This feeding regimen tolerized Th2 but not Th1 responses as shown by decrease of Ag-driven cell proliferation and cytokine secretion of IL- 4 but not of IL-2 or IFN-γ as well as by the absence of Ag-specific antibody production of IgE and IgG1, but not of IgG2a or total IgG. Numbers of clonotype-specific TCR-high CD4-positive T cells in peripheral lymphoid tissues markedly decreased in the orally treated group but not in the control group. However, total numbers of CD4-positive T cells in thymus, spleen and lymph nodes were not affected by the oral treatment, indicating that tolerance induction in Th2 cells was mainly due to the down-regulation of TCR and not clonal deletion. The population of antigen-presenting cells expressing B7-2 (CD86) Ag on the surface was decreased in the spleen of the mice which underwent the feeding regimen. The present results suggest that Ag-specific low responsiveness in Th2 cells, which resulted in suppres sion of the Ag-specific IgE production, can be achieved by continuous feeding with microdoses of Ag.  相似文献   

10.
Our past studies showed that Peyer's patches were required for the induction of oral tolerance to the protein antigen ovalbumin (OVA), but not to the hapten 2,4,6-trinitrobenzene sulfonic acid (TNBS). In the present study, the effects of immunosenescence on oral tolerance induction were assessed with these two toleragens. Significant reductions in OVA-specific serum IgG antibody and CD4(+) T cell responses to subsequent challenge were observed in OVA-fed, young adult mice. Importantly, these reduced anti-OVA antibody responses were associated with delayed-type hypersensitivity, and antigen-induced CD4(+) T(h)1- and T(h)2-type cytokine responses. On the other hand, aged mice fed OVA failed to develop oral tolerance. Thus, CD4(+) T cells from Peyer's patches produced selected T(h)2- but no T(h)1-type cytokines. The TNP-specific serum IgG antibody and T cell responses were significantly diminished by prior TNBS feeding in young adult, 6- to 8-month-old and 12- to 14-month-old, but not in senescent, 2-year-old mice. Finally, we have directly assessed dendritic cell subsets and T cell responses in Peyer's patches, and their function in tolerance induction was impaired at an earlier stage of life. These results suggest that lack of oral tolerance to the protein OVA during aging is the result of dysfunctional Peyer's patches.  相似文献   

11.
Oral administration of a certain dose of antigen can generally induce immunological tolerance against the same antigen. In this study, we showed the temporal appearance of ovalbumin (OVA) antigens in both portal and peripheral blood of mice after the oral administration of OVA. Furthermore, we detected 45,000 MW OVA in mouse serum 30 min after the oral administration of OVA. Based on this observation, we examined whether the injection of intact OVA into the portal or peripheral vein induces immunological tolerance against OVA. We found that the intravenous injection of intact OVA did not induce immunological tolerance but rather enhanced OVA-specific antibody production in some subclasses, suggesting that OVA antigens via the gastrointestinal tract but not intact OVA may contribute to establish immunological tolerance against OVA. Therefore, we examined the effects of digesting intact OVA in the gastrointestinal tract on the induction of oral tolerance. When mice were orally administered or injected into various gastrointestinal organs, such as the stomach, duodenum, ileum, or colon and boosted with intact OVA, OVA-specific antibody production and delayed-type hypersensitivity (DTH) response were significantly enhanced in mice injected into the ileum or colon, compared with orally administered mice. These results suggest that although macromolecular OVA antigens are detected after oral administration of OVA in tolerant-mouse serum, injection of intact OVA cannot contribute to tolerance induction. Therefore, some modification of macromolecular OVA in the gastrointestinal tract and ingestion may be essential for oral tolerance induction.  相似文献   

12.
BACKGROUND: Some patients outgrow their food allergies even though their serum antigen-specific IgE levels remain high. OBJECTIVE: To elucidate the role of T cells in outgrowing food allergies in the presence of antigen-specific IgE, we tracked antigen-specific T-cell responses after oral antigen administration. METHODS: Ovalbumin (OVA)-specific T-cell receptor (TCR) and OVA-specific IgE transgenic (Tg) mice (OVA-TCR/IgE-Tg) and OVA-specific TCR Tg (OVA-TCR-Tg) mice were fed with high doses of OVA or PBS every other day. After 7 administrations, OVA-specific proliferation and cytokine production of mononuclear cells of the spleen, mesenteric lymph nodes, and Peyer's patches and the number of splenic CD4 + CD25 + T cells were analyzed. RESULTS: Without OVA administration, the splenocytes from OVA-TCR/IgE-Tg mice exhibited a higher proliferative response and produced more IL-4 and IL-10 and less IFN-gamma than those from OVA-TCR-Tg mice. The proliferative responses of the splenocytes from either OVA-TCR/IgE-Tg mice or OVA-TCR-Tg mice fed with OVA were significantly reduced compared with those from PBS-fed mice. The number of OVA-specific TCR + T cells decreased in the spleen from OVA-fed mice, whereas the number of CD4 + CD25 + T cells increased. The suppressed proliferation of splenocytes of OVA-fed mice was partially resumed by neutralization of TGF-beta1, but not of IL-10. CONCLUSION: The presence of OVA-specific IgE modulated the OVA-specific responses of the splenocytes. Irrespective of the presence of OVA-specific IgE, repetitive oral administration of OVA induced tolerance, which seems to be composed of clonal deletion/anergy and TGF-beta1-mediated active suppression.  相似文献   

13.
The present study was designed to elucidate the role of Valpha14(+) NKT cells in the host defense against pulmonary infection with Streptococcus pneumoniae using Jalpha281 gene-disrupted mice (Jalpha281KO mice) that lacked this lymphocyte subset. In these mice, pneumococcal infection was severely exacerbated, as shown by the shorter survival time and marked increase of live bacteria in the lung compared to wild-type (WT) mice. The proportion of Valpha14(+) NKT cells, detected by an alpha-galactosylceramide (alpha-GalCer)-loaded CD1d tetramer, increased in thelung after S. pneumoniae infection. This increase was significantly reduced in mice with a genetic disruption of monocyte chemotactic protein (MCP)-1, which was produced in the early phaseof infection in WT mice. In the lungs of Jalpha281KO mice, the number of neutrophils was significantly lower at 12 h than that in WT mice. In support of this finding, macrophage inflammatory protein (MIP)-2 and TNF-alpha synthesis in infected lungs was significantly reduced at 3 h and at both 3 and 6 h, respectively, in Jalpha281KO mice, compared to WT mice. In addition, treatment of mice with alpha-GalCer significantly improved the outcome of this infection. Our results demonstrated MCP-1-dependent recruitment of Valpha14(+) NKT cells and their critical role in early host protection against S. pneumoniae by promoting the trafficking of neutrophils to the site of infection.  相似文献   

14.
NKT cells are phenotypically and functionally diverse   总被引:14,自引:0,他引:14  
NK1.1(+)alpha betaTCR(+) (NKT) cells have several important roles including tumor rejection and prevention of autoimmune disease. Although both CD4(+) and CD4(-)CD8(-) double-negative (DN) subsets of NKT cells have been identified, they are usually described as one population. Here, we show that NKT cells are phenotypically, functionally and developmentally heterogeneous, and that three distinct subsets (CD4(+), DN and CD8(+)) are differentially distributed in a tissue-specific fashion. CD8(+) NKT cells are present in all tissues but the thymus, and are highly enriched for CD8alpha(+)beta(-) cells. These subsets differ in their expression of a range of cell surface molecules (Vbeta8, DX5, CD69, CD45RB, Ly6C) and in their ability to produce IL-4 and IFN-gamma, with splenic NKT cell subsets producing lower levels than thymic NKT cells. Developmentally, most CD4(+) and DN NKT cells are thymus dependent, in contrast to CD8(+) NKT cells, and are also present amongst recent thymic emigrants in spleen and liver. TCR Jalpha281-deficient mice show a dramatic deficiency in thymic NKT cells, whereas a significant NKT cell population (enriched for the DN and CD8(+) subsets) is still present in the periphery. Taken together, this study reveals a far greater level of complexity within the NKT cell population than previously recognized.  相似文献   

15.
In this study we examined the effect of oral antigen (Ag) administration on the development of experimental asthma in different mouse strains. We selected BALB/c, BP2, CBA/Ca interleukin (IL)-5 transgenic, and BALB/c T-cell receptor-delta-deficient mouse strains because they exhibit different aspects of the asthma syndrome. Mice exposed to 1% ovalbumin (OVA), dissolved in the drinking water for 5 consecutive days, became unresponsive to subsequent immunogenic OVA challenges. This regimen of OVA administration induced Ag-specific unresponsiveness in all mouse strains tested, including gammadelta-deficient mice that are said to be resistant to tolerance induction. The Ag-specific unresponsiveness was characterized by reduced (almost absent) airway eosinophilic inflammation, airway hyperreactivity, and mucus production; also by low levels of T helper (Th) 2-type cytokines in bronchoalveolar lavage fluid, and decreased immunoglobulin (Ig) G1 and IgE OVA-specific antibody production. The unresponsive state was not associated with increased levels of the suppressive cytokines IL-10 and transforming growth factor (TGF)-beta or with immune deviation toward the Th1 pathway due to increased levels of interferon-gamma and IL-12. Moreover, treatment with anti- TGF-beta antibodies did not abrogate oral tolerance. Oral Ag administration was quite effective in suppressing the development of key features of asthma when initiated after primary immunization (Day 0) or after booster (Day 7), but not after challenge (Day 14) when it increased allergic responses. Collectively, our findings show for the first time the beneficial and detrimental effects of oral Ag administration on the development of experimental asthma.  相似文献   

16.
B Kang  K M Kim  C Y Kang 《Immunobiology》1999,200(2):264-276
Oral administration of antigen induces an antigen-specific immunologic tolerance and many studies are being carried out to apply this phenomenon to the treatment of autoimmune diseases. In this study, we investigated long-term Th1 and Th2 tolerance in mice given a high dose of orally administered Ovalbumin (OVA). Feeding OVA to BALB/c mice suppressed OVA-specific IgG response and the degree of inhibition was dose-dependent in the range of 2.5-250 mg. Moreover, the state of tolerance established by prior feeding of high dose of OVA was present after 26 weeks. Interestingly, even though both Th subsets were tolerized significantly for a short period, the tolerizing effect was more pronounced and persistent in Th2-mediated immune responses. Thus we speculate that oral administration of a single high dose of OVA induces Th1- and Th2-tolerance by different mechanisms. Our findings could be important in the development of therapeutics for the treatment of autoimmune disease and allergy.  相似文献   

17.
Both CD4(+) Th17-cells and CD8(+) cytotoxic T lymphocytes (CTLs) are involved in type 1 diabetes and experimental autoimmune encephalomyelitis (EAE). However, their relationship in pathogenesis of these autoimmune diseases is still elusive. We generated ovalbumin (OVA)- or myelin oligodendrocyte glycoprotein (MOG)-specific Th17 cells expressing RORγt and IL-17 by in vitro co-culturing OVA-pulsed and MOG(35-55) peptide-pulsed dendritic cells (DC(OVA) and DC(MOG)) with CD4(+) T cells derived from transgenic OTII and MOG-T cell receptor mice, respectively. We found that these Th17 cells when transferred into C57BL/6 mice stimulated OVA- and MOG-specific CTL responses, respectively. To assess the above question, we adoptively transferred OVA-specific Th17 cells into transgenic rat insulin promoter (RIP)-mOVA mice or RIP-mOVA mice treated with anti-CD8 antibody to deplete Th17-stimulated CD8(+) T cells. We demonstrated that OVA-specific Th17-stimulated CTLs, but not Th17 cells themselves, induced diabetes in RIP-mOVA. We also transferred MOG-specific Th17 cells into C57BL/6 mice and H-2K(b-/-) mice lacking of the ability to generate Th17-stimulated CTLs. We further found that MOG-specific Th17 cells, but not Th17-activated CTLs induced EAE in C57BL/6 mice. Taken together, our data indicate a distinct role of Th17 cells and Th17-stimulated CTLs in the pathogenesis of TID and EAE, which may have great impact on the overall understanding of Th17 cells in the pathogenesis of autoimmune diseases.  相似文献   

18.
BACKGROUND: In humans the prevalence of asthma is higher among females than among males after puberty. The reason for this phenomenon is not clear. OBJECTIVE: We tested the hypothesis that female mice are more susceptible to the development of allergic asthma than male mice and studied allergic immune responses in the lung. METHODS: We compared allergic airway inflammation, i.e. methacholine (MCh) responsiveness, serum IgE, and cytokines, and the number of the different leucocytes in lungs of male and female BALB/c mice, twice-sensitized to ovalbumin (OVA) and subsequently challenged with OVA (OVA-mice) or phosphate-buffered saline (PBS-mice) aerosols on days 24-26, 30, and 31. RESULTS: OVA challenge significantly increased MCh responsiveness, numbers of eosinophils, CD4(+) T cells, CD4(+)/CD25(+) T cells, B cells, and levels of Thelper (Th)2 cytokines, total, and OVA-specific IgE. There was, however, also an effect of gender, with female mice responding to OVA challenges with higher numbers of eosinophils, CD4(+) T cells, B cells, and levels of IL-4, IL-13, IFN-gamma, total, and OVA-specific IgE than male mice. In contrast, female PBS-mice had significantly lower percentages of regulatory CD4(+)/CD25(+) T cells than males (females 4.2+/-0.2% vs. males 5.3+/-0.1% of CD4(+) T cells, P<0.05). CONCLUSION: Female mice develop a more pronounced type of allergic airway inflammation than male mice after OVA challenge. The reduced percentage of regulatory T cells in the lungs of female PBS-mice may indicate that the level of these cells in the lung during the sensitization phase is important for the development and/or progression of an allergic immune response after multiple OVA challenges.  相似文献   

19.
Ultrafine nanoparticles of zinc oxide (ZnO) recently became available as a substitute for larger-size fine ZnO particles. However, the biological activity of ultrafine ZnO currently remains undefined. In the present study, we investigated the effect of ultrafine ZnO on oral tolerance that plays an important role in the prevention of food allergy. Oral tolerance was induced in mice by a single oral administration (i.e., gavage) of 25?mg of ovalbumin (OVA) 5 days prior to a subcutaneous immunization with OVA (Day 0). Varying doses of ultrafine (diameter: ≈ 21 nm) as well as fine (diameter: < 5 µm) ZnO particles were given orally at the same time during the OVA gavage. The results indicated that a single oral administration of OVA was followed by significant decreases in serum anti-OVA IgG, IgG1, IgG2a, and IgE antibodies and in the proliferative responses to the antigen by these hosts’ spleen cells. The decreases in these immune responses to OVA were associated with a marked suppression of secretion of interferon (IFN)γ, interleukin (IL)-5, and IL-17 by these lymphoid cells. Treatment with either ultrafine or fine ZnO failed to affect the oral OVA-induced suppression of antigen-specific IgG, IgG1, IgG2a, and IgE production or lymphoid cell proliferation. The suppression induced by the oral OVA upon secretion of IFNγ, IL-5, and IL-17 was also unaffected by either size of ZnO. These results indicate that ultrafine particles of ZnO do not appear to modulate the induction of oral tolerance in mice.  相似文献   

20.
The physiological ramifications of oral tolerance remain poorly understood. We report here that mice fed ovalbumin (OVA) exhibit oral tolerance to subsequent systemic immunization with OVA in adjuvant, and yet they clear systemic infection with a recombinant OVA-expressing strain of Salmonella enterica serovar Typhimurium better than unfed mice do. Mice fed a sonicated extract of S. enterica serovar Typhimurium are also protected against systemic bacterial challenge, and the protection is Th1 mediated, as feeding enhances clearance in interleukin-4-null (IL-4(-/-)) and IL-10(-/-) mice but not in gamma interferon-null (IFN-gamma(-/-)) mice. When T-cell priming in vivo is tracked temporally in T-cell receptor-transgenic mice fed a single low dose of OVA, CD4 T-cell activation and expansion are restricted largely to mucosal lymphoid organs. However, T cells from spleens and peripheral lymph nodes of fed mice proliferate and secrete IFN-gamma when restimulated with OVA in vitro, indicating the presence of primed T cells in systemic tissues following oral exposure to antigen. Nonetheless, oral tolerance can be observed in the fed mice as reduced recall responses following subsequent systemic immunization with OVA in adjuvant. Soluble OVA administered systemically has similar effects in vivo, and the "tolerance" seen in both cases can be partially reversed if the initial priming is made more immunogenic. Together, the results indicate that antigen exposure under poor adjuvantic conditions, whether oral or systemic, may lead to T-cell commitment to effector rather than proliferative capabilities, necessitating a reassessment of therapeutic modalities for induction of oral tolerance in allergic or autoimmune states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号