首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the relationships between the suppressive effects of dietary fish oil on growth and metastasis of MDA-MB-435 human breast cancer cells in female nude mice and the primary tumor phospholipid fatty acid concentrations, phospholipase A2 activity, and eicosanoid levels. Mice (n = 120) were fed a 23% (wt/wt) corn oil (CO) linoleic acid (LA)-rich diet for seven days before and after 10(6) tumor cells were injected into a mammary fat pad, and then the mice receive one of three isocaloric diets containing 23% total fat but different proportions of CO and menhaden oil (MO) (18% CO-5% MO, 11.5% CO-11.5% MO, 5% CO-18% MO) or a 23% fat diet containing 18% deodorized fish oil supplemented with tocopherol and tert-butylhydroquinone antioxidants (FAO). Primary tumor growth rate was significantly greater in mice fed the 18% CO diet than in the three diets containing higher levels of fish oil (all p < 0.05). The 18% MO diet, but not the 11.5% MO or the 18% FAO diet, suppressed the development of lung metastases compared with the 18% CO diet. Increasing the proportion of MO relative to CO in the diets produced corresponding increases in the primary tumor phospholipid eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations and reductions in LA and arachidonic acid. There was a significant positive correlation between the LA concentration in these tumors and the extent of lung metastasis (r = 0.504). Tumor phospholipase A2 activity was unaffected by dietary MO intake. Prostaglandin E2 concentration was inversely correlated with phospholipid EPA (r = -0.484) and DHA (r = -0.439), but there was no relationship with lung metastasis. Tumor leukotriene B4 and 5-hydroxyeicosatetraenoic acid levels were not reduced by dietary MO. The 18% FAO- and the 18% MO-fed mice showed similar relationships for the phospholipid fatty acids and prostaglandin E2, despite the lack of effect on metastasis. The strong correlation between phospholipid LA levels and metastasis and the lack of an association with tumor eicosanoids suggest that the 18% MO diet inhibited metastasis because dietary LA was replaced by other fatty acids.  相似文献   

2.
(n-3) polyunsaturated fatty acids (PUFA) have been widely documented to reduce inflammation in diseases such as rheumatoid arthritis. This study sought to elucidate the mechanism whereby (n-3) PUFA downregulate T-cell proliferation. We hypothesized that membrane incorporation of dietary PUFA would alter membrane structure and consequently membrane receptor function. Female C57BL/6 mice were fed for 14 d one of three diets containing arachidonic acid (AA), fish oil or docosahexaenoic acid (DHA) that varied in lipid composition only. Spleens were harvested and T cells ( approximately 90% purity) were activated with agonists that stimulated proliferation at the receptor level [anti-CD3 (alphaCD3)/anti-CD28 (alphaCD28)], intracellularly [phorbol-12-myristate-13-acetate (PMA)/ionomycin] or with a combined receptor/intracellular agonist (alphaCD3/PMA). Although there was no significant difference (P > 0.05) in proliferative response across dietary groups within each agonist set, interleukin (IL)-2 secretion was significantly reduced (P = 0.05) in cells from DHA-fed mice stimulated with alphaCD3/alphaCD28. In parallel in vitro experiments, Jurkat T cells were incubated with 50 micromol/L linoleic acid, AA, or DHA. Similar agonists sets were employed, and cells incubated with DHA and AA had a significantly reduced (P < 0.05) IL-2 secretion in three of the agonist sets. However, only when the CD28 receptor was stimulated was there a significant difference (P < 0.05) between DHA and AA. The results of this study suggest the involvement of the CD28 receptor in reducing IL-2 secretion in DHA-fed mice and DHA-incubated Jurkat cells and that purified T cells from DHA-fed mice require accessory cells to modulate proliferative suppression.  相似文献   

3.
Dietary (n-6) and (n-3) fatty acids have been implicated as important regulators of bone metabolism. The main objective of this research was to define the response of whole-body growth, fatty acid status and bone mass to a reduced dietary (n-6):(n-3) fatty acid ratio. A secondary objective was to determine whether there is an amount of fat x fatty acid ratio interaction for these outcomes. Piglets (n = 32) were randomized to 1 of 4 diets: group 1: [30 g fat/L + (n-6):(n-3) ratio 4.5:1]; group 2: [30 g fat/L + (n-6):(n-3) ratio 9.0:1]; group 3: [60 g fat/L + (n-6):(n-3) ratio 4.5:1]; and group 4: [60 g fat/L + (n-6):(n-3) ratio 9.0:1]. After 21 d, outcomes assessed included growth, fatty acid status and bone mass and metabolism. Growth and bone mass did not differ among the four groups nor did arachidonic acid (AA as g/100 g fatty acids) in plasma, adipose and brain. Piglets fed diets 1 and 3 with the lower (n-6):(n-3) ratio had lower liver AA (P < 0.001). Those fed diets 1 and 2 containing 30 g fat/L had lower docosahexaenoic acid (DHA as g/100 g fatty acids) in liver (P < 0.001), plasma (P = 0.019) and adipose tissue (P = 0.045). However, piglets fed diets 1 and 3 had higher (P < 0.001) brain DHA than those fed diets with a higher (n-6):(n-3) ratio. Higher plasma DHA was associated with less bone resorption (r = -0.44, P = 0.01). Therefore, elevation of dietary (n-3) fatty acids supports growth and fatty acid status while not compromising bone mass. The results may be of relevance to the nutritional management of preterm infants whose DHA status is often too low and bone resorption too high.  相似文献   

4.
High linoleic acid (LA) intakes have been suggested to reduce alpha-linolenic acid [ALA, 18:3(n-3)] metabolism to eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)], and favor high arachidonic acid [ARA, 20:4(n-6)]. We used a randomized cross-over study with men (n = 22) to compare the effect of replacing vegetable oils high in LA with oils low in LA in foods, while maintaining constant ALA, for 4 wk each, on plasma (n-3) fatty acids. Nonvegetable sources of fat, except fish and seafoods, were unrestricted. We determined plasma phospholipid fatty acids at wk 0, 2, 4, 6, and 8, and triglycerides, cholesterol, serum CRP, and IL-6, and platelet aggregation at wk 0, 4, and 8. LA and ALA intakes were 3.8 +/- 0.12% and 1.0 +/- 0.05%, and 10.5 +/- 0.53% and 1.1 +/- 0.06% energy with LA:ALA ratios of 4:0 and 10:1 during the low and high LA diets, respectively. The plasma phospholipid LA was higher and EPA was lower during the high than during the low LA diet period (P < 0.001), but DHA declined over the 8-wk period (r = -0.425, P < 0.001). The plasma phospholipid ARA:EPA ratios were (mean +/- SEM) 20.7 +/- 1.52 and 12.9 +/- 1.01 after 4 wk consuming the high or low LA diets, respectively (P < 0.001); LA was inversely associated with EPA (r = -0.729, P < 0.001) but positively associated with ARA:EPA (r = 0.432, P < 0.001). LA intake did not influence ALA, ARA, DPA, DHA, or total, LDL or HDL cholesterol, CRP or IL-6, or platelet aggregation. In conclusion, high LA intakes decrease plasma phospholipid EPA and increase the ARA:EPA ratio, but do not favor higher ARA.  相似文献   

5.
The purpose of this study was to determine whether dietary (n-3) fatty acids would affect mammary tumor growth and metastasis. Weanling female BALB/c mice were fed diets that contained 10% corn oil (CO), linseed oil (LO) or a fish oil-corn oil mix (FO) for 3-8 wk prior to receiving subcutaneous injections of one of two syngeneic mammary tumor cell types (410 and 410.4). Tumor growth was assessed by monitoring mean tumor diameter and tumor weight upon removal. Feeding LO, but not FO, reduced the growth (p less than 0.05) of 410.4 mammary tumors compared with growth in those fed CO. Metastasis data paralleled the tumor growth rate. Feeding LO and FO enhanced (p less than 0.005) incorporation of (n-3) fatty acids into tumors. Tumor prostaglandin E (PGE) production was reduced (p less than 0.005) by LO and FO, compared with CO. FO feeding reduced 410.4 tumor PGE synthesis more (p less than 0.05) than LO feeding, yet tumor growth was only inhibited by LO. These data suggest an inhibitory effect of dietary linolenic acid [i.e., 18:3 (n-3)] on mammary tumor growth and metastasis. However, this effect did not directly correlate with diet-induced changes in PGE synthesis.  相似文献   

6.
We investigated the effects of dietary docosahexaenoic acid (DHA, 22:6 n-3) and phosphatidylcholine (PC) on maze behavior and brain fatty acids in mice. Male Crj:CD-1 mice (3 wk old) were fed a diet containing 2% DHA and 3% palm oil (DHA group); 5% PC (PC group); 1% DHA, 2.5% PC and 1.5% palm oil (DHA + PC group); 5% palm oil (Palm oil control group) or MF laboratory chow (MF control group) for 7 mo. After this time maze-learning ability was assessed. The time required to reach the maze exit and the number of times that a mouse strayed into blind alleys in the maze were measured three times every four days. After the last learning test, all mice were sacrificed and plasma and brain were analyzed for fatty acid composition. The DHA and PC groups required less time to reach the maze exit and strayed less into blind alleys than the control group in the third trial. The difference between the DHA or PC groups and control mice was statistically significant (p < 0.05). In the total lipids of plasma and brain of mice fed DHA, there was a significant increase in DHA levels and a concomitant decrease in arachidonic acid (AA, 20:4 n-6). Similar changes in fatty acid composition were observed in brain phosphatidylcholine and phosphatidylethanolamine for this group of mice. However, this pattern of changes in brain fatty acids was not evident in the PC group. Our data suggest that maze-learning ability in mice is enhanced by intakes of DHA and PC. However, the mechanisms by which the DHA and PC diets improved learning ability appear to be different. A synergistic effect of DHA and PC on learning ability is not apparent in the DHA + PC group.  相似文献   

7.
The purpose of this study was to investigate whether dietary supplementation with the n-3 fatty acid docosahexaenoic acid (DHA) in combination with arabinosylcytosine (AraC) chemotherapy could prolong the life expectancy of mice bearing L1210 leukemia. The four control diets included rodent chow, a diet containing 5% of a blended oil mimicking the fatty acid composition of rodent chow, and diets containing 5% or 10% fat with safflower oil as the main oil source. The two DHA-supplemented diets provided 1.5% or 3.5% DHA and 5% or 10% total fat, respectively. After tumor cell inoculation, mice were treated with AraC for 10 days. Mice fed the 5% safflower oil diet (30.1 -/+ 4.1 days), but not those fed the 10% safflower oil diet, survived longer than the chow-fed animals (22.1 -/+ 3.1 days, P = 0.05). The 1.5%-/+ DHA diet (average intake 1.8 g DHA/kg/day) was associated with a longer life span (33.3 -/+ 3.4 days, P < 0.01 vs. chow-fed) and no incidence of death due to drug toxicity. Further increasing DHA intake (4.5 g DHA/kg/day) resulted in shortened survival time (26.5 -/+ 2.0 days), increased circulating tumor cell burden, and lowered red blood cell concentrations. These data suggest that a modest level of dietary DHA or linoleic acid supplementation may improve the antineoplastic efficacy of AraC. However, overconsumption of DHA reverses the beneficial effect of DHA intake on drug sensitivity.  相似文献   

8.
Long chain omega 3 (n-3) fatty acids, eicosapentaenoic (EPA) and/or docosahexaenoic acid (DHA), have been shown to suppress growth of most cancer cells. In vivo, alpha linolenic acid (ALA, 18:3n-3) can be converted to EPA or DHA. We hypothesized that substituting canola oil (10% ALA) for the corn oil (1% ALA) in the diet of cancer bearing mice would slow tumor growth by increasing n-3 fatty acids in the diet. Sixty nude mice received MDA-MB 231 human breast cancer cells and were fed a diet containing 8% w/w corn oil until the mean tumor volume was 60 mm3. The dietary fat of half of the tumor bearing mice was then changed to 8% w/w canola oil. Compared to mice that consumed the corn oil containing diet, the mice that consumed the canola oil containing diet had significantly more EPA and DHA in both tumors and livers, and the mean tumor growth rate and cell proliferation in the tumor were significantly slower (P<0.05). About 25 days after diet change, mice that consumed the corn oil diet stopped gaining weight, whereas the mice that consumed the canola oil diet continued normal weight gain. Use of canola oil instead of corn oil in the diet may be a reasonable means to increase consumption of n-3 fatty acids with potential significance for slowing growth of residual cancer cells in cancer survivors.  相似文献   

9.
10.
Rats raised on n-3 essential fatty acid deficient diets demonstrate spatial memory deficits. To investigate neuroanatomical correlates of these deficits, morphological analysis of the hippocampus were carried out. Adult, female rats were raised for three generations on n-3 deficient or n-3 supplemented diets. Two n-3 deficient diets contained adequate linoleic acid (LA), or high linoleic acid (high LA), and two supplemented diets contained LA supplemented with alpha-linolenic acid (+LNA), or linoleic supplementation with alpha-linolenic and docosahexaenoic acids (+LNA/DHA). The total fatty acid composition of the hippocampus revealed a profound loss (90%) in docosahexaenoic acid (DHA) in the hippocampi of LA and high LA animals compared to those on +LNA and +LNA/DHA diets with a reciprocal increase in docosapentaenoic acid (DPAn-6) in all phospholipid species. The volume, density, total number, and cell body size of neurons in CA1-3, granular and hilar layers of the hippocampus were measured at septal and temporal locations using unbiased stereology. No differences were detected in any of these measures except for in cell body size; CA1 pyramidal neurons in the LA group were significantly (p < 0.04) smaller than neurons in the +LNA/DHA group at the septal location.  相似文献   

11.
ABSTRACT: BACKGROUND: Polyunsaturated fatty acids (PUFA) have diverse biological effects, from promoting inflammation to preventing cancer and heart disease. Growing evidence suggests that individual PUFA may have independent effects in health and disease. The individual roles of the two essential PUFA, linoleic acid (LA) and alpha-linolenic acid (ALA), have been difficult to discern from the actions of their highly unsaturated fatty acid (HUFA) downstream metabolites. This issue has recently been addressed through the development of the [increment]-6 desaturase knock out (D6KO) mouse, which lacks the rate limiting [increment]-6 desaturase enzyme and therefore cannot metabolize LA or ALA. However, a potential confounder in this model is the production of novel [increment]-5 desaturase (D5D) derived fatty acids when D6KO mice are fed diets containing LA and ALA, but void of arachidonic acid. OBJECTIVE: The aim of the present study was to characterize how the D6KO model differentially responds to diets containing the essential n-6 and n-3 PUFA, and whether the direct provision of downstream HUFA can rescue the phenotype and prevent the production of D5D fatty acids. Methodology Liver and serum phospholipid (PL) fatty acid composition was examined in D6KO and wild type mice fed i) 10% safflower oil diet (SF, LA rich) ii) 10% soy diet (SO, LA+ALA) or iii) 3% menhaden oil +7% SF diet (MD, HUFA rich) for 28 days (n = 3-7/group). RESULTS: Novel D5D fatty acids were found in liver PL of D6KO fed SF or SO-fed mice, but differed in the type of D5D fatty acid depending on diet. Conversely, MD-fed D6KO mice had a liver PL fatty acid profile similar to wild-type mice. CONCLUSIONS: Through careful consideration of the dietary fatty acid composition, and especially the HUFA content in order to prevent the synthesis of D5D fatty acids, the D6KO model has the potential to elucidate the independent biological and health effects of the parent n-6 and n-3 fatty acids, LA and ALA.  相似文献   

12.
Long chain omega 3 (n-3) fatty acids, eicosapentaenoic (EPA) and/or docosahexaenoic acid (DHA), have been shown to suppress growth of most cancer cells. In vivo, alpha linolenic acid (ALA, 18:3n-3) can be converted to EPA or DHA. We hypothesized that substituting canola oil (10% ALA) for the corn oil (1% ALA) in the diet of cancer bearing mice would slow tumor growth by increasing n-3 fatty acids in the diet. Sixty nude mice received MDA-MB 231 human breast cancer cells and were fed a diet containing 8% w/w corn oil until the mean tumor volume was 60 mm 3 . The dietary fat of half of the tumor bearing mice was then changed to 8% w/w canola oil. Compared to mice that consumed the corn oil containing diet, the mice that consumed the canola oil containing diet had significantly more EPA and DHA in both tumors and livers, and the mean tumor growth rate and cell proliferation in the tumor were significantly slower (P < 0.05). About 25 days after diet change, mice that consumed the corn oil diet stopped gaining weight, whereas the mice that consumed the canola oil diet continued normal weight gain. Use of canola oil instead of corn oil in the diet may be a reasonable means to increase consumption of n-3 fatty acids with potential significance for slowing growth of residual cancer cells in cancer survivors.  相似文献   

13.
【目的】 探讨生命早期不同年龄阶段脑摄取、聚集二十二碳六烯酸(DHA)(C22:6n-3)及相关去饱和酶的变化。 【方法】 使用6~8周龄清洁级C57BL/6J雌性小鼠,分别给予n-3 多不饱和脂肪酸(n-3 PUFAs)缺乏饲料和含n-3 PUFAs饲料喂养6周,然后雌雄合笼交配繁殖,新生仔鼠分别于生后7、21 d和42 d时取血、脑和肝脏。采用甲酯化-气相色谱分析对血浆、脑和肝脏中脂肪酸谱进行分析;采用荧光定量PCR方法对脑和肝脏中脂肪酸去饱和酶1(FADS1)和脂肪酸去饱和酶2(FADS2)基因mRNA表达进行检测。 【结果】 对不同年龄小鼠组织脂肪酸的比较发现,脑中DHA和总n-3 PUFAs含量在两种不同饲料组均随年龄增加而升高;而肝中的含量则随年龄增加而降低。与n-3 PUFAs缺乏组相比,饲料中添加n-3 PUFAs可使仔鼠生后7、21 d和42 d时脑和肝脏中DHA和总n-3 PUFAs含量均显著升高;升高的程度在脑组织中随年龄增加而降低,而在肝脏组织中则不随年龄变化。对不同年龄段FADS表达的比较发现,FADS1和FADS2 mRNA在脑组织中的表达量于42 d时显著高于7 d和21 d,而在肝组织中的表达量于各年龄段之间无显著性差异。与n-3 PUFAs缺乏组相比,饲料中添加n-3 PUFAs可使仔鼠生后7 d和21 d时脑组织FADS1和FADS2表达水平显著降低,而42 d时的表达无变化;肝组织中这两种酶mRNA水平在7 d和21 d时无变化,42 d时FADS1显著降低。 【结论】 发育期脑对DHA的聚集需求随着年龄增大而逐渐减少;FADS在脑中的表达水平随年龄增大而升高。同时,饲料n-3 PUFAs缺乏状态对脑聚集DHA以及FADS的影响在年龄小时更明显。  相似文献   

14.
We compared the effect of direct supplementation with docosahexaenoic acid (DHA) on the fatty acid composition of the liver and the rod outer segment (ROS) membranes of the retina in young (five-week-old) and mature (one-year-old) rats. In young rats, a high content of DHA in the diet (9.7% of total energy) effectively increased the proportion of DHA in ROS membranes (41.8%), compared with the proportion observed in a linoleic acid (LA) diet group (control, 31.6%). The proportion of DHA was also significantly higher in the livers of young DHA-fed rats. These results show that direct supplementation with DHA is very effective in increasing DHA levels in the ROS membranes and livers of developing animals. In contrast, in mature rats there was no significant increase in the proportion of DHA in the ROS membranes, even after the highest dose (8.4% of total energy) of DHA, although the proportion of DHA was significantly higher in the livers of DHA-fed rats. The changes in fatty acid composition in the ROS membranes were different in young and mature rats fed high-DHA diets. Our findings indicate that mature rats maintain a constant level of DHA in the ROS membranes even after being directly supplemented with high doses of DHA.  相似文献   

15.
We showed previously that dietary eicosapentaenoic acid [EPA, 20:5(n-3)] is antitumorigenic in the APC:(Min/+) mouse, a genetic model of intestinal tumorigenesis. Only a few studies have evaluated the effects of dietary fatty acids, including EPA and docosahexaenoic acid [DHA, 22:6(n-3)], in this animal model and none have evaluated the previously touted antitumorigenicity of alpha-linolenic acid [ALA, 18:3(n-3)], conjugated linoleic acid [CLA, 77% 18:2(n-7)], or gamma-linolenic acid [GLA, 18:3(n-6)]. Stearidonic acid [SDA, 18:4(n-3)], the Delta6-desaturase product of ALA, which is readily metabolized to EPA, has not been evaluated previously for antitumorigenic efficacy. This study was undertaken to evaluate the antitumorigenicity of these dietary fatty acids (ALA, SDA, EPA, DHA, CLA and GLA) compared with oleic acid [OA, 18:1(n-9)] at a level of 3 g/100 g in the diets of APC:(Min/+) mice and to determine whether any alterations in tumorigenesis correspond to alterations in prostaglandin biosynthesis. Tumor multiplicity was significantly lower by approximately 50% in mice fed SDA or EPA compared with controls, whereas less pronounced effects were observed in mice fed DHA (P: = 0.15). ALA, CLA and GLA were ineffective at the dose tested. Although lower tumor numbers coincided with significantly lower prostaglandin levels in SDA- and EPA-fed mice, ALA and DHA supplementation resulted in equally low prostaglandin levels, despite proving less efficacious with regard to tumor number. Prostaglandin levels did not differ significantly in the CLA and GLA groups compared with controls. These results suggest that SDA and EPA attenuate tumorigenesis in this model and that this effect may be related in part to alterations in prostaglandin biosynthesis.  相似文献   

16.
BACKGROUND: Maternal essential fatty acid status declines during pregnancy, and as a result, neonatal concentrations of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) may not be optimal. OBJECTIVE: Our objective was to improve maternal and neonatal fatty acid status by supplementing pregnant women with a combination of alpha-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA, 18:2n-6), the ultimate dietary precursors of DHA and AA, respectively. DESIGN: From week 14 of gestation until delivery, pregnant women consumed daily 25 g margarine supplying either 2.8 g ALA + 9.0 g LA (n = 29) or 10.9 g LA (n = 29). Venous blood was collected for plasma phospholipid fatty acid analyses at weeks 14, 26, and 36 of pregnancy, at delivery, and at 32 wk postpartum. Umbilical cord blood and vascular tissue samples were collected to study neonatal fatty acid status also. Pregnancy outcome variables were assessed. RESULTS: ALA+LA supplementation did not prevent decreases in maternal DHA and AA concentrations during pregnancy and, compared with LA supplementation, did not increase maternal and neonatal DHA concentrations but significantly increased eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3) concentrations. In addition, ALA+LA supplementation lowered neonatal AA status. No significant differences in pregnancy outcome variables were found. CONCLUSIONS: Maternal ALA+LA supplementation did not promote neonatal DHA+AA status. The lower concentrations of Osbond acid (22:5n-6) in maternal plasma phospholipids and umbilical arterial wall phospholipids with ALA+LA supplementation than with LA supplementation suggest only that functional DHA status improves with ALA+LA supplementation.  相似文献   

17.
Juvenile grouper (Epinephelus malabaricus) were fed seven experimental diets, one control diet and one reference diet for 12 wk to determine the dietary requirement of grouper for docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. Each of the seven diets contained 1 g/100 g DHA and EPA in various combinations and 9 g/100 g tristearin. The control diet contained 1 g/100 g trilinolenin and trilinolein (3:1, wt/wt), and no supplemental EPA or DHA. The reference diet contained only natural oils from a mixture of cod liver oil, linseed oil and safflower oil at a ratio of 2:1:1 (wt/wt/wt). Significant differences (P < 0.05) in growth were observed among the dietary treatments but not in survival rate or relative liver weight. Only the diet with the highest DHA/EPA ratio (3:1) promoted significantly greater growth than the control diet. Purified EPA and DHA did not perform better in promoting growth than did the impure EPA and DHA oils. Enhanced growth was observed when the dietary DHA/EPA ratio was greater than 1, indicating that DHA was superior to EPA in promoting fish growth. Neutral lipid (NL) was the predominant lipid fraction (>70%) in both liver and muscle. Tissue NL/polar lipid did not differ among groups except the reference diet group that had a higher ratio (P < 0.05). DHA and EPA levels in the grouper tissues, especially muscle, were highly reflective of dietary levels of DHA and EPA, indicating that direct incorporation was likely. In addition, the 20:1(n-9), concentration in NL fractions seems to be an appropriate indicator of dietary essential fatty acid deficiency in grouper.  相似文献   

18.
Compared with diets high in fat, low-fat diets are associated with reduced risk of cardiovascular disease. We hypothesized that a low-fat (LF) (20% fat) and an LF high–omega-3 (n-3) fatty acid diet (LFn3) (23% fat with 3% as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid [DHA]) would enhance n-3 composition of plasma phospholipid fatty acid and reduce urinary prostaglandin E2 (PGE2) relative to a high-fat diet (HF) (40% fat) and that these changes would be associated with alterations in δ5 desaturase (D5D) and δ6 desaturase (D6D) activity. Phospholipid fatty acids and urinary PGE2 were measured, and D5D and D6D activity indices calculated in a crossover trial in 17 postmenopausal women fed each of 3 test diets (HF, LF, and LFn3) for 8-week feeding periods. Desaturase activity indices were calculated as D5D, 20:4n-6/20:3n-6, and D6D, 20:3n-6/18:2n-6. Plasma phospholipid fatty acid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid (DPA), DHA, and total n-3 fatty acids increased, whereas linoleic acid and arachidonic acid decreased with consumption of LFn3. The LF resulted in enhanced arachidonic acid and DHA. High fat reduced D6D, whereas both HF and LF increased D5D. Urinary PGE2 was reduced in response to both the LF and LFn3 diets. Low-fat diets, with or without long-chain n-3 fatty acids, promote positive health effects due in part to favorable alteration of plasma phospholipid fatty acid profiles and modification in desaturase activity indices, suggesting that the type and amount of fat consumed are modifiable risk factors for the prevention of cardiovascular disease.  相似文献   

19.
Low tissue levels of (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid [DHA, 22:6(n-3)], are implicated in postpartum depression. The effects of 1-4 sequential reproductive cycles on maternal brain phospholipid fatty acid composition were determined in female rats fed diets containing alpha-linolenic acid (ALA), containing ALA and pre-formed DHA (ALA+DHA), or lacking ALA (low-ALA). Virgin females, fed the diets for commensurate durations served as a control for reproduction. Whole-brain total phospholipid composition was determined at weaning by TLC/GC. A single reproductive cycle on the low-ALA diet decreased brain DHA content by 18% compared to ALA primiparas (P < 0.05), accompanied by incorporation of docosapentaenoic acid ((n-6) DPA, 22:5(n-6)) to 280% of ALA primiparas (P < 0.05). DHA was not further decreased after subsequent cycles; however, there was an additional increase in (n-6) DPA after the second cycle (P < 0.05). Brain DHA of virgin females fed the low-ALA diet for 27 wk decreased 15% (P < 0.05), but was accompanied by a more modest increase in (n-6) DPA than in parous low-ALA dams (P < 0.05). Virgin females and parous dams fed the diet containing ALA+DHA exhibited only minor changes in brain fatty acid composition. These observations demonstrate that brain DHA content of adult animals is vulnerable to depletion under dietary conditions that supply inadequate (n-3) PUFAs, that this effect is augmented by the physiological demands of pregnancy and lactation, and that maternal diet and parity interact to affect maternal brain PUFA status.  相似文献   

20.
An incremental increase in the dietary (n-3):(n-6) polyunsaturated fatty acid (PUFA) ratio from 0 to 1.93 in diets containing 15% fat (wt/wt) decreased the total (n-6) PUFA content of phospholipids of the liver and peritoneal cells (macrophage) in mice from 43.1 and 33.6 mol/100 mol to 16.0 and 12.3 mol/100 mol with a concomitant increase of 27.6 and 16.1 mol/100 mol in (n-3) PUFA, respectively. Consumption of (n-3) PUFA increased hepatic (n-3) PUFA levels without changing total PUFA (46.35 vs. 46.87 mol/100 mol), whereas macrophage PUFA levels were decreased. The synthesis of sulfidopeptide leukotrienes (SP-LT) (LTC4 and LTE4) was progressively reduced by increasing dietary (n-3) PUFA, i.e., there was a reduction of 76% in mice fed a diet containing a (n-3):(n-6) PUFA ratio of 1.93 compared with the control diet. The 5-series SP-LT (LTC5 and LTF5) were produced in all animals consuming (n-3) PUFA and accounted for 62% of all SP-LT synthesized in mice fed the diet containing a 1.93 (n-3):(n-6) PUFA ratio. Synthesis of 6-keto-prostaglandin F1 alpha decreased 81% in mice fed a diet containing a (n-3):(n-6) PUFA ratio of 1.93 whereas prostaglandin E2 synthesis decreased 44% in mice fed diets with (n-3):(n-6) ratios ranging from 0.41 to 1.93.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号