首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actions of a novel vitamin D3 analog calcipotriol (MC 903), on human bone-derived cells were compared to those of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Both calcipotriol and 1,25-(OH)2D3 inhibited the proliferation of human osteoblast-like cells in a dose-dependent manner (10(-10)-10(-6) M), an effect observed at different cell densities. Lower concentrations of either agent exerted no marked effect on the growth of the cells compared to untreated cultures. Calcipotriol and 1,25-(OH)2D3 were equipotent in stimulating the activity of alkaline phosphatase and the synthesis of osteocalcin in human osteoblast-like cells. The stimulation of alkaline phosphatase activity and osteocalcin synthesis by both compounds was evident by 24 h and was increased progressively up to 96 h in a dose-dependent manner over the concentration range of 10(-10)-10(-6) M. The increment in both proteins was dependent on cell density and was attenuated at higher cell densities. In contrast to these actions, neither calcipotriol nor 1,25-(OH)2D3 (10(-14)-10(-6) M) affected the synthesis of prostaglandin E2. These studies indicate that calcipotriol and 1,25-(OH)2D3 exhibit a similar spectrum of activity on human osteoblast-like cells in vitro.  相似文献   

2.
IGF-1 has been shown to be locally produced in several tissues and to play a role in the regulation of cellular activity. We have investigated its production in short-term cultures of human bone derived cells, and the regulation of this production by growth hormone (GH) and by 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). Bone cells obtained from surgical bone biopsies produced and secreted IGF-1 in their culture media. In four days cultures of bone-derived cells recombinant human r-IGF-1 at 20 ng/mL increased the alkaline phosphatase activity and the osteocalcin (bone gla protein) secretion, two specific markers of bone formation. This stimulation occurred only in the presence of 1,25(OH)2D3. Human bone cells exposed to GH increased their alkaline phosphatase activity, but no osteocalcin was detectable. However, in the presence of 1,25(OH)2D3 (1 nM), GH in concentrations of 8 to 40 nM increased by 30-50% the alkaline phosphatase activity and by 50 to 100% the osteocalcin secretion of human bone cells. At the same concentrations, GH also increased by 140% endogenous IGF-1 levels in cell culture supernatants, 1,25(OH)2D3 (10 nM) also increased time- and dose-dependently, IGF-1 levels in human bone cell supernatants, and stimulated dose-dependently alkaline phosphatase activity and osteocalcin secretion. It is therefore suggested that by regulating local production of growth factors such as IGF-1, GH and 1,25(OH)2D3 may modulate the metabolism of human bone cells.  相似文献   

3.
4.
5.
Both 1,25-(OH)2D3 and prostaglandin E2 (PGE2) stimulate alkaline phosphatase activity in MC-3T3-E1 cells. Previous studies, demonstrating a correlation between 1,25-(OH)2D3-dependent alkaline phosphatase and phospholipase A2 activities in matrix vesicles isolated from growth cartilage chondrocyte cultures, suggest that one mechanism of vitamin D action may be via autocrine or paracrine action of PGE2. Since most PGE2 is derived from arachidonic acid released by the action of phospholipase A2, we examined whether 1,25-(OH)2D3 stimulates phospholipase A2 activity in three osteoblastic cell lines: ROS 17/2.8 cells, MC-3T3-E1 cells, and MG-63 cells. 1,25-(OH)2D3-dependent alkaline phosphatase and phospholipase A2 activity were correlated with production of PGE2 and PGE1 in the MC-3T3-E1 cells. Alkaline phosphatase specific activity was enriched in the matrix vesicles produced by all three cell types and was stimulated by 1,25-(OH)2D3 at 10(-8) to 10(-7) M. Although phospholipase A2 specific activity was enriched in the matrix vesicles produced only by the ROS 17/2.8 cell cultures, stimulation of this enzyme activity was observed only in the MC-3T3-E1 cell cultures. The effects of 1,25-(OH)2D3 on phospholipase A2 were dose-dependent and were significant at 10(-8) to 10(-7) M. There was a significant increase in PGE2 production in the MC-3T3-E1 cell cultures only. Indomethacin reduced PGE2 production to base line values. Even at baseline, MC-3T3-E1 cells produced ten times more PGE2 than did the ROS 17/2.8 or MG-63 cell cultures. The effects of 1,25-(OH)2D3 on PGE1 were comparable to those on PGE2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active hormonal form of vitamin D3 and has potent effects on bone and calcium regulation. Over the past decade it has become apparent that 1,25-(OH)2D3 has other effects on cellular proliferation that potentially could be developed for therapy in human malignancy. Since the hypercalcemic effects of 1,25-(OH)2D3 have limited that use in the human, novel nonhypercalcemic analogs of 1,25-(OH)2D3 have been synthesized. The molecular mechanism of this divergence in these antiproliferative and calcium-regulating actions is unexplained. We have previously examined the human bone-specific gene osteocalcin as a model of the molecular mechanisms of vitamin D action in bone and have shown that induction of the osteocalcin gene by 1,25-(OH)2D3 is mediated through an unique and complex palindromic region of the promoter similar to but distinct from those of other steroid hormone-responsive elements. Using an osteosarcoma cell line permanently transfected with the vitamin D-responsive promoter of the human osteocalcin gene linked to a "reporter" gene, we have shown that there is a dose-dependent induction of CAT activity by 1,25-(OH)2D3 and that the potencies of vitamin D metabolites and analogs are comparable to those found in other vitamin D bioassays. Furthermore, vitamin D analogs, including MC-903, 22-oxa-1,25-(OH)2D3, and delta 22-1,25S,26-trihydroxyvitamin D3, which effect cellular differentiation but lack hypercalcemic activity in vivo, exhibit osteocalcin promoter inductive actions virtually identical to those of 1,25-(OH)2D3. Consideration of these and other data support the hypothesis that the divergent effects of such analogs on differentiation and calcium homeostasis reflect pharmacokinetic differences in vivo rather than distinct 1,25-(OH)2D3-sensitive pathways.  相似文献   

7.
The affinity of 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] and analogs with side-chain modifications [MC 903 or calcipotriol, MC 1147 or 24,24-dihomo-1 alpha,25-(OH)2D3 and 1,25-(OH)2-16ene-23yne-D3] for the vitamin D receptor and the serum vitamin D binding protein (DBP) were compared. The affinity of MC 903 for the receptor from chick and rat duodenum or from human peripheral blood mononuclear cells or HL-60 cells varied between 60 and 100% relative to the affinity of 1,25-(OH)2D3. The relative affinity of 1,25-(OH)2-16ene-23yne-D3 and MC 1147 varied for the same receptors between 45-70 and 3.5-25%, respectively. The relative affinity of MC 903 for human DBP was 30-fold decreased, whereas the two other analogs did not bind to DBP at all even in more than 1000-fold excess. The in vitro biologic activity of 1 alpha,25-(OH)2D3 on phytohemagglutinin-stimulated normal human lymphocyte proliferation was markedly inhibited by the addition of physiologic amounts of DBP to the cell culture medium. No such inhibition was observed when MC 903 or 1147 was evaluated similarly. DBP therefore reversed the rank order of the in vitro potency of these analogs. Intramuscular injections for 10 consecutive days to vitamin D-deficient chicks demonstrated a greater than or equal to 100-fold lower biologic activity of MC 903, MC 1147, and 1,25-(OH)2-16ene-23yne-D3 compared to that of 1 alpha,25-(OH)2D3 as evaluated by serum calcium and osteocalcin concentrations, as well as by duodenal calbindin D28K and bone calcium content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
26,27-hexafluoro-1a,25-dihydroxyvitamin D3 (F6-D3) has been reported to be 5-10 times more potent than 1a,25-dihydroxyvitamin D3[1,25(OH)2D3] in biological systems in vivo and in vitro. However, the effect of F6-D3 on bone formation has yet to be clarified. In the present study, we investigated the effect of F6-D3 on SV40-transfected human fetal osteoblastic cells (SV-HFO) and found it to be about 100 times greater than that of 1,25(OH)2D3 in stimulating calcification. F6-D3 was also about 100 times more effective than 1,25(OH)2D3 in enhancing the expression of mRNA for alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). In the presence of 10?8 M F6-D3 and 10?6 M 1,25(OH)2D3, the calcification began on day 9 and increased up to day 19. Expression of mRNA for ALP and OCN reached a maximum on day 4 and thereafter declined. On the other hand, when osteoblastic cells were incubated with a low level of [1b-3H]-F6-D3- or [1b-3H]-1,25(OH)2D3, each radioactive peak could not be detected. However, on the incubation of osteoblastic cells and radioactive substrate in the presence of ketoconazole, a selective inhibitor of CYP24, a clear peak for each substrate was detected. This suggested that F6-D3 as well as 1,25(OH)2D3 is metabolized by CYP24. Osteoblastic cells were incubated with 10?8 M[1b-3H]-F6-D3 or 10?8 M[1b-3H]-1,25(OH)2D3 for 4, 9, and 14 days. A small peak of 1,25(OH)2D3 was observed and thereafter its level decreased. In addition, two unknown peaks increased when the culture period was extended. In the case of F6-D3, peaks of F6-D3 and 26,27-hexafluoro-23-oxo-1a,25(OH)2D3(23-oxo-F6) were clearly detected, the latter being about 4 times higher than the former. Both peaks was retained up to day 14. The amount of unlabeled F6-D3 and 23-oxo-F6 calculated from the specific radioactivity in the cells may be similar to the amount of 1,25(OH)2D3 and its metabolites. The strong activity of F6-D3 in stimulating calcification may be due to the fact that F6-D3 is much more potent than 1,25(OH)2D3 in enhancing the expression of mRNA for ALP, OCN, and OPN and that the amount of F6-D3 and 23-oxo-F6 accumulated in the cells is much greater than that of 1,25(OH)2D3 and its metabolite.  相似文献   

9.
E Canalis  J B Lian 《BONE》1988,9(4):243-246
Studies in bone and bone cell cultures have shown that osteocalcin synthesis is dependent on the maturity of the osteoblast and the presence of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3. The bone matrix is a rich source of growth factors that play a role in bone formation, but their effects on osteocalcin synthesis and their interactions with 1,25(OH)2D3 have not been examined. Insulin-like growth factor I (IGF I), basic and acidic fibroblast growth factor (bFGF and aFGF), platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF beta), are growth factors associated with the bone matrix. These factors were shown to stimulate [3H]thymidine incorporation into DNA in 24 h cultures of fetal rat calvariae, and their effect was not modified by 1,25(OH)2D3. IGF I and TGF beta stimulated [3H]proline incorporation into calvarial collagen while the other growth factors studied did not; 1,25(OH)2D3 inhibited collagen synthesis in control as well as in IGF I and TGF beta treated calvariae. IGF I, bFGF and aFGF stimulated osteocalcin synthesis 1.5 to 2.5 fold but only IGF I was synergistic with the stimulatory effect of 1,25(OH)2D3. PDGF and TGF beta had no effect on osteocalcin synthesis. In conclusion, bone matrix-associated factors have important mitogenic effects in bone cultures, but only IGF I and FGFs stimulate osteocalcin synthesis, an effect that is of small magnitude when compared to that of 1,25(OH)2D3.  相似文献   

10.
19-Nor-1,25-(OH)(2)D(2), an analog of 1,25-(OH)(2)D(3), is used to treat secondary hyperparathyroidism because it suppresses parathyroid hormone synthesis and secretion with lower calcemic and phosphatemic activities. 19-Nor-1,25-(OH)(2)D(2) is approximately 10 times less active than 1,25-(OH)(2)D(3) in promoting bone resorption, which accounts in part for the low potency of this analog in increasing serum calcium and phosphorus. Concern that 19-nor-1,25-(OH)(2)D(2) also could be less potent than 1,25-(OH)(2)D(3) on bone formation led to a comparison of the potency of both compounds on osteoblasts. In the human osteoblast-like cell line MG-63, 1,25-(OH)(2)D(3) and 19-nor-1,25-(OH)(2)D(2) had a similar potency in upregulating vitamin D receptor content and suppressing proliferation. Both sterols caused a similar reduction in DNA content and proliferating cell nuclear antigen protein expression. Time-course and dose-response studies on 1,25-(OH)(2)D(3) and 19-nor-1,25-(OH)(2)D(2) induction of the marker of bone formation, osteocalcin, showed overlapping curves. The effects on alkaline phosphatase (ALP) activity also were studied in MG-63 cells that had been co-treated with either sterol and transforming growth factor-beta, an enhancer of 1,25-(OH)(2)D(3)-induced ALP activity in this cell line. Transforming growth factor-beta alone had no effect, whereas 1,25-(OH)(2)D(3) and 19-nor-1,25-(OH)(2)D(2) increased ALP activity similarly. These studies demonstrate that 19-nor-1,25-(OH)(2)D(2) has the same potency as 1,25-(OH)(2)D(3) not only in inducing vitamin D receptor content, osteocalcin levels, and ALP activity but also in controlling osteoblastic growth. Therefore, it is unlikely that 19-nor-1,25-(OH)(2)D(2) would have deleterious effects on bone remodeling.  相似文献   

11.
1,25-dihydroxyvitamin D3 produces pronounced shape changes in fetal rat calvaria and osteosarcoma-derived (ROS 17/2.8) osteoblastic cells, characterized by retracting processes and cell rounding followed by aggregation of cells. The 1,25(OH)2D3 effect on ROS 17/2.8 morphology was determined morphometrically on scanning electron micrographs. The hormone effect was found to be dose dependent between 10(-12) and 10(-9) M. The shape changes appeared 12 h after hormone (10(-10) M) addition and were present in 80% of the ROS 17/2.8 cells and in 50% of the calvaria cells at 72 h. Cycloheximide at 1 microM, inhibited the hormone-dependent change in morphology. The 1,25(OH)2D3 effects were partially mimicked by 10(-8) M 25(OH)D3 but not by 10(-10) M 25(OH)D3 or 10(-11)-10(-8) M 24,25(OH)2D3. 1,25-dihydroxyvitamin D3 also increased cell proliferation twofold at 14 days in serum-free medium. 1,25(OH)2D3 treatment produced changes in microfilament organization, visualized with rhodamine-conjugated phalloidin. Microfilaments were localized at the terminal attachment points and in the perinuclear region, and few if any, were seen in the retracting processes themselves. Estimation of cytoskeletal actin and myosin by gel electrophoresis of Triton X-100 nonextractable proteins showed a 30% reduction in these proteins in the hormone-treated cells. Microtubules visualized by indirect immunofluorescence showed no major changes in organization. Both colchicine and cytochalasin D altered the hormone-induced shape change, suggesting that both microfilaments and microtubules were required for this process. Thus, 1,25(OH)2D3 had pronounced effects on cell shape in osteoblastic cells, probably via de novo protein synthesis. These changes lead to rearrangement of the cytoskeleton, primarily the microfilaments.  相似文献   

12.
Multiple genetic and environmental steps may underpin the development of human colorectal neoplasia, and experimental evidence suggests that promoters of colorectal cancer also induce colorectal epithelial cell hyperplasia. In vitro crypt cell production rate (CCPR) was measured to determine the effect of calcium, epidermal growth factor (EGF), vitamin D3 metabolites and synthetic analogues on human rectal epithelial cell proliferation. In a double-blind trial of oral calcium supplementation, CCPR was reduced by 49% in patients with familial adenomatous polyposis (FAP), but there was no effect on established neoplasia. In control tissue, the active form of vitamin D3 (1,25(OH)2D3) reduced rectal CCPR by 57% at 1 microM, 55% at 10 nM and 45% at 100 pM. Likewise, in tissue taken from patients with FAP, 1,25(OH)2D3 reduced CCPR by 52%. Vitamin D3 has profound effects on calcium metabolism, but synthetic analogues can avoid these. The effects of a synthetic analogue (MC-903) on human rectal CCPR were therefore studied. MC-903 (10(-7) M) reduced CCPR in control tissue by 51%, and in FAP tissue by 52% at 10(-6) M and 51% at 10(-7) M. In addition, MC-903 and a related analogue, EB 1089, produced a clear-cut dose-dependent inhibition of both HT-29 and Caco2 colorectal cancer cells maintained in culture. Hence, vitamin D3 and its analogues can reduce the rate of cell proliferation in normal, premalignant and malignant colorectal epithelial cells and might therefore have future therapeutic uses as chemoprotective or chemotherapeutic agents. Lastly, EGF increases CCPR by 102% in FAP tissue that expresses the EGF receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Age-related bone loss may be a consequence of a lack of osteoblastic formation and/or function. In vitro, the osteoblastic response to 1,25(OH)2D3, an important regulator of osteoblastic function, appears to depend on the stage of osteoblastic maturation. In this study, we examined the response to 1,25(OH)2D3 of C-terminal type I procollagen (PICP), alkaline phosphatase (ALP), and osteocalcin (OC) secretion in primary cultures of osteoblastic cells from human trabecular bone (hOB). Forty-four bone samples were obtained from subjects undergoing knee arthroplastia, 20 aged 50-70 (64 +/- 5), and 24 >70 (73 +/- 2) years. Another 33 bone samples were obtained from subjects undergoing hip arthroplastia, 21 were aged 50-70 (64 +/- 4) and 12 >70 (75 +/- 5) years. Pooling knee and hip hOB cell cultures, we found that PICP secretion decreased after 1,25(OH)2D3 in hOB cells from the older group (>70 years). Treatment with 1,25(OH)2D3 increased ALP secretion in these cells only in the younger group (50-70 years), whereas it increased OC secretion in hOB cells in both age groups. By pooling hOB cell cultures from both age groups we found that knee hOB cells increased OC secretion, and decreased PICP secretion, after 1,25(OH)2D3. This metabolite also increased OC secretion in hip hOB cells. Considering the influence of donor age at the same skeletal site, 1,25(OH)2D3 was found to stimulate ALP secretion only in knee hOB cells in the younger group. In contrast, this metabolite decreased ALP secretion in hip hOB cells in the older group. PICP secretion decreased after 1,25(OH)2D3 only in hOB cells in the older group, at both skeletal sites. In age-matched cultures, OC secretion was lower in hip hOB cells compared with those from the knee in the older group, but was similar in these cell cultures from both skeletal sites in the younger group. OC secretion after 1,25(OH)2D3 stimulation did not show age differences in knee hOB cells, but was lower in hip hOB in the older group. In summary, our results demonstrate that the response of various osteoblastic markers to 1,25(OH)2D3 in primary cultures of hOB cells depends on the donor age and skeletal site of origin.  相似文献   

14.
Although vitamin D is essential for mineralization of bone, it is as yet unclear whether vitamin D has a direct stimulatory effect on the bone mineralization process. In the present study, the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on in vitro mineralization mediated by osteoblast-like MC3T3-E1 cells was examined. MC3T3-E1 cells continued to grow after they reached confluency, and DNA content and alkaline phosphatase activity increased linearly until about 16 days of culture, whereas 45Ca accumulation into cell and matrix layer remained low. After this period, DNA content plateaued, and 45Ca accumulation increased sharply. Histological examination by von Kossa staining revealed that calcium was accumulated into extracellular matrix. In addition, needle-shaped mineral crystals similar to hydroxyapatite crystals could be demonstrated in between collagen fibrils by electron microscopy. Thus, MC3T3-E1 cells differentiate in vitro into cells with osteoblastic phenotype and exhibit mineralization. When MC3T3-E1 cells were treated with 1,25(OH)2D3 at this stage of culture, there was a dose-dependent stimulation of 45Ca accumulation by 1,25(OH)2D3, and a significant stimulation of 45Ca accumulation was observed with 3 x 10(-10) M 1,25(OH)2D3. Although 1,25(OH)2D3 enhanced alkaline phosphatase activity and collagen synthesis at the early phase of culture, it did not affect any of these parameters at the late phase when 1,25(OH)2D3 stimulated mineralization. Neither 24,25-dihydroxyvitamin D3 nor human PTH(1-34) affected mineralization in the presence or absence of 1,25(OH)2D3. These results demonstrate that 1,25(OH)2D3 stimulates matrix mineralization induced by osteoblastic MC3T3-E1 cells, and are consistent with the possibility that 1,25(OH)2D3 has a direct stimulatory effect on bone mineralization process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The metabolism of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] by a human osteoblastic sarcoma cell line, U-2 OS, and by primary cultures of human bone-derived cells was examined at physiologic (5 x 10(-11) M) and pharmacologic (3.5 x 10(-7) M) substrate concentrations. For metabolite identification purposes, cells nearing confluency were incubated for 18 h with 3.5 x 10(-7) M 1,25-(OH)2D3 in serum-free medium. The putative vitamin D metabolites produced during this incubation were isolated from a total lipid extract of cells and medium. Identification of the metabolites was achieved by comigration with authentic standards on three high-performance liquid chromatography systems, UV spectral analysis, mass spectrometry, and chemical modification by sodium borohydride and sodium metaperiodate. The identified metabolites produced from 1,25-(OH)2D3 by the human osteosarcoma cells include 1,24,25-trihydroxyvitamin D3; 24-oxo-1,25-dihydroxyvitamin D3; 24-oxo-1,23,25-trihydroxyvitamin D3; and 24,25,26,27-tetranor-1,23-dihydroxyvitamin D3. Evidence is presented that (1) 1,25-(OH)2D3 metabolism occurs constitutively in U-2 OS osteosarcoma cells at a physiologic substrate concentration (5 x 11(-11) M), (2) the pathway can be further induced by pharmacologic 1,25-(OH)2D3 concentrations (10(-7) M), and (3) this pathway is present in primary cultures of normal human bone-derived cells.  相似文献   

16.
Calvarial bones from hypophosphatemic (Hyp) mice and normal littermates were cultured in a chemically defined medium to determine: (a) the effect of medium phosphate (Pi) concentration (1, 2, and 3 mM) on collagen synthesis; (b) the effect of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] (10(-12)M-10(-7)M) on collagen synthesis; and (c) whether bone responsiveness to 1,25(OH)2D3 was affected by changes in medium Pi concentration. Bone collagen synthesis was evaluated by measuring [ 3H ]hydroxyproline formation. The distribution of labeled hydroxyproline between bone explant and culture medium (total and dialyzable fraction) was studied. These experiments confirm that 1,25(OH)2D3 inhibits specifically bone collagen synthesis in vitro. We did not detect any effect of medium Pi concentration on basal collagen synthesis but were able to demonstrate that lowering medium Pi concentration increased the 1,25(OH)2D3-induced inhibition of collagen synthesis. Bones from both genotypes responded to 1,25(OH)2D3, but modulation of this response by changes in Pi concentration was altered in Hyp bone as, in contrast to normal bone, its response to 1,25(OH)2D3 was unaffected when medium Pi concentration was decreased from 3 to 2 mM. These findings support the hypothesis of an altered response of bone to 1,25(OH)2D3 in the Hyp mouse.  相似文献   

17.
We have studied the direct effects of polyethylene particles on osteoblastic function in primary human bone cell cultures. The cells were obtained from trabecular bone fragments of patients undergoing knee reconstructive surgery. When the cells reached confluency, they were subcultured into two flasks, one untreated (control culture) and the other treated with polyethylene particles, and incubated until confluency. Osteoblastic function was evaluated by assaying osteocalcin, alkaline phosphatase, and C-terminal procollagen type I, with and without 1,25(OH)2D stimulation, in the cell-conditioned medium. We found that addition of polyethylene to these osteoblastic cell cultures induced higher levels of secreted osteocalcin after 1,25(OH)2D stimulation. Alkaline phosphatase levels increased whereas C-terminal procollagen type I levels decreased in the cell conditioned medium after polyethylene was added to the cultures. Treatment of the control cultures with 1,25(OH)2D stimulated alkaline phosphatase levels and decreased C-terminal procollagen type I. However, these osteoblastic markers in 1,25(OH)2D-treated cells did not change in cultures with polyethylene. This study demonstrates that polyethylene particles have a direct effect on osteoblastic markers in human bone cells in culture. Received: 2 May 1996 / Accepted: 17 June 1997  相似文献   

18.
The bone, liver, and kidney isozyme of alkaline phosphatase (ALP) has been measured in MG-63 human osteosarcoma cells after treatment with ascorbic acid (AA) and/or 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Both compounds were required to achieve maximum ALP activity. When grown in the absence of 1,25-(OH)2D3 cells had low basal ALP activity regardless of whether media contained AA. In AA-free medium, 1,25-(OH)2D3 (10 nM) increased ALP activity fourfold. Addition of AA further increased levels of ALP activity induced by 1,25-(OH)2D3 to 10-15 times those found in -AA controls. The earliest effects of 1,25-(OH)2D3 were seen after 24-48 h, and ALP activity continued to increase for 6-8 days. AA and 1,25-(OH)2D3 had similar effects on ALP activity in ROS 17/2.8 rat osteosarcoma cells. In MG-63 cells the effects of AA and 1,25-(OH)2D3 could not be simply explained by the ability of these compounds to inhibit cell growth because another mitotic inhibitor, hydroxyurea, had a minimal effect on ALP activity. 1,25-(OH)2D3-specific induction of ALP +/- AA was totally blocked by inhibitors of protein and RNA synthesis. Maximal ALP induction was obtained when cells were plated at low density. Consistent with our previous report (Franceschi et al. 1988 J Biol Chem 263:18938-18945), 1,25-(OH)2D3 rapidly stimulated type I collagen synthesis and acid-precipitable hydroxyproline production in MG-63 cells and this stimulation was further increased by AA. These results suggest that induction of the osteoblast marker, ALP, is directly or indirectly coupled to collagen matrix synthesis and/or accumulation.  相似文献   

19.
Two 1,25-dihydroxyvitamin D3-controlled parameters in the osteoblastlike osteosarcoma cell line ROS 17/2, bone gamma-carboxyglutamic acid-containing protein (BGP) and collagen synthesis, were measured after pretreatments with either retinoic acid (RA), or triamcinolone acetate (TRM). RA and TRM both caused double the expected increase in BGP secretion at 16 hr after treatment with 1,25-dihydroxyvitamin D3. Triamcinolone acetate concentrations of 10(-8) and 10(-9) M or 10(-6) M retinoic acid were effective in enhancing the 1,25-dihydroxyvitamin D3 stimulation of BGP secretion. Treatment with RA or TRM alone did not stimulate BGP secretion. RA alone had no effect on BGP secretion, while TRM inhibited BGP secretion. Collagen synthesis is inhibited by 1,25-dihydroxyvitamin D3. Neither retinoic acid nor triamcinolone acetate enhanced the 1,25-dihydroxyvitamin D3-mediated inhibition of collagen synthesis. Retinoic acid by itself inhibited collagen synthesis but did not change the 1,25 dihydroxyvitamin D3-mediated inhibition of collagen synthesis. Triamcinolone acetate by itself or together with 1,25-dihydroxyvitamin D3 increased collagen synthesis. We conclude that, although both triamcinolone acetate and retinoic acid increase the 1,25-dihydroxyvitamin D3 stimulation of BGP secretion by ROS 17/2 cells, they have different effects on the regulation of collagen production. Thus, although both hormones increase the 1,25-dihydroxyvitamin D3 receptor concentration in these cells, their actions are not mediated solely by this mechanism.  相似文献   

20.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] was tested for its effects on prostaglandin E2 (PGE2) production and bone resorption in cultured mouse parietal bones. We found that at 24 h 1,25-(OH)2D3 increased 45Ca release but did not affect PGE2 production. However, at 48 h 1,25-(OH)2D3 produced a dose-related increase in PGE2 production. PGE2 production was increased with 1,25-(OH)2D3 at 10(-10)-10(-8) M, and 45Ca release was increased with 1,25-(OH)2D3 at 10(-11)-10(-8) M. The effects of 1,25-(OH)2D3 on PGE2 production persisted in the presence of cortisol (10(-8) M), and the effects were greater in the presence of arachidonic acid (10(-5) M) or fetal bovine serum (10%). Human interleukin-1 alpha (IL-1, 1 ng/ml) and bovine parathyroid hormone-(1-34) (PTH, 10 ng/ml) increased PGE2 production earlier and to a greater extent than 1,25-(OH)2D3. The PGE2 response to IL-1 and PTH was not affected by 1,25-(OH)2D3 at 24 h, but at 48 h 1,25-(OH)2D3 (10(-8) M) increased the PGE2 response to both IL-1 and PTH. The stimulation of 45Ca release at 48 h by high concentrations of 1,25-(OH)2D3, PTH, or IL-1 was similar, and there was no evidence for an additive effect. To test for an effect of 1,25-(OH)2D3 on endogenous IL-1 production, experiments were performed in the presence of an IL-1 receptor antagonist (IL-1Ra, 1000 ng/ml), which has been found to block selectively IL-1 effects on bone resorption and PG production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号