首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The objective of this study was to determine the effect of suture repair of type 1 coronoid fractures on elbow kinematics in ligamentously intact and medial collateral ligament (MCL)-deficient elbows. Cadaveric testing was performed in stable and MCL-deficient elbows with radial head arthroplasty and with the coronoid intact, with the coronoid fractured, and after suture repair. Ulna versus humerus angulation was measured during active motion. Varus and valgus motion pathways were measured during passive gravity-loaded flexion. With intact ligaments, there was a small increase in valgus angulation after a type 1 fracture that was not corrected with suture fixation. With MCL deficiency, there was no change in kinematics regardless of coronoid status. Type 1 coronoid fractures cause only small changes in elbow kinematics that are not corrected with suture repair. MCL repair, rather than type 1 coronoid fixation, should be considered if the elbow remains unstable after radial head repair or replacement and lateral ligament repair.  相似文献   

2.
BACKGROUND: Radial head fractures are common injuries. Comminuted radial head fractures often are treated with radial head excision with or without radial head arthroplasty. The purpose of the present study was to determine the effect of radial head excision and arthroplasty on the kinematics and stability of elbows with intact and disrupted ligaments. We hypothesized that elbow kinematics and stability would be (1) altered after radial head excision in elbows with intact and disrupted ligaments, (2) restored after radial head arthroplasty in elbows with intact ligaments, and (3) partially restored after radial head arthroplasty in elbows with disrupted ligaments. METHODS: Eight cadaveric upper extremities were studied in an in vitro elbow simulator that employed computer-controlled actuators to govern tendon-loading. Testing was performed in stable, medial collateral ligament-deficient, and lateral collateral ligament-deficient elbows with the radial head intact, with the radial head excised, and after radial head arthroplasty. Valgus angulation and rotational kinematics were determined during passive and simulated active motion with the arm dependent. Maximum varus-valgus laxity was measured with the arm in a gravity-loaded position. RESULTS: In specimens with intact ligaments, elbow kinematics were altered and varus-valgus laxity was increased after radial head excision and both were corrected after radial head arthroplasty. In specimens with disrupted ligaments, elbow kinematics were altered after radial head excision and were similar to those observed in specimens with a native radial head after radial head arthroplasty. Varus-valgus laxity was increased after ligament disruption and was further increased after radial head excision. Varus-valgus laxity was corrected after radial head arthroplasty and ligament repair; however, it was not corrected after radial head arthroplasty without ligament repair. CONCLUSIONS: Radial head excision causes altered elbow kinematics and increased laxity. The kinematics and laxity of stable elbows after radial head arthroplasty are similar to those of elbows with a native radial head. However, radial head arthroplasty alone may be insufficient for the treatment of complex fractures that are associated with damage to the collateral ligaments as arthroplasty alone does not restore stability to elbows with ligament injuries.  相似文献   

3.
重建肘关节外翻稳定性的生物力学研究   总被引:4,自引:1,他引:3  
目的 评价肘关节桡骨头 (radial head,RH)切除、尺侧副韧带 (medial collateral ligament,MCL )损伤以及 RH假体置换、MCL重建后的外翻稳定性。 方法 新鲜成人尸体上肢标本 12侧 ,制成肘关节“骨 -韧带”标本 ,在2 N· m的外翻力矩作用下 ,分别在肘关节 0°、30°、6 0°、90°和 12 0°伸屈时 ,测量肘关节外翻松弛度 :1完整肘关节(n=12 ) ;2 MCL切断 (n=6 ) ;3RH切除 (n=6 ) ;4 MCL切断 +RH切除 (n=12 ) ;5 RH假体置换 (n=6 ) ;6 MCL重建(n=6 ) ;7RH假体置换 +MCL重建 (n=12 )。用 SPSS 10 .0统计软件包作方差分析 ,比较各组的外翻稳定性。 结果 完整肘关节的平均外翻松弛度最小 ;RH切除后 ,外翻松弛度增大 ;单纯 MCL切断 ,外翻松弛度大于单纯 RH切除 (P<0 .0 1) ;MCL切断 +RH切除 ,外翻稳定性最差 ;行 RH假体置换 ,对稳定性有改善 ;MCL重建与完整 MCL差异无统计学意义 (P>0 .0 5 ) ;RH假体置换同时重建 MCL ,效果最好。 结论  MCL是抵抗肘关节外翻应力最主要的因素 ,RH是次要因素。在重建肘关节的外翻稳定性方面 ,MCL的重建比 RH的假体置换更重要。在无条件行 RH假体置换时 ,修复MCL是较好的手术方式。  相似文献   

4.
BACKGROUND: The lateral ulnar collateral ligament, the entire lateral collateral ligament complex, and the overlying extensor muscles have all been suggested as key stabilizers against posterolateral rotatory instability of the elbow. The purpose of this investigation was to determine whether either an intact radial collateral ligament alone or an intact lateral ulnar collateral ligament alone is sufficient to prevent posterolateral rotatory instability when the annular ligament is intact. METHODS: Sequential sectioning of the radial collateral and lateral ulnar collateral ligaments was performed in twelve fresh-frozen cadaveric upper extremities. At each stage of the sectioning protocol, a pivot shift test was performed with the arm in a vertical position. Passive elbow flexion was performed with the forearm maintained in either pronation or supination and the arm in the varus and valgus gravity-loaded orientations. An electromagnetic tracking device was used to quantify the internal-external rotation and varus-valgus angulation of the ulna with respect to the humerus. RESULTS: Compared with the intact elbow, no differences in the magnitude of internal-external rotation or maximum varus-valgus laxity of the ulna were detected with only the radial collateral or lateral ulnar collateral ligament intact (p > 0.05). However, once the entire lateral collateral ligament was transected, significant increases in internal-external rotation (p = 0.0007) and maximum varus-valgus laxity (p < 0.0001) were measured. None of the pivot shift tests had a clinically positive result until the entire lateral collateral ligament was sectioned. CONCLUSIONS: This study suggests that, when the annular ligament is intact, either the radial collateral ligament or the lateral ulnar collateral ligament can be transected without inducing posterolateral rotatory instability of the elbow.  相似文献   

5.
DesignIn vitro biomechanical research using an elbow motion simulator.IntroductionThe optimal rehabilitation of elbow dislocations with medial collateral ligament (MCL) and lateral collateral ligament (LCL) injuries has not been defined.PurposeTo determine a safe rehabilitation protocol for elbow dislocations with MCL and LCL injuries.MethodsEight cadaveric elbows underwent simulated active and passive motions with the arm in multiple orientations. Varus–valgus angulation and internal–external rotation of the ulna relative to the humerus were quantified for the intact joint and with injured MCL and LCL.ResultsActive motion with injured MCL and LCL in the horizontal and vertical orientations resulted in kinematics similar to the intact elbow, whereas passive motion resulted in significant kinematic alterations. Marked elbow instability was noted in the varus and valgus orientations using both active and passive motion.ConclusionsElbows with MCL and LCL injuries should be rehabilitated using active motion in the horizontal or vertical orientations.Level of EvidenceBasic science research.  相似文献   

6.
We studied the stabilising effect of prosthetic replacement of the radial head and repair of the medial collateral ligament (MCL) after excision of the radial head and section of the MCL in five cadaver elbows. Division of the MCL increased valgus angulation (mean 3.9 +/- 1.5 degrees) and internal rotatory laxity (mean 5.3 +/- 2.0 degrees). Subsequent excision of the radial head allowed additional valgus (mean 11.1 +/- 7.3 degrees) and internal rotatory laxity (mean 5.7 +/- 3.9 degrees). Isolated replacement of the radial head reduced valgus laxity to the level before excision of the head, while internal rotatory laxity was still greater (2.8 +/- 2.1 degrees). Isolated repair of the MCL corrected internal rotatory laxity, but a slight increase in valgus laxity remained (mean 0.7 +/- 0.6 degrees). Combined replacement of the head and repair of the MCL restored stability completely. We conclude that the radial head is a constraint secondary to the MCL for both valgus displacement and internal rotation. Isolated repair of the ligament is superior to isolated prosthetic replacement and may be sufficient to restore valgus and internal rotatory stability after excision of the radial head in MCL-deficient elbows.  相似文献   

7.
Metallic radial head arthroplasty improves valgus stability of the elbow   总被引:15,自引:0,他引:15  
The stabilizing influence of radial head arthroplasty was studied in eight medial collateral ligament deficient anatomic specimen elbows. An elbow testing apparatus, which used computer controlled pneumatic actuators to apply tendon loading, was used to simulate active elbow flexion. The motion pathways of the elbow were measured using an electromagnetic tracking device, with the forearm in supination and pronation. As a measure of stability, the maximum varus to valgus laxity over the range of elbow flexion was determined from the difference between varus and valgus gravity loaded motion pathways. After transection of the medial collateral ligament, the radial head was excised and replaced with either a silicone or one of three metallic radial head prostheses. Medial collateral ligament transection caused a significant increase in the maximum varus to valgus laxity to 18.0 degrees +/- 3.2 degrees. After radial head excision, this laxity increased to 35.6 degrees +/- 10.3 degrees. The silicone implant conferred no increase in elbow stability, with a maximum varus to valgus laxity of 32.5 degrees +/- 15.5 degrees. All three metallic implants improved the valgus stability of the medial collateral ligament deficient elbow, providing stability similar to the intact radial head. The use of silicone arthroplasty to replace the radial head in the medial collateral ligament deficient elbow must be questioned. Metallic radial head arthroplasty provides improved valgus stability, approaching that of an intact radial head.  相似文献   

8.
A widely used clinical recommendation is that in the presence of medial collateral ligament injuries, two-part radial head fractures should be fixed rather than excising or replacing the radial head. Direct biomechanical data comparing fracture fixation, radial head replacement and excision in a human cadaveric elbow model, have not been previously described. Such comparison is clinically important as with the increasing availability of radial head implants and promising follow up results, the role of radial head replacement in fracture management may have to be redefined. In this study, five fresh cadaveric elbows had radial head fracture creation and medial collateral ligament division, fracture fixation, radial head replacement and excision. Valgus and varus laxity were determined using an electromagnetic tracking system. Radial head replacement leads to a similar valgus (P=0.80) [corrected] laxity as compared to radial head fixation. Radial head excision resulted in a significantly greater valgus laxity as compared to radial head fixation (P=0.02) or replacement (P=0.03). Both radial head excision and replacement led to a greater varus laxity as compared to fixation. Our results suggest that in the elbow with medial collateral ligament injury and two-part radial head fracture, fixation is overall biomechanically superior as compared to replacement and excision.  相似文献   

9.
The stabilizing structures of the elbow that resist valgus stress were studied with a tracking device in a model simulating active motion and muscle activity. By varying the order of serial release of the medial collateral ligament complex and removal of the radial head, each structure's contribution to valgus stability against the effect of gravity was determined. In the otherwise intact elbow, absence of the radial head does not significantly alter the three-dimensional characteristics of motion in the elbow joint. Isolated medial collateral release, on the other hand, causes increases in abduction rotation of about 6 degrees-8 degrees in magnitude. Releasing both structures results in gross abduction laxity and elbow subluxation. This study defines the medial collateral ligament (MCL) as the primary constraint of the elbow joint to valgus stress and the radial head as a secondary constraint. This definition facilitates the proper management of patients with radial head fractures and MCL disruption. The comminuted radial head fracture uncomplicated by MCL insufficiency should be treated by excision without the need for an implant and without concern of altering the normal kinematics of the elbow.  相似文献   

10.
The contribution of the medial and lateral collateral ligaments (MCL, LCL) and muscle forces to the kinematics and stability of the capitellocondylar total elbow arthroplasty was investigated in six fresh cadaveric elbows. The three-dimensional orientation of the ulna relative to the humerus was monitored with the use of an electromagnetic tracking device in neutral, valgus, and varus stress positions with (1) the ligaments intact, (2) LCL insufficiency obtained by osteotomizing the lateral epicondyle, (3) partial MCL insufficiency obtained by sectioning either the anterior or posterior bundle of the MCL, and (4) complete MCL insufficiency. Simulated muscle forces were applied as follows: (1) no load, (2) 1 kg each to the biceps and the brachialis and 2 kg to the triceps, and (3) 2 kg to the biceps and the brachialis and 4 kg to the triceps. The laxity was defined as the difference in valgus/varus orientation of the ulna in the valgus and varus stress positions. The laxity at 40°, 75°, and 110° elbow flexion was analyzed. The greatest laxity occurred with LCL insufficiency (40.7° ± 11.6°, average at three flexion angles) followed by that with MCL insufficiency (15.7° ± 9.9°), both of which were significantly larger than laxity with the intact ligaments (5.6° ± 2.5°). The laxity with the anterior bundle sectioned (12.0° ± 8.1°) was significantly greater than with the posterior bundle sectioned (3.3° ± 3.6°); thus the contribution of anterior bundle to stability was four times that of posterior bundle. Stabilizing effect of muscle loading was small in elbows with intact ligaments, whereas it was large with LCL or MCL insufficiency. Based on these data, we can see that the integrity of both the MCL and LCL is essential to maintain stability of this total elbow, the anterior bundle is a more important stabilizer than the posterior bundle, and the collateral ligaments seem to be the primary stabilizer and the musculature seems to be the secondary stabilizer. Careful implantation technique to preserve the collateral ligaments is required to obtain postoperative stability of this arthroplasty. Otherwise, routine exposure of the MCL and repair or reinforcement of the MCL, if deficient, may need to be considered during surgery.  相似文献   

11.
The purpose of this study was to determine the contribution of the central portion of the anterior bundle of the medial collateral ligament (MCL) to elbow stability and to evaluate the effectiveness of a single-strand MCL reconstruction in restoring elbow stability. Testing of 11 fresh-frozen upper extremities was first performed on the intact elbow and then with the capsule, flexor-pronator muscle group, posterior bundle, anterior or posterior band, and central band cut sequentially. Next, a single-strand reconstruction of the MCL was performed. The elbow was moved passively through a full arc of flexion in both varus and valgus gravity-loaded positions. Ulnar movement with respect to the humerus was analyzed by means of an electromagnetic tracking system. Maximum varus-valgus laxity throughout the arc of supinated flexion and pronated flexion was 6.6 degree plus minus 2.4 degree and 7.4 degree plus minus 2.0 degree, respectively, for the intact specimen, 34.2 degree plus minus 5.6 degree and 37.7 degree plus minus 11.8 degree for the specimen with all of the medial valgus elbow stabilizers cut, and 9.0 degree plus minus 2.5 degree and 10.5 degree plus minus 2.7 degree for the reconstructed specimen. Maximum varus-valgus laxity was not significantly different among any of the sectioning sequences until the central band was cut (P <.0001). There was no significant difference in maximum varus-valgus laxity between the intact and reconstructed elbows (P <.05). Our results demonstrate that the central band is an important valgus stabilizer of the elbow and that a simplified single-strand reconstruction is able to restore stability to the MCL-deficient elbow.  相似文献   

12.
BACKGROUND: The purpose of this study was to evaluate the stabilizing effect of radial head replacement in cadaver elbows with a deficient medial collateral ligament. METHODS: Passive elbow flexion with the forearm in neutral rotation and in 80 degrees of pronation and supination was performed under valgus and varus loads (1) in intact elbows, (2) after a surgical approach (lateral epicondylar osteotomy of the distal part of the humerus), (3) after release of the anterior bundle of the medial collateral ligament, (4) after release of the anterior bundle of the medial collateral ligament and resection of the radial head, and (5) after subsequent replacement of the radial head with each of three different types of radial head prostheses (a Wright monoblock titanium implant, a KPS bipolar Vitallium [cobalt-chromium]-polyethylene implant, and a Judet bipolar Vitallium-polyethylene-Vitallium implant) in the same cadaver elbow. Total valgus elbow laxity was quantified with use of an electromagnetic tracking device. RESULTS: The mean valgus laxity changed significantly (p < 0.001) as a factor of constraint alteration. The greatest laxity was observed after release of the medial collateral ligament together with resection of the radial head (11.1 degrees +/- 5.6 degrees). Less laxity was seen following release of the medial collateral ligament alone (6.8 degrees +/- 3.4 degrees), and the least laxity was seen in the intact state (3.4 degrees +/- 1.6 degrees). Forearm rotation had a significant effect (p = 0.003) on valgus laxity throughout the range of flexion. The laxity was always greater in pronation than it was in neutral rotation or in supination. The mean valgus laxity values for the elbows with a deficient medial collateral ligament and an implant were significantly greater than those for the medial collateral ligament-deficient elbows before radial head resection (p < 0.05). The implants all performed similarly except in neutral forearm rotation, in which the elbow laxity associated with the Judet implant was significantly greater than that associated with the other two implants. CONCLUSIONS AND CLINICAL RELEVANCE: This study showed that a bipolar radial head prosthesis can be as effective as a solid monoblock prosthesis in restoring valgus stability in a medial collateral ligament-deficient elbow. However, none of the prostheses functioned as well as the native radial head, suggesting that open reduction and internal fixation to restore radial head anatomy is preferable to replacement when possible.  相似文献   

13.
BACKGROUND: The purpose of this study was to evaluate the role of the radial head and the coronoid process as posterolateral rotatory stabilizers of the elbow and to determine the stabilizing effect of radial head replacement and coronoid reconstruction. METHODS: The posterolateral rotatory displacement of the ulna was measured after application of a valgus and supinating torque (1). in seven intact elbows, (2). after radial head excision, (3). after sequential resection of the coronoid process, (4). after subsequent insertion of each of two different types of metal radial head prostheses (a rigid implant and a bipolar implant with a floating cup), and (5). after subsequent reconstruction of the coronoid with each of two different techniques in the same cadaveric elbow. RESULTS: The posterolateral rotatory laxity averaged 5.4 degrees in the intact elbows. The surgical approach used in this study insignificantly increased the mean laxity to 9 degrees. Excision of the radial head in an elbow with intact collateral ligaments caused a mean posterolateral rotatory laxity of 18.6 degrees (p < 0.0001). Additional removal of 30% of the height of the coronoid fully destabilized the elbows, always resulting in ulnohumeral dislocation despite intact ligaments. Implantation of a rigid radial head prosthesis stabilized the elbows. However, a mean laxity of 16.9 degrees persisted after insertion of a floating prosthesis (p < 0.0001). The elbows with a defect of 50% or 70% of the coronoid, loss of the radial head, and intact ligaments could not be stabilized by radial head replacement alone, but additional coronoid reconstruction restored stability. CONCLUSIONS: The results of this study suggest that the coronoid and the radial head contribute significantly to posterolateral rotatory stability.  相似文献   

14.
Introduction and importanceElbow dislocation is common in adults, and complex elbow dislocations are generally associated with bone fractures. Anteromedial coronoid fracture, in association with lateral collateral ligament (LCL) disruption, often results from varus posteromedial forces. “Terrible triad” injuries are more likely to result from valgus posterolateral forces. However, our case presentation has combined medial and lateral elbow instability in addition to “terrible triad” injury of the elbow with no radial head injury.Case presentationThe patient was a 38-year-old man with an atypical complex elbow dislocation. He was successfully treated by stabilizing the medial epicondyle and coronoid anterolateral facet fractures, in addition to LCL repair and medial collateral ligament (MCL) reconstruction. A radial head fracture was unnoted. The procedure yielded satisfactory functional outcome, with a stable and painless full elbow range of motion.Clinical discussionMulti-ligament injuries with coronoid fractures result in highly unstable elbow joints, forming a variant of the “terrible triad” injury. Surgical options vary according to the surgeon’s experience and equipment availability. In this case, direct LCL repair and MCL reconstruction were performed and were well tolerated. Elbow stability improved and the patient experienced improved functionality with minimal pain. However, it may be premature to report a definite outcome in this case because of short follow-up time postoperatively.ConclusionThe injury described in this case has a unique presentation as a multi-ligamentous injury will make the elbow very unstable. Thus, careful clinical judgment, knowledge, and experience are needed to identify the underlying injury and for optimal management.  相似文献   

15.
Because of a lack of biomechanical studies of lateral elbow ligament reconstruction in the literature, the initial stability afforded by 3 different techniques of lateral ulnar collateral ligament reconstruction was evaluated in 8 cadaveric elbows. The arm was mounted in a testing apparatus, and passive flexion was performed with the arm in varus and valgus orientations. A pivot shift test was performed with the arm in the vertical orientation. An electromagnetic tracking device was used to quantify motion pathways. After intact testing, each specimen underwent sectioning of the radial collateral and lateral ulnar collateral ligaments from the lateral epicondyle. Reconstruction of the lateral ulnar collateral ligament was performed in a randomized sequence, consisting of proximal single-strand, distal single-strand, and double-strand tendon grafts. Division of the radial collateral and lateral ulnar collateral ligaments from the lateral epicondyle caused a significant decrease in rotational stability when the pivot shift test was being performed (P <.0001). Varus-valgus stability also decreased after transection of the radial collateral and lateral ulnar collateral ligaments (P <.0001). Reconstruction of the lateral ulnar collateral ligament restored elbow stability to that of the intact state. There was no significant difference in stability between the single- and double-strand repair techniques (P >.05). This study demonstrates that both single- and double-strand reconstructions restore varus and posterolateral elbow stability and may be considered appropriate reconstructive procedures in patients with symptomatic insufficiency of the lateral ligaments of the elbow.  相似文献   

16.
The effects of a radial head component on total elbow arthroplasty kinematics and stability were evaluated using an anatomic design unlinked total elbow prosthesis. An electromagnetic tracking device recorded motion and varus and valgus displacements under various conditions in 10 cadaveric elbows. The motion patterns of the intact elbows and the Sorbie-Questor total elbow prostheses with a radial head component were similar, as both tended to have a valgus position in extension, varus at midflexion, and more valgus toward full flexion. Under conditions of simulated muscle loading, the maximum valgus and varus laxity of the elbow prosthesis was, on average, 8.6 degrees +/- 4.0 degrees greater than normal. Without the radial head component, however, significant kinematic disturbances and instabilities were seen. The varus and valgus displacements were 13.3 degrees +/- 5.5 degrees greater than the intact elbows. One total elbow arthroplasty without a radial head dislocated during testing. Increasing the muscle loading across the elbow significantly enhanced dynamic stability of the total elbow arthroplasties, especially in the extension half of elbow motion where instability is greatest. However, this dynamic enhancement of stability was seen only in those elbows in which the radial head component had been implanted. The radial head component is an important stabilizer, particularly in extension for this prosthesis, and possibly for other unlinked total elbow prostheses. Although instability of unlinked prostheses depends on the prosthetic design, the use of a radial head replacement may be an important factor in preventing such instability. Perhaps even more importantly, a radial head component balances the load distribution across the articulation, which could decrease stress on the ulnohumeral articulation and therefore possibly reduce polyethylene wear, osteolysis, and loosening.  相似文献   

17.
BACKGROUND: Clinical evaluation of valgus elbow laxity is difficult. The optimum position of elbow flexion and forearm rotation with which to identify valgus laxity in a patient with an injury of the ulnar collateral ligament of the elbow has not been determined. The purpose of the present study was to determine the effect of forearm rotation and elbow flexion on valgus elbow laxity. METHODS: Twelve intact cadaveric upper extremities were studied with a custom elbow-testing device. Laxity was measured with the forearm in pronation, supination, and neutral rotation at 30 degrees, 50 degrees, and 70 degrees of elbow flexion with use of 2 Nm of valgus torque. Testing was conducted with the ulnar collateral ligament intact, with the joint vented, after cutting of the anterior half (six specimens) or posterior half (six specimens) of the anterior oblique ligament of the ulnar collateral ligament, and after complete sectioning of the anterior oblique ligament. Laxity was measured in degrees of valgus angulation in different positions of elbow flexion and forearm rotation. RESULTS: There were no significant differences in valgus laxity with respect to elbow flexion within each condition. Overall, for both groups of specimens (i.e., specimens in which the anterior or posterior half of the anterior oblique ligament was cut), neutral forearm rotation resulted in greater valgus laxity than pronation or supination did (p < 0.05). Transection of the anterior half of the anterior oblique ligament did not significantly increase valgus laxity; however, transection of the posterior half resulted in increased valgus laxity in some positions. Full transection of the anterior oblique ligament significantly increased valgus laxity in all positions (p < 0.05). CONCLUSIONS: The results of this in vitro cadaveric study demonstrated that forearm rotation had a significant effect on varus-valgus laxity. Laxity was always greatest in neutral forearm rotation throughout the ranges of elbow flexion and the various surgical conditions. CLINICAL RELEVANCE: The information obtained from the present study suggests that forearm rotation affects varus-valgus elbow laxity. Additional investigation is warranted to determine if forearm rotation should be considered in the evaluation and treatment of ulnar collateral ligament injuries of the elbow joint.  相似文献   

18.
The objectives of this experimental study were to investigate the effect of radial head excision and lateral collateral ligament (LCL) division on elbow joint laxity and to determine the efficacy of radial head prosthetic replacement and LCL repair. Valgus, varus, internal rotation, and external rotation of the ulna were measured during passive flexion-extension and application of a 0.75-Nm torque in 6 intact cadaveric elbows and after (1) either excision of the radial head or division of the LCL, (2) removal of both constraints, (3) isolated radial head prosthetic replacement, (4) isolated LCL repair, and (5) radial head replacement combined with LCL repair. Isolated radial head excision increased varus (mean, 4.8 degrees) and external rotatory laxity (mean, 7.1 degrees), as did isolated LCL division (mean, 14.1 degrees for varus; mean, 14.7 degrees for external rotation). After removal of both constraints, varus and external rotatory laxities were increased by 19.0 degrees and 20.1 degrees, respectively, compared with the intact specimens. Isolated radial head replacement reduced mean varus laxity to 14.6 degrees and mean external rotatory laxity to 14.8 degrees. Isolated LCL repair normalized varus laxity but resulted in a 2.9 degrees increase in external rotatory laxity. The combined procedures restored laxity completely. The radial head is a constraint to varus and external rotation in the elbow joint, functioning by maintaining tension in the LCL. Still, removal of both constraints induces severe laxity, and in this case, prosthetic replacement may substitute for the constraining capacity of the native radial head. The combination of LCL repair and radial head replacement restores laxity completely, but an isolated LCL repair performs almost as well, probably by compensating for the ligamentous tension lost from radial head excision.  相似文献   

19.
Forty intact cadaver elbows were studied to determine the contribution of the capitellum to elbow stability. With the elbow at 10 degrees of flexion, valgus motion of the elbow after capitellum excision demonstrated a minimal increase. Although some increase in valgus motion did occur after capitellum excision and radial head resection it was not until the ulnar collateral ligament was released that a severe valgus deformity was produced. In addition, isolated capitellum excisions occurring with release of the medial collateral ligament produced severe valgus motion, demonstrating the importance of medial structures to elbow stability. The cadaver study suggests excision of the capitellum in the otherwise intact elbow has little effect on valgus motion. Over the past 15 years, 17 patients with fractures of the capitellum were treated. Followup at greater than 1 year utilizing various treatment modalities is reported. Although closed reduction gave the best result, acceptable results were also obtained by open reduction and internal fixation and excision. Our clinical findings corroborated the cadaver findings in that valgus instability of the elbow only occurred when fracture of the capitellum was associated with medial ligament injuries.  相似文献   

20.
The purpose of this study was to determine the relative contribution of muscle activity and the effect of forearm position on the stability of the medial collateral ligament (MCL)-deficient elbow. Simulated active and passive elbow flexion with the forearm in both supination and pronation was performed using a custom elbow testing apparatus. Testing was first performed on intact specimens, then on MCL-deficient specimens. Elbow instability was quantified using an electromagnetic tracking device by measuring internal-external rotation and varus-valgus laxity of the ulna relative to the humerus. Compared with the intact elbow, transection of the MCL, with the arm in a vertical orientation, caused a significant increase in internal-external rotation during passive elbow flexion with the forearm in pronation, but forearm supination reduced this instability. Overall, following MCL transection the elbow was more stable with the forearm in supination than pronation during passive flexion. In the pronated forearm position simulated active flexion also reduced the instability detected during passive flexion, with the arm in a varus and valgus gravity-loaded orientation. The maximum varus-valgus laxity was significantly increased with MCL transection regardless of forearm position during passive flexion. We concluded that active mobilization of the elbow with the arm in vertical orientation during rehabilitation is safe in the setting of an MCL-deficient elbow with the forearm in a fully supinated and pronated position. Splinting and passive mobilization of the MCL-deficient elbow with the forearm in supination should minimize instability and valgus elbow stresses should be avoided throughout the rehabilitation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号