首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background: Long‐term β‐blockade therapy is beneficial in post‐myocardial infarct (MI) patients with left ventricular (LV) dysfunction; nevertheless, its benefit in post‐MI patients with preserved LV function remains unclear. The objective of this study is to investigate the effects of long‐term β‐blockade therapy on the clinical outcomes in post‐MI patients with preserved LV function. Hypothesis: The beneficial effects of long‐term β‐blockade therapy in post‐MI patients with impaired LV function may extend to those with preserved LV function. Methods: Of 617 consecutive post‐MI patients referred for cardiac rehabilitation program, 208 patients (age: 62.7 ± 0.8 years; male: 76%) with preserved LV function (ejection fraction ≥ 50%), negative exercise stress test, and on angiotensin‐converting enzyme inhibition were studied. Results: Baseline characteristics were comparable between patients on β‐blocker (n = 154) and not on β‐blocker (n = 54). After a mean follow‐up of 58.5 ± 2.7 months, 14 patients not on β‐blocker (26%) and 14 patients on β‐blocker (9%) died with hazard ratio (HR) of 2.5 (95% confidence interval [CI]: 1.25–6.42, P = 0.01). Likewise, patients not on β‐blocker had a higher incidence of cardiac death (HR: 3.0, 95% CI: 1.07–12.10, P = 0.04), and non‐sudden cardiac death (HR: 10.1, 95% CI: 1.82–89.65, P = 0.01), but not sudden cardiac death compared with patients on β‐blocker (HR: 1.6, 95% CI: 0.34–7.61, P = 0.54). A Cox regression analysis revealed that only advanced age (≥75 years; HR: 2.55, 95% CI: 1.18–5.49, P = 0.02) and the absence of β‐blocker (HR: 2.41, 95% CI: 1.14–5.09, P = 0.02) were independent predictors for mortality. Conclusion: β‐blocker use was associated with a decrease in overall mortality and cardiac death in post‐MI patients with preserved LV function. (PACE 2010; 33:675–680)  相似文献   

2.
Background: The mechanisms underlying interindividual variability in pain perception and cognitive responses are undefined but highly heritable. α2C‐ and α2A‐adrenergic receptors regulate noradrenergic activity and are important mediators of pain perception and analgesia. We hypothesized that common genetic variants in these genes, particularly the ADRA2C 322–325 deletion variant, affect pain perception or cognitive responses. Methods: We studied 73 healthy subjects (37 Caucasians and 36 African–Americans) aged 25.4 ± 4.6 years. Pain response to a cold pressor test was measured using a 10 cm visual analog scale and again on the next day, after three infusions of the selective α2‐agonist dexmedetomidine. Standardized cognitive tests were administered at baseline and after each infusion. The contribution of ADRA2C deletion genotype, dexmedetomidine concentration, and other covariates to pain perception and cognitive responses was determined using multiple linear regression models. Secondary analysis examined the effects of ADRA2A and other ADRA2C variants on pain perception. Results: ADRA2C Del homozygotes had higher pain scores in response to cold at baseline (6.3 ± 1.8 cm) and after dexmedetomidine (5.6 ± 2.2 cm) than insertion allele carriers (4.6 ± 2.1 cm [baseline] and 3.8 ± 1.9 cm [after dexmedetomidine]; adjusted P‐values = 0.019 and 0.004, respectively). Cognitive responses were unrelated to ADRA2C Ins/Del genotype. None of the other ADRA2A and ADRA2C variants was significantly related to cold pain sensitivity before dexmedetomidine; after dexmedetomidine, ADRA2A rs1800038 was marginally associated (P = 0.03). Conclusion: The common ADRA2C del322–325 variant affected pain perception before and after dexmedetomidine but did not affect other cognitive responses, suggesting that it contributes to interindividual variability in pain perception.  相似文献   

3.
4.
5.
6.
Due to the widespread emergence of resistant bacterial strains, an urgent need for the development of new antibacterial agents with novel modes of action has emerged. The discovery of naturally occurring monocyclic β‐lactams in the late 1970s, mainly active against aerobic Gram‐negative bacteria, has introduced a new approach in the design and development of novel antibacterial β‐lactam agents. The main goal was the derivatization of the azetidin‐2‐one core in order to improve their antibacterial potency, broaden their spectrum of activity, and enhance their β‐lactamase stability. In that respect, our review covers the updates in the field of monocyclic β‐lactam antibiotics during the last three decades, taking into account an extensive collection of references. An overview of the relationships between the structural features of these monocyclic β‐lactams, classified according to their N‐substituent, and the associated antibacterial or β‐lactamase inhibitory activities is provided. The different paragraphs disclose a number of well‐established classes of compounds, such as monobactams, monosulfactams, monocarbams, monophosphams, nocardicins, as well as other known representative classes. Moreover, this review draws attention to some less common but, nevertheless, possibly important types of monocyclic β‐lactams and concludes by highlighting the recent developments on siderophore‐conjugated classes of monocyclic β‐lactams.  相似文献   

7.
8.
9.
Summary. Background: Collagen acts as a potent surface for platelet adhesion and thrombus formation under conditions of blood flow. Studies using collagen‐derived triple‐helical peptides have identified the GXX’GER motif as an adhesive ligand for platelet integrin α2β1, and (GPO)n as a binding sequence for the signaling collagen receptor, glycoprotein VI (GPVI). Objective: The potency was investigated of triple‐helical peptides, consisting of GXX’GER sequences within (GPO)n or (GPP)n motifs, to support flow‐dependent thrombus formation. Results: At a high‐shear rate, immobilized peptides containing both the high‐affinity α2β1‐binding motif GFOGER and the (GPO)n motif supported platelet aggregation and procoagulant activity, even in the absence of von Willebrand factor (VWF). With peptides containing only one of these motifs, co‐immobilized VWF was needed for thrombus formation. The (GPO)n but not the (GPP)n sequence induced GPVI‐dependent platelet aggregation and procoagulant activity. Peptides with intermediate affinity (GLSGER, GMOGER) or low‐affinity (GASGER, GAOGER) α2β1‐binding motifs formed procoagulant thrombi only if both (GPO)n and VWF were present. At a low‐shear rate, immobilized peptides with high‐ or low‐affinity α2β1‐binding motifs mediated formation of thrombi with procoagulant platelets only in combination with (GPO)n. Conclusions: Triple‐helical peptides with specific receptor‐binding motifs mimic the properties of native collagen I in thrombus formation by binding to both platelet collagen receptors. At a high‐shear rate, either GPIb or high‐affinity (but not low‐affinity) GXX’GER mediates GPVI‐dependent formation of procoagulant thrombi. By extension, high‐affinity binding for α2β1 can control the overall platelet‐adhesive activity of native collagens.  相似文献   

10.
11.
Summary. Background: Collagen‐induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α2β1. Adhesion and degranulation‐promoting adapter protein (ADAP) regulates αIIbβ3 in platelets and αLβ2 in T cells, and is phosphorylated in GPVI‐deficient platelets activated by collagen. Objectives: To determine whether ADAP plays a role in collagen‐induced platelet activation and in the regulation and function of α2β1. Methods: Using ADAP?/? mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. Results and Conclusions: Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP?/? platelets. However, aggregation and signaling induced by collagen‐related peptide (CRP), a GPVI‐selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α2β1‐selective ligand GFOGER and to a peptide (III‐04), which supports adhesion that is dependent on both GPVI and α2β1, was reduced in ADAP?/? platelets. An impedance‐based label‐free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non‐fluorescent differential‐interference contrast microscopy, which revealed reduced filpodia formation in ADAP?/? platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen‐binding integrin α2β1. In addition, we found that ADAP?/? mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild‐type animals. This may reflect increased removal of platelets from the circulation.  相似文献   

12.
13.
Summary. Background: CD40 ligand (CD40L, CD154) in the circulatory system is mainly contained in platelets, and surface‐expressed CD40L on activated platelets is subsequently cleaved by proteolytic activity to generate soluble CD40L (sCD40L). However, the enzyme responsible for the shedding of CD40L in activated platelets has not been clearly identified yet. We have recently found that molecular interaction of matrix metalloproteinase‐2 (MMP‐2) with integrin αIIbβ3 is required for the enhancement of platelet activation. Objectives: To elucidate the biochemical mechanism of MMP‐2‐associated sCD40L release. Methods: Localization of MMP‐2 and CD40L in platelets was analyzed by flow cytometry and fluorescence microscopy. The release of sCD40L from activated platelets was measured by enzyme‐linked immunosorbent assay. MMP‐2 binding to αIIbβ3 was analyzed by immunoprecipitation and western blotting. Recombinant hemopexin‐like domain and MMP‐2‐specific inhibitor were used to characterize the nature of MMP‐2 binding and catalytic activity. Results: It was revealed that interaction of MMP‐2 with αIIbβ3 is required for effective production of sCD40L in activated human platelets. Platelet activation and release of sCD40L were significantly affected by inhibition of platelet‐derived MMP‐2 activity or by inhibition of binding between the enzyme and the integrin. It was also found in platelet‐rich plasma that MMP‐2 activity is responsible for generating sCD40L. Conclusions: The results presented here strongly suggest that MMP‐2 interacts with αIIbβ3 to regulate the shedding of CD40L exposed on the surfaces of activated human platelets.  相似文献   

14.
15.
Summary. Background: Studies of Glanzmann thrombasthenia (GT)‐causing mutations has generated invaluable information on the formation and function of integrin αIIbβ3. Objective: To characterize the mutation in four siblings of an Israeli Arab family affected by GT, and to analyze the relationships between the mutant protein structure and its function using artificial mutations. Methods and Results: Sequencing disclosed a new A97G transversion in the αIIb gene predicting Asn2Asp substitution at blade 1 of the β‐propeller. Alignment with other integrin α subunits revealed that Asn2 is highly conserved. No surface expression of αIIbβ3 was found in patients’ platelets and baby hamster kidney (BHK) cells transfected with mutated αIIb and WT β3. Although the αIIbβ3 was formed, the mutation impaired its intracellular trafficking. Molecular dynamics simulations and modeling of the αIIbβ3 crystal indicated that the Asn2Asp mutation disrupts a hydrogen bond between Asn2 and Leu366 of a calcium binding domain in blade 6, thereby impairing calcium binding that is essential for intracellular trafficking of αIIbβ3. Substitution of Asn2 to uncharged Ala or Gln partially decreased αIIbβ3 surface expression, while substitution by negatively or positively charged residues completely abolished surface expression. Unlike αIIbβ3, αVβ3 harboring the Asn2Asp mutation was surface expressed by transfected BHK cells, which is consistent with the known lower sensitivity of αVβ3 to calcium chelation compared with αIIbβ3. Conclusion: The new GT causing mutation highlights the importance of calcium binding domains in the β‐propeller for intracellular trafficking of αIIbβ3. The mechanism by which the mutation exerts its deleterious effect was elucidated by molecular dynamics.  相似文献   

16.
17.
Summary. Background: The cytoplasmic tails of αIIb and β3 regulate essential αIIbβ3 functions. We previously described a variant Glanzmann thrombasthenia mutation in the β3 cytoplasmic tail, IVS14: ?3C>G, which causes a frameshift with an extension of β3 by 40 residues. Objectives: The aim of this study was to characterize the mechanism by which the mutation abrogates transition of αIIbβ3 from a resting state to an active state. Methods: We expressed the natural mutation, termed 742ins, and three artificial mutations in baby hamster kidney (BHK) cells along with wild‐type (WT) αIIb as follows: β3‐742stop, a truncated mutant to evaluate the effect of deleted residues; β3‐749stop, a truncated mutant that preserves the NPLY conserved sequence; and β3‐749ins, in which the aberrant tail begins after the conserved sequence. Flow cytometry was used to determine ligand binding to BHK cells. Results and conclusions: Surface expression of αIIbβ3 of all four mutants was at least 60% of WT expression, but there was almost no binding of soluble fibrinogen following activation with activating antibodies (anti‐ligand‐induced‐binding‐site 6 [antiLIBS6] or PT25‐2). Activation of the αIIbβ3 mutants was only achieved when both PT25‐2 and antiLIBS6 were used together or following treatment with dithiothreitol. These data suggest that the ectodomain of the four mutants is tightly locked in a resting conformation but can be forced to become active by strong stimuli. These data and those of others indicate that the middle part of the β3 tail is important for maintaining αIIbβ3 in a resting conformation.  相似文献   

18.
19.
αVβ3 Integrins are a widely recognized target for in vivo molecular imaging of pathological conditions such as inflammation, cancer and rheumatoid arthritis. We have evaluated the sensitivity of a new, near‐infrared fluorescence (NIRF), RGD cyclic probe (DA364) in noninvasive detection of αVβ3 integrin‐overexpressing tumors. DA364's binding affinity for αVβ3 integrin was first evaluated in vitro. Human αVβ3 integrin‐positive, U‐87 MG glioblastoma cells were then xenografted in nude mice, and DA364 was injected intravenously (i.v.) to evaluate its in vivo distribution, specificity and sensitivity in comparison with a commercially available probe. DA364 bound αVβ3 integrin on U‐87 MG cells with high affinity and specificity, both in vitro and in vivo. This binding specificity was corroborated by the strong inhibition of its tumor uptake induced by nonfluorescent, cyclic‐RGD peptides. Ex vivo analysis showed that DA364 accumulated at the tumor site, whereas very low levels were detected in liver and spleen. In conclusion, DA364 allows sensitive and specific detection of transplantable glioblastoma by NIRF imaging, and is thus a promising candidate for the elaboration of imaging and therapeutic probes for αVβ3 integrin‐overexpressing tumors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Summary. Background: Closely spaced thiols in proteins that interconvert between the dithiol form and disulfide bonds are called vicinal thiols. These thiols provide a mechanism to regulate protein function. We previously found that thiols in both αIIb and β3 of the αIIbβ3 fibrinogen receptor were required for platelet aggregation. Methods and Results: Using p‐chloromercuribenzene sulfonate (pCMBS) we provide evidence that surface thiols in αIIbβ3 are exposed during platelet activation. Phenylarsine oxide (PAO), a reagent that binds vicinal thiols, inhibits platelet aggregation and labeling of sulfhydryls in both αIIb and β3. For the aggregation and labeling studies, binding of PAO to vicinal thiols was confirmed by reversal of PAO binding with the dithiol reagent 2,3‐Dimercapto‐1‐propanesulfonic acid (DMPS). In contrast, the monothiol β‐mercaptoethanol did not reverse the effects of PAO. Additionally, PAO did not inhibit sulfhydryl labeling of the monothiol protein albumin, confirming the specificity of PAO for vicinal thiols in αIIbβ3. As vicinal thiols represent redox sensitive sites that can be regulated by reducing equivalents from the extracellular or cytoplasmic environment, they are likely to be important in regulating activation of αIIbβ3. Additionally, when the labeled integrin was passed though a lectin column containing wheat germ agglutinin and lentil lectin a substantial amount of non‐labeled αIIbβ3 eluted separately from the labeled receptor. This suggests that two populations of integrin exist on platelets that can be distinguished by thiol labeling. Conclusion: A vicinal thiol‐containing population of αIIbβ3 provides redox sensitive sites for regulation of αIIbβ3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号