首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heartbeat modulation by muscle contraction during rhythmic exercise involving a small muscle mass is phase-dependent, reflecting the timing of the muscle contraction within the cardiac cycle, but it remains unclear whether such modulation occurs during whole body exercise. To determine whether phase-dependent chronotropic changes in the heart would occur during running, we investigated the relationship between R–R interval (RRI) and the timing of vastus lateralis muscle contractions within the cardiac cycle. Seven healthy subjects were examined during high intensity running where the target heart rate was 160 beats · min−1. The running pitch was made to wax and wane periodically in the neighborhood of the target heart rate to scan the effect of footfall timing within the cardiac cycle on heart period. We found that when muscle contraction occurred early in the cardiac cycle, RRI was reduced from the mean RRI (P<0.05). Conversely, when muscle contraction occurred in the latter half of the cardiac cycle, RRI tended to increase (P>0.05). Thus, the curve reflecting this phase-dependent relationship between heart period and timing of muscle contraction showed a positive slope within the first one-quarter to three-quarters of the cardiac cycle. Our results suggest the existence of a mechanism that provides beat-by-beat regulation of RRI even when it is very short (∼ 375 ms), i.e., a cardio-locomotor synchronization develops during running, when the frequencies of the two rhythms approach one another.An erratum to this article can be found at  相似文献   

2.
The aim of this investigation was to examine the effect of water ingestion on physiological responses to prolonged cycling (CYC) and running (RUN). A group of 11 men with mean (SEM) maximal oxygen uptake (V˙O2max) 48.5 (1.8) ml·kg–1·min–1 on a cycle-ergometer and 52.1 (2.2) ml·kg–1·min–1 on a treadmill (P<0.01) exercised for 90 min on four occasions, twice on each ergometer, at 60% of mode specific V˙O2max. No fluid was taken (D) in one trial on each ergometer, whereas 60% of fluid losses were replaced by drinking water in the other trial (W). In CYC, water ingestion attenuated the change in cardiac output ( ) and the reduction in stroke volume (ΔSV) [ΔSV: –22.7 (3.8) in D, –10.7 (2.9) ml·beat–1 in W, P<0.01; : –1.9 (0.5) in D, –0.2 (0.4) l·min–1 in W at 85 min, P<0.01], but did not affect rectal temperature [T re at 90 min: 38.8 (0.1)°C in D, 38.7 (0.1)°C in W]. In contrast, fluid replacement reduced hyperthermia in RUN [T re at 90 min: 39.6 (0.2) in D, 39.1 (0.2)°C in W, P<0.01], and this was linked with a higher skin blood flow [RUN-W 88.9 (8.5), RUN-D 70.7 (8.4)%, P<0.05]. The and ΔSV were also attenuated with water ingestion in this mode of exercise (P<0.05). It is concluded that water ingestion improves physiological function in both cycling and running, but that the underlying mechanism is different in the two modes of exercise. Electronic Publication  相似文献   

3.
The position of the body and use of the respiratory muscles in the act of rowing may limit ventilation and thereby reduce maximal aerobic power relative to that achieved in cycling or running, in spite of the greater muscle mass involved in rowing. This hypothesis was investigated for three groups of male subjects: nine elite senior oarsmen, eight former senior oarsmen and eight highly trained athletes unskilled in rowing. The subjects performed graded exercise to maximal effort on a rowing ergometer, cycle ergometer and treadmill while respiratory minute volume and oxygen consumption were monitored continuously. The VE at a given during intense submaximal exercise (greater than 75% of maximal ) was not significantly lower in rowing compared with that in cycling and treadmill running for any group, which would suggest that submaximal rowing does not restrict ventilation. At maximal effort, and for rowing were less than those for the other types of exercise in all the groups, although the differences were not statistically significant in the elite oarsmen. These data are consistent with a ventilatory limitation to maximal performance in rowing that may have been partly overcome by training in the elite oarsmen. Alternatively, a lower maximal VE in rowing might have been an effect rather than a cause of a lower maximal if maximal was limited by the lower rate of muscle activation in rowing.  相似文献   

4.
Summary An interesting aspect, when comparing athletes, is the effect ofspecialized training upon both physiological performance and perceptual responses. To study this, four groups (with six individuals each) served as subjects. Two of these consisted of highly specialized individuals (racing cyclists and marathon runners) and the other two of non-specialized individuals (sedentary and all-round trained). Cycling on a cycle ergometer and running on a treadmill were chosen as modes of exercise. Variables measured included heart rate, blood lactate and perceived exertion, rated on two different scales. Results show a linear increase of both heart rate and perceived exertion (rated on the RPE scale) in all four groups, although at different absolute levels. Blood lactate accumulation, during cycling and running, differentiates very clearly between the groups. When heart rate and perceived exertion were plotted against each other, the difference at the same subjective rating (RPE 15) between cycling and running amounted to about 15–20 beats · min–1 in the non-specialized groups. The cyclists exhibited almost no difference at all as compared to 40 beats · min–1 for the runners. It can be concluded that specialized training changes both the physiological as well as the psychological response to exercise.  相似文献   

5.
Summary Fifteen male endurance athletes were studied to determine the effect of a glucose polymer (GP) diet supplement on physiological and perceptual responses to successive swimming, cycling and running exercise. Thirty min of swimming, cycling and running at 70% , followed by a run to exhaustion at 90% was performed after one week of training under two dietary conditions: 1) GP (230 g of GP consumed daily) and 2) placebo (P, saccharin-sweetened supplement consumed daily). During GP, daily carbohydrate (CHO) intake was higher (p<0.05) by 173 g or 14% of energy intake than during P, but total energy intake was not significantly different. During 90 min of exercise, CHO utilization and blood glucose were significantly higher under GP than P by an average of 20.2% and 14.5%, respectively, but heart rate, ventilation, oxygen uptake, ratings of perceived exertion, and plasma lactate were not different. Run time to exhaustion at 90% was significantly longer by 1.2 min (23%) under GP. The results suggest that a GP diet supplement may be of value during endurance exercise by increasing the availability of CHO.  相似文献   

6.
Using the surrogate data technique we evaluated whether, during running, the synchronization between cardiac and locomotor rhythms resulted from entrainment or by chance. An electrocardiogram and an electromyogram from the right vastus lateralis muscle were monitored from ten healthy young men running at a paced rhythm of 150 steps a minute. The relationship between cardiac and locomotor rhythms was determined by examination of the occurrence of the heart beat with respect to the locomotor phase. The examination revealed that synchronization patterns were observed in all subjects. We generated surrogate data by sorting randomly the original locomotor rhythm, and no synchronization patterns were then seen. This may indicate that the synchronization between the cardiac and locomotor rhythms represented entrainment. We have provided the first evidence for the rejection of the hypothesis that when heart beat rhythm is close to the locomotor rhythm, synchronization between the two rhythms occurs by chance. Electronic Publication  相似文献   

7.
As known, different brainwave frequencies show synchronies related to different perceptual, motor or cognitive states. Brainwaves have also been shown to synchronize with external stimuli with repetition rates of ca. 10–40 Hz. However, not much is known about responses to periodic auditory stimuli with periodicities found in human rhythmic behavior (i.e. 0.5–5 Hz). In an EEG study we compared responses to periodic stimulations (drum sounds and clicks with repetition rates of 1–8 Hz), silence, and random noise. Here we report inter-trial coherence measures taken at the Cz-electrode that show a significant increase in brainwave synchronization following periodic stimulation. Specifically, we found (1) a tonic synchronization response in the delta range with a maximum response at 2 Hz, (2) a phasic response covering the theta range, and (3) an augmented phase synchronization throughout the beta/gamma range (13–44 Hz) produced through increased activity in the lower gamma range and modulated by the stimulus periodicity. Periodic auditory stimulation produces a mixture of evoked and induced, rate-specific and rate-independent increases in stimulus related brainwave synchronization that are likely to affect various cognitive functions. The synchronization responses in the delta range may form part of the neurophysiological processes underlying time coupling between rhythmic sensory input and motor output; the tonic 2 Hz maximum corresponds to the optimal tempo identified in listening, tapping synchronization, and event-interval discrimination experiments. In addition, synchronization effects in the beta and gamma range may contribute to the reported influences of rhythmic entrainment on cognitive functions involved in learning and memory tasks.  相似文献   

8.
The aim of this study was to investigate the metabolic responses to variable versus constant-intensity (CI) during 20-km cycling on subsequent 5-km running performance. Ten triathletes, not only completed one incremental cycling test to determine maximal oxygen uptake and maximal aerobic power (MAP), but also three various cycle-run (C–R) combinations conducted in outdoor conditions. During the C–R sessions, subjects performed first a 20-km cycle-time trial with a freely chosen intensity (FCI, ∼80% MAP) followed by a 5-km run performance. Subsequently, triathletes were required to perform in a random order, two C–R sessions including either a CI, corresponding to the mean power of FCI ride, or a variable-intensity (VI) during cycling with power changes ranging from 68 to 92% MAP, followed immediately by a 5-km run. Metabolic responses and performances were measured during the C–R sessions. Running performance was significantly improved after CI ride (1118 ± 72 s) compared to those after FCI ride (1134 ± 64 s) or VI ride (1168 ± 73 s) despite similar metabolic responses and performances reported during the three cycling bouts. Moreover, metabolic variables were not significantly different between the run sessions in our triathletes. Given the lack of significant differences in metabolic responses between the C–R sessions, the improvement in running time after FCI and CI rides compared to VI ride suggests that other mechanisms, such as changes in neuromuscular activity of peripheral skeletal muscle or muscle fatigue, probably contribute to the influence of power output variation on subsequent running performance.  相似文献   

9.
The aim of this study was to compare whole-body glucose uptake in cycling and running performed during physiological hyperinsulinaemia. On three occasions, seven male subjects underwent a hyperinsulinaemic (30 mU m−2 min−1), euglycaemic (5 mmol l−1) clamp for 120 min. On one occasion, subjects rested for the duration of the trial (CON). On the other two occasions, after an initial resting period of 30 min, subjects either cycled (CYC) or ran (RUN) for 90 min at 65% of maximal O2 uptake (O2max). Insulin infusion resulted in physiological hyperinsulinaemia that was maintained for the duration of each trial [CON: 61 (3) mU l−1; CYC: 77 (7) mU l−1; RUN: 77 (5) mU l−1]. The rate of glucose uptake was greater during RUN than during CYC [last 30 min of exercise: 140 (4) vs 109 (8) μmol kg−1 min−1, respectively; P <0.01]. A differential amount of active muscle mass and/or muscle fibre type recruitment might account for the observed differences in glucose disposal between cycling and running. Electronic Publication  相似文献   

10.
11.
Muscle coordination changes during intermittent cycling sprints   总被引:1,自引:0,他引:1  
Maximal muscle power is reported to decrease during explosive cyclical exercises owing to metabolic disturbances, muscle damage, and adjustments in the efferent neural command. The aim of the present study was to analyze the influence of inter-muscle coordination in fatigue occurrence during 10 intermittent 6-s cycling sprints, with 30-s recovery through electromyographic activity (EMG). Results showed a decrease in peak power output with sprint repetitions (sprint 1 versus sprint 10: −11%, P < 0.01) without any significant modifications in the integrated EMG. The timing between the knee extensor and the flexor EMG activation onsets was reduced in sprint 10 (sprint 1 versus sprint 10: −90.2 ms, P < 0.05), owing to an earlier antagonist activation with fatigue occurrence. In conclusion, the maximal power output, developed during intermittent cycling sprints of short duration, decreased possibly due to the inability of muscles to maintain maximal force. This reduction in maximal power output occurred in parallel to changes in the muscle coordination pattern after fatigue.  相似文献   

12.
Summary Changes in total mechanical work and its partitioning into different energy states (kinetic, potential and rotational) during a step cycle of running were investigated on six well trained athletes who ran at the test speeds of 40, 60, 80, and 100% (9.3±0.3 m/s) of maximum. Cinematographic techniques were utilized to calculate the mechanical energy states as described by Norman et al. (1976), using a 13 segment mechanical model of a runner as the basis for the computations. The data showed that both the kinetic and rotational energy increased parabolically but the potential energy decreased linearly with increases in running velocity. The calculated power of the positive work phase increased quadratically with running speed. During the phase when the runner was in contact with the ground, the applied calculations gave similar increases for the positive and negative works, and the power ratio (W neg/W pos) stayed the same at all measured speeds. Therefore, it is likely that the method used to calculate the various mechanical energy states did not reflect accurately enough the physiological energy costs at higher running speeds. It may, however, be quite acceptable for estimating the mechanical energy states during walking and slow running, in which case the role of negative work is less and consequently the storage and utilization of elastic energy is small.  相似文献   

13.
A group of 24 subjects performed on a cycle ergometer a fatigue test consisting of four successive all-out sprints against the same braking torque. The subjects were not allowed time to recover between sprints and consequently the test duration was shorter than 30 s. The pedal velocity was recorded every 10 ms from a disc fixed to the flywheel with 360 slots passing in front of a photo-electric cell linked to a microcomputer which processed the data. Taking into account the variation of kinetic energy of the ergometer flywheel, it was possible to determine the linear torque-velocity relationship from data obtained during the all-out cycling exercise by computing torque and velocity from zero velocity to peak velocity according to a method proposed previously. The maximal theoretical velocity (1) and the maximal theoretical torque (T 1) were estimated by extrapolation of each torque-velocity relationship. Maximal power (P max) was calculated from the values of T 0 and 0 (P max = 0.250 T 0). The kinetics of 0, T 0 and P max was assumed to express the effects of fatigue on the muscle contractile properties (maximal shortening velocity, maximal muscle strength and maximal power). Fatigue induced a parallel shift to the left of the torque-velocity relationships. The 0, T 0 and P max decreases were equal to 16.3%, 17.3% and 31%, respectively. The magnitude of the decrease was similar for 0 and T 0 which suggested that P max decreased because of a slowing of maximal shortening velocity as well as a loss in maximal muscle strength. However, the interpretation of a decrease in cycling 0 which has the dimension of a maximal cycling frequency is made difficult by the possible interactions between the agonistic and the antagonistic muscles and could also be explained by a slowing of the muscle relaxation rate.  相似文献   

14.
The purpose of this study was to investigate the effect of exercise mode on the characteristics of the oxygen uptake (O2) response to exercise within the severe intensity domain. Twelve participants each performed a treadmill running test and a cycle ergometer test to fatigue at intensities selected to elicit a mode-specificO2max and to cause fatigue in ~5 min. The tests were at 234 (30) m·min−1 and 251 (59) W, and times to fatigue were 297 (15) s and 298 (14) s, respectively. The overall rapidity of theO2response was influenced by exercise mode [O2max was achieved after 115 (20) s in running versus 207 (36) s in cycling; p<0.01].O2 responses were fit to a three-phase exponential model. The time constant of the primary phase was faster in treadmill tests than in cycle ergometer tests [14 (6) s versus 25 (4) s; p<0.01], and the amplitude of the primary phase was greater in running than in cycling when it was expressed in absolute terms [2327 (393) ml·min−1 versus 2036 (301) ml·min−1; p=0.02] but not when it was expressed as a percentage of the total increase inO2 [86 (6)% versus 82 (6)%; p=0.09]. When quantified as the difference between the end-exerciseO2 and theO2 at 2 min, the amplitude of the slow component was ~40% smaller in running [177 (92) ml·min−1 versus 299 (153) ml min−1; p=0.03]. It is concluded that exercise modality affects the characteristics of theO2 response at equivalent intensities in the severe domain.  相似文献   

15.
The impact of meditation on cardiorespiratory synchronization with respect to breathing oscillations and the modulations of heart rate induced by respiration (respiratory sinus arrhythmia, RSA) was investigated in this study. Four different exercises (spontaneous breathing, mental task, Zen meditation, and Kinhin meditation) were consecutively performed by nine subjects mainly without any experience in meditation. An electrocardiogram and a respiratory trace were recorded simultaneously. On this basis the degree of cardiorespiratory synchronization was quantified by a technique which has been adopted from the analysis of weakly coupled chaotic oscillators. Both types of meditation showed a high degree of synchronization, whereas heartbeat and respiration were hardly synchronized during spontaneous breathing. During the mental task exercise the extent of synchronization was slightly higher than during spontaneous breathing. These results were largely determined by the breathing frequency because the two types of meditation induce low breathing frequencies which led to a pronounced and in-phase RSA. During the meditation the low breathing frequencies led to a decrease in the high frequency of heart rate variability, whereas the low frequency and the extent of RSA increased. The heart rate primarily reflected the degree of physical effort. The high degree of cardiorespiratory synchronization during meditation in unexperienced meditators suggests that the physiological implications of meditation does not require prior experience in meditation.  相似文献   

16.
The present world record for 1 h unaccompanied cycling (55.291 km) was set by T. Rominger in November 1994 at sea level (Bordeaux, France). However, maximal aerobic cycling performances can be expected to increase at altitude because, for a given air temperature, air density decreases more than VO2max. The combined effect of these opposite trends results in an improvement of performances. In this study, based on the aerodynamics of track cycling, and assuming an average decrease of VO2max with altitude as from the literature, we show that the ideal altitude for Rominger is 4000 m where he could cover 60.1 km in 1 h. To our knowledge, only two cyclists attempted at close time intervals to set the 1 h record at sea level and at altitude (Mexico, 2230 m above sea level): F. Moser and J. Longo. Their increase of performance with altitude was only about 50% of that predicted on the basis of similar calculations as performed on Rominger. This suggests that the decrease of VO2max resulting from altitude is greater for athletes than for average trained subjects and/or that the fraction of VO2max that can be maintained throughout 1 h decreases with altitude.  相似文献   

17.
The purpose of the present study was to examine comprehensively the kinetics of oxygen uptake ( ) during treadmill running across the moderate, heavy and severe exercise intensity domains. Nine subjects [mean (SD age, 27 (7) years; mass, 69.8 (9.0) kg; maximum , , 4,137 (697) ml·min–1] performed a series of "square-wave" rest-to-exercise transitions of 6 min duration at running speeds equivalent to 80% and 100% of the at lactate threshold (LT; moderate exercise); and at 20%, 40%, 60%, 80% and 100% of the difference between the at LT and (Δ, heavy and severe exercise). Critical velocity (CV) was also determined using four maximal treadmill runs designed to result in exhaustion in 2–15 min. The response was modelled using non-linear regression techniques. As expected, the amplitude of the primary component increased with exercise intensity [from 1,868 (136) ml·min–1 at 80% LT to 3,296 (218) ml·min–1 at 100% Δ, P<0.05]. However, there was a non-significant trend for the "gain" of the primary component to decrease as exercise intensity increased [181 (7) ml·kg–1·km–1 at 80% LT to 160 (6) ml·kg–1·km–1 at 100% Δ]. The time constant of the primary component was not different between supra-LT running speeds (mean value range = 17.9–19.1 s), but was significantly shorter during the 80% LT trial [12.7 (1.4) s, P<0.05]. The slow component increased with exercise intensity from 139 (39) ml·min–1 at 20% Δ to 487 (57) ml·min–1 at 80% Δ (P<0.05), but decreased to 317 (84) ml·min–1 during the 100% Δ trial (P<0.05). During both the 80% Δ and 100% Δ trials, the at the end of exercise reached [4,152 (242) ml·min–1 and 4,154 (114) ml·min–1, respectively]. Our results suggest that the "gain" of the primary component is not constant as exercise intensity increases across the moderate, heavy and severe domains of treadmill running. These intensity-dependent changes in the amplitudes and kinetics of the response profiles may be associated with the changing patterns of muscle fibre recruitment that occur as exercise intensity increases. Electronic Publication  相似文献   

18.
On two occasions, six well-trained, male competitive triathletes performed, in random order, two experimental trials consisting of either a timed ride to exhaustion on a cycle ergometer or a run to exhaustion on a motor-driven treadmill at 80% of their respective peak cycling and peak running oxygen (VO2max) uptakes. At the start of exercise, subjects drank 250 ml of a 15 g·100 ml–1 w/v [U-14C]glucose solution and, thereafter, 150 ml of the same solution every 15 min. Despite identical metabolic rates [VO2 3.51 (0.06) vs 3.51 (0.10) 1·min–1; values are mean (SEM) for the cycling and running trials, respectively], exercise times to exhaustion were significantly longer during cycling than running [96 (14) vs 63 (11) min; P < 0.05]. The superior cycling than running endurance was not associated with any differences in either the rate of blood glucose oxidation [3.8 (0.1) vs 3.9 (0.4) mmol· min–1], or the rate of ingested glucose oxidation [2.0 (0.1) vs 1.7 (0.2) mmol· min–1] at the last common time point (40 min) before exhaustion, despite higher blood glucose concentrations at exhaustion during running than cycling [7.0 (0.9) vs 5.8 (0.5) mmol·1–1; P < 0.05]. However, the final rate of total carbohydrate (CHO) oxidation was significantly greater during cycling than running [24.0 (0.8) vs 21.7 (1.4) mmol C6·min–1; P < 0.01]. At exhaustion, the estimated contribution to energy production from muscle glycogen had declined to similar extents in both cycling and running [68 (3) vs 65 (5)%]. These differences between the rates of total CHO oxidation and blood glucose oxidation suggest that the direct and/or indirect (via lactate) oxidation of muscle glycogen was greater in cycling than running.  相似文献   

19.
Although there is some evidence showing that neural coupling plays an important role in regulating coordination between the upper and lower limbs during walking, it is unclear how tightly the upper and lower limbs are linked during rhythmic movements in humans. The present study was conducted to investigate how coupling of both limbs is coordinated during independent rhythmic movement of the upper and lower limbs. Ten subjects performed simultaneous arm and leg cycling (AL cycling) at their preferred cadences without feedback for 10 s, and then were asked to voluntarily change the cadence (increase, decrease, or stop) of arm or leg cycling. Leg cycling cadence was not affected by voluntary changes in arm cadence. By contrast, arm cycling cadence was significantly altered when leg cycling cadence was changed. These results suggest the existence of a predominant lumbocervical influence of leg cycling on arm cycling during AL cycling.  相似文献   

20.
Summary A digital computer program was developed which allows to continuously represent the relation between heart rate and ventilation rate. Using this program, experiments in anesthetized rabbits were performed. We found periods of synchronization, periods of transient entrainment and escape, and periods of complete desynchronization. By testing the respective roles for the entrainment mechanism of ventilation rate and heart rate it was found that spontaneous adjustments of the ventilation rate play a more pronounced role. Thus, as soon as spontaneous or induced variations of the heart rate and/or the ventilation rate shift both rhythms close to synchronization, variations of the ventilation pattern, which seem to be of reflex nature, tend to induce entrainment.This work was supported by the Austrian Research Fund  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号