首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The serine/threonine-specific protein kinase C (PKC)-theta is predominantly expressed in T cells and localizes to the center of the immunological synapse upon T cell receptor (TCR) and CD28 signaling. T cells deficient in PKC-theta exhibit reduced interleukin (IL)-2 production and proliferative responses in vitro, however, its significance in vivo remains unclear. We found that pkc-theta(-/-) mice were protected from pulmonary allergic hypersensitivity responses such as airway hyperresponsiveness, eosinophilia, and immunoglobulin E production to inhaled allergen. Furthermore, T helper (Th)2 cell immune responses against Nippostrongylus brasiliensis were severely impaired in pkc-theta(-/-) mice. In striking contrast, pkc-theta(-/-) mice on both the C57BL/6 background and the normally susceptible BALB/c background mounted protective Th1 immune responses and were resistant against infection with Leishmania major. Using in vitro TCR transgenic T cell-dendritic cell coculture systems and antigen concentration-dependent Th polarization, PKC-theta-deficient T cells were found to differentiate into Th1 cells after activation with high concentrations of specific peptide, but to have compromised Th2 development at low antigen concentration. The addition of IL-2 partially reconstituted Th2 development in pkc-theta(-/-) T cells, consistent with an important role for this cytokine in Th2 polarization. Taken together, our results reveal a central role for PKC-theta signaling during Th2 responses.  相似文献   

2.
The subset of dendritic cells (DCs) and the nature of the signal inducing DC maturation determine the capacity of DCs to generate polarized immune responses. In this study, we show that the ability of human monocyte-derived DCs (myeloid DC(1)) to promote T helper type 1 (Th1) or Th2 differentiation was also found to be critically dependent on stimulator/responder ratio. At a low ratio (1:300), mature DCs that have been differentiated after inflammatory (Staphylococcus aureus Cowan 1 or lipopolysaccharide) or T cell-dependent (CD40 ligand) stimulation induced naive T cells to become Th2 (interleukin [IL]-4(+), IL-5(+), interferon gamma) effectors. Th2 differentiation was dependent on B7-CD28 costimulation and enhanced by OX40-OX40 ligand interactions. However, high DC/T cell ratio (1:4) favored a mixed Th1/Th2 cell development. Thus, the fact that the same DC lineage stimulates polarized Th1 or Th2 responses may be relevant since it allows the antigen-presenting cells to initiate an appropriate response for the signal received at the peripheral sites. Controlling the number and the rate of DC migration to the T cell areas in lymphoid tissues may be important for the therapeutic use of DCs.  相似文献   

3.
CD1d-restricted autoreactive natural killer (NK)T cells have been reported to regulate a range of disease conditions, including type I diabetes and immune rejection of cancer, through the secretion of either T helper (Th)2 or Th1 cytokines. However, mechanisms underlying Th2 versus Th1 cytokine secretion by these cells are not well understood. Since most healthy subjects express <1 NKT cell per 1,000 peripheral blood lymphocytes (PBLs), we devised a new method based on the combined used of T cell receptor (TCR)-specific reagents alpha-galactosylceramide (alphaGalCer) loaded CD1d-tetramers and anti-V(alpha)24 monoclonal antibody, to specifically identify and characterize these rare cells in fresh PBLs. We report here that CD4(+) and CD4(-)CD8(-) (double negative [DN]) NKT cell subsets represent functionally distinct lineages with marked differences in their profile of cytokine secretion and pattern of expression of chemokine receptors, integrins, and NK receptors. CD4(+) NKT cells were the exclusive producers of interleukin (IL)-4 and IL-13 upon primary stimulation, whereas DN NKT cells had a strict Th1 profile and prominently expressed several NK lineage receptors. These findings may explain how NKT cells could promote Th2 responses in some conditions and Th1 in others, and should be taken into consideration for intervention in relevant diseases.  相似文献   

4.
5.
The development of effector and memory CD4 cell populations depends upon both T cell receptor (TCR) engagement of peptide/major histocompatibility complex (MHC) class II complexes and ligation of costimulatory molecules with counter receptors on antigen-presenting cells (APCs). We showed previously that sustained interactions with APCs could be crucial for optimal expansion of CD4 cells and for development of effectors that secrete cytokines associated with Th2 cells. Using an adoptive transfer model with TCR transgenic CD4 cells, we now show that responses of CD4 cells primed in B cell-deficient mice become aborted, but are fully restored upon the transfer of activated B cells. Although B cells have the capacity to secrete multiple cytokines that could affect CD4 priming, including IL-4, we were unable to distinguish a role for cytokines that are secreted by B cells. However, B cell costimulation via the OX40L/OX40 pathway that has been implicated in CD4 cell expansion, survival, and Th2 development was required. Th2 but not Th1 responses were impaired in OX40L-deficient recipients and normal responses were restored with OX40L sufficient B cells. The results suggest that without engagement of OX40L on B cells, CD4 cell responses to many protein Ag would be dominated by Th1 cytokines. These data have important implications for strategies to achieve optimal priming of CD4 subsets.  相似文献   

6.
We recently showed that dendritic cells (DCs) activated by thymic stromal lymphopoietin (TSLP) prime naive CD4(+) T cells to differentiate into T helper type 2 (Th2) cells that produced high amounts of tumor necrosis factor-alpha (TNF-alpha), but no interleukin (IL)-10. Here we report that TSLP induced human DCs to express OX40 ligand (OX40L) but not IL-12. TSLP-induced OX40L on DCs was required for triggering naive CD4(+) T cells to produce IL-4, -5, and -13. We further revealed the following three novel functional properties of OX40L: (a) OX40L selectively promoted TNF-alpha, but inhibited IL-10 production in developing Th2 cells; (b) OX40L lost the ability to polarize Th2 cells in the presence of IL-12; and (c) OX40L exacerbated IL-12-induced Th1 cell inflammation by promoting TNF-alpha, while inhibiting IL-10. We conclude that OX40L on TSLP-activated DCs triggers Th2 cell polarization in the absence of IL-12, and propose that OX40L can switch IL-10-producing regulatory Th cell responses into TNF-alpha-producing inflammatory Th cell responses.  相似文献   

7.
T helper type 1 (Th1)-type CD4(+) antitumor T cell help appears critical to the induction and maintenance of antitumor cytotoxic T lymphocyte (CTL) responses in vivo. In contrast, Th2- or Th3/Tr-type CD4(+) T cell responses may subvert Th1-type cell-mediated immunity, providing a microenvironment conducive to disease progression. We have recently identified helper T cell epitopes derived from the MAGE-6 gene product; a tumor-associated antigen expressed by most melanomas and renal cell carcinomas. In this study, we have assessed whether peripheral blood CD4(+) T cells from human histocompatibility leukocyte antigens (HLA)-DRbeta1*0401(+) patients are Th1- or Th2-biased to MAGE-6 epitopes using interferon (IFN)-gamma and interleukin (IL)-5 enzyme-linked immunospot assays, respectively. Strikingly, the vast majority of patients with active disease were highly-skewed toward Th2-type responses against MAGE-6-derived epitopes, regardless of their stage (stage I versus IV) of disease, but retained Th1-type responses against Epstein-Barr virus- or influenza-derived epitopes. In marked contrast, normal donors and cancer patients with no current evidence of disease tended to exhibit either mixed Th1/Th2 or strongly Th1-polarized responses to MAGE-6 peptides, respectively. CD4(+) T cell secretion of IL-10 and transforming growth factor (TGF)-beta1 against MAGE-6 peptides was not observed, suggesting that specific Th3/Tr-type CD4(+) subsets were not common events in these patients. Our data suggest that immunotherapeutic approaches will likely have to overcome or complement systemic Th2-dominated, tumor-reactive CD4(+) T cell responses to provide optimal clinical benefit.  相似文献   

8.
Primary neonatal T cell responses comprise both T helper (Th) cell subsets, but Th1 cells express high levels of interleukin 13 receptor alpha1 (IL-13R alpha 1), which heterodimerizes with IL-4R alpha. During secondary antigen challenge, Th2-produced IL-4 triggers the apoptosis of Th1 cells via IL-4R alpha/IL-13R alpha 1, thus explaining the Th2 bias in neonates. We show that neonates acquire the ability to overcome the Th2 bias and generate Th1 responses starting 6 d after birth. This transition was caused by the developmental maturation of CD8 alpha(+)CD4(-) dendritic cells (DCs), which were minimal in number during the first few days of birth and produced low levels of IL-12. This lack of IL-12 sustained the expression of IL-13R alpha 1 on Th1 cells. By day 6 after birth, however, a significant number of CD8 alpha(+)CD4(-) DCs accumulated in the spleen and produced IL-12, which triggered the down-regulation of IL-13R alpha 1 expression on Th1 cells, thus protecting them against IL-4-driven apoptosis.  相似文献   

9.
To study whether changes in the structure of a T cell receptor (TCR) at a single peptide-contacting residue could affect T cell priming with antigenic peptide, we made transgenic mice with a point mutation in the TCR alpha chain of the D10.G4.1 (D10) TCR and bred them to D10 beta chain transgenic mice. The mutation consisted of a leucine to serine substitution at position 51 (L51S), which we had already established contacted the second amino acid of the peptide such that the response to the reference peptide was reduced by approximately 100-fold. A mutation in the reference peptide CA134-146 (CA-WT) from the arginine at peptide position 2 to glycine (R2G) restored full response to this altered TCR. When we examined in vitro priming of naive CD4 T cells, we observed that the response to doses of CA-WT that induced T helper cell type 1 (Th1) responses in naive CD4 T cells from mice transgenic for the D10 TCR gave only Th2 responses in naive CD4 T cells derived from the L51S. However, when we primed the same T cells with the R2G peptide, we observed Th1 priming in both D10 and L51S naive CD4 T cells. We conclude from these data that a mutation in the TCR at a key position that contacts major histocompatibility complex-bound peptide is associated with a shift in T cell differentiation from Th1 to Th2.  相似文献   

10.
T cell receptor (TCR) signaling plays an important role in early interleukin (IL)-4 production by naive CD4+ T cells. This "antigen-stimulated" early IL-4 is sufficient for in vitro Th2 differentiation. Here, we provide evidence that early IL-4 production by naive CD4+ T cells stimulated with cognate peptide requires TCR-induced early GATA-3 expression and IL-2 receptor signaling, both of which are controlled by the degree of activation of extracellular signal-regulated kinase (ERK). Stimulation of naive CD4+ T cells from TCR transgenic mice with low concentrations of peptide-induced IL-2-dependent STAT5 phosphorylation, IL-4-independent early GATA-3 expression, and IL-4 production. Neutralization of IL-2 abolished early IL-4 production without affecting early GATA-3 expression. In addition, naive CD4+ T cells from GATA-3 conditional KO mice failed to produce early IL-4 in response to TCR/CD28 stimulation. Stimulation with high concentrations of peptide abrogated early GATA-3 expression and IL-2-dependent STAT5 phosphorylation, and resulted in the failure to produce early IL-4. This high concentration-mediated suppression of early IL-4 production was reversed by blockade of the ERK pathway. A MEK inhibition rescued early GATA-3 expression and responsiveness to IL-2; these cells were now capable of producing early IL-4 and undergoing subsequent Th2 differentiation.  相似文献   

11.
CD4+ and CD8+ alpha/beta+ T cells of the T helper cell (Th)2 phenotype produce the cytokines IL-4, IL-5, and IL-13 that promote IgE production and eosinophilic inflammation. IL-4 may play an important role in mediating the differentiation of antigenically naive alpha/beta+ T cells into Th2 cells. Murine NK1.1+ (CD4+ or CD4-CD8-) alpha/beta+ T cells comprise a beta 2-microglobulin (beta 2m)-dependent cell population that rapidly produces IL-4 after cell activation in vitro and in vivo and has been proposed as a source of IL-4 for Th2 cell differentiation. alpha/beta+ CD8+ T cells, most of which require beta 2m for their development, have also been proposed as positive regulators of allergen-induced Th2 responses. We tested whether beta 2m- dependent T cells were essential for Th2 cell-mediated allergic reactions by treating wild-type, beta 2m-deficient (beta 2m -/-), and IL-4-deficient (IL-4 -/-) mice of the C57BL/6 genetic background with ovalbumin (OVA), using a protocol that induces robust allergic pulmonary disease in wild-type mice. OVA-treated beta 2m -/- mice had circulating levels of total and OVA-specific IgE, pulmonary eosinophilia, and expression of IL-4, IL-5, and IL-13 mRNA in bronchial lymph node tissue similar to that of OVA-treated wild-type mice. In contrast, these responses in OVA-treated IL-4 -/- mice were all either undetectable or markedly reduced compared with wild-type mice, confirming that IL-4 was required in this allergic model. These results indicate that the NK1.1+ alpha/beta+ T cell population, as well as other beta 2m-dependent populations, such as most peripheral alpha/beta+ CD8+ T cells, are dispensable for the Th2 pulmonary response to protein allergens.  相似文献   

12.
13.
Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17-producing CD4(+) T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (T(reg) cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of T(reg) cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10-treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4(+) T cells to FOXP3(+) induced T(reg) cells (iT(reg) cells). These results suggest that the defective generation of IL-10-induced tolerogenic DCs and iT(reg) cells may contribute to inflammatory changes in HIES.  相似文献   

14.
Antigen-specific B cell responses to mucosally delivered proteins are dependent upon CD4-positive T helper (Th) cells, and the frequency of Th1 and Th2 cell responses after oral immunization may determine the level and isotype of mucosal antibody responses. We have used a protein- based vaccine, tetanus toxoid (TT), together with the mucosal adjuvant cholera toxin (CT), for oral immunization of mice to study the nature of antigen-specific Th cell subsets induced in Peyer's patches (PP) of the gastrointestinal (GI) tract and in the spleen (SP) during peak antibody responses. Mice orally immunized with TT and CT responded with antigen-specific secretory immunoglobulin A (S-IgA) antibodies in the GI tract, and with both IgG and IgA antibody responses in serum. PP and SP CD4+ T cells from mice orally immunized with TT plus CT were cultured with antigen-coated latex microspheres for induction of proliferative responses and for enumeration of cytokine producing CD4+ T cells. Interestingly, both PP and SP CD4+ T cell cultures showed increased numbers of IL-4- and IL-5 (Th2-type)-producing, spot-forming cells (SFCs) after 21 d of immunization, while essentially no interferon-gamma (IFN-gamma) or IL-2 (Th1-type) SFCs were noted. Cytokine-specific Northern blots and RT-PCR also revealed that significant IL-4 and IL-5 mRNA levels, but not IFN-gamma or IL-2 mRNA, were present in CD4+ T cells isolated from antigen-stimulated cultures. However, systemic immunization with TT and CT induced antigen-specific IgG and IgM but not IgA antibodies in serum. Further, both IL-2 and IFN- gamma-producing Th1-type cells as well as IL-4- and IL-5-secreting Th2- type cells were generated in SP. Our results show that oral immunization with TT and the mucosal adjuvant CT selectively induced antigen-specific Th2-type responses which may represent the major helper cell phenotype involved in mucosal IgA responses in the GI tract.  相似文献   

15.
CD28 is an adhesion receptor expressed as a 44-kD dimer on the surface of a major subset of human T cells. The CD28 receptor regulates the production of multiple lymphokines, including interleukin 2 (IL-2), by activation of a signal transduction pathway that is poorly understood. Here we show that ligation of CD28 by a monoclonal antibody (mAb) or by a natural ligand, B7/BB1, induces protein tyrosine phosphorylation that is distinct from T cell receptor (TCR)-induced tyrosine phosphorylation. CD28-induced protein tyrosine phosphorylation was greatly enhanced in cells that had been preactivated by ligation of the TCR, or by pretreatment with phorbol esters. Rapid and prolonged tyrosine phosphorylation of a single substrate, pp100, was induced in T cells after interaction with B7/BB1 presented on transfected Chinese hamster ovary (CHO) cells. Anti-B7 mAb inhibited B7/BB1 receptor-induced tyrosine phosphorylation, indicating that B7-CD28 interaction was required. CD28-induced tyrosine phosphorylation was independent of the TCR because it occurred in a variant of the Jurkat T cell line that does not express the TCR. Herbimycin A, a protein tyrosine kinase inhibitor, could prevent CD28-induced tyrosine phosphorylation and CD28-induced IL-2 production in normal T cells. The simultaneous crosslinking of CD28 and CD45, a tyrosine phosphatase, could prevent tyrosine phosphorylation of pp100. These results suggest that specific tyrosine phosphorylation, particularly of pp100, occurs directly as a result of CD28 ligand binding and is involved in transducing the signal delivered through CD28 by accessory cells that express the B7/BB1 receptor. Thus, this particular form of signal transduction may be relevant to lymphokine production and, potentially may provide a means to study the induction of self-tolerance, given the putative role of the costimulatory signal in the induction of T cell activation or anergy.  相似文献   

16.
Under physiological conditions, the vast majority of T cells differentiate in the thymus, an organ that provides an optimal microenvironment for T cell maturation and shapes the T cell repertoire via positive and negative selection processes. In the present report, we demonstrate that neonatal thymectomy of CBA/H mice results in a diminution of T cells in peripheral lymphoid organs (spleen, lymph nodes), but is followed by a marked transient (12 wk) increase in Thy-1+ CD3+ cells in the peritoneal cavity. These cells exhibit predominantly a double-negative (CD4-CD8-) phenotype among which products of the T cell receptor (TCR) V beta 11 gene family (i.e., an I-E-reactive TCR normally deleted in I-E-bearing CBA/H mice) are selectively overexpressed. This observation suggests that, under athymic conditions, T cell differentiation and/or accumulation may occur in the peritoneal cavity. Intraperitoneal inoculation of an interleukin 2 (IL-2) vaccinia virus construct that releases high titers of human IL-2 in vivo induces conversion of these double-negative T cells to either CD4+ CD8- or CD4- CD8+ single positives, and allows in vitro stimulation of TCR V beta 11-bearing cells with a clonotypic anti-V beta antibody. Since IL-2 induces autoimmune manifestations (DNA autoantibodies, rheumatoid factors, and interstitial nephritis) in thymectomized CBA/H mice, but not in sham-treated littermates, this lymphokine is likely to enhance the autoaggressive function of T cells that bear forbidden, potentially autoreactive TCR gene products and that are normally deleted in the thymus.  相似文献   

17.
The IL-21 receptor (IL-21R) shows significant homology with the IL-4R, and CD4+ Th2 cells are an important source of IL-21. Here we examined whether the IL-21R regulates the development of Th2 responses in vivo. To do this, we infected IL-21R-/- mice with the Th2-inducing pathogens Schistosoma mansoni and Nippostrongylus brasiliensis and examined the influence of IL-21R deficiency on the development of Th2-dependent pathology. We showed that granulomatous inflammation and liver fibrosis were significantly reduced in S. mansoni-infected IL-21R-/- mice and in IL-21R+/+ mice treated with soluble IL-21R-Fc (sIL-21R-Fc). The impaired granulomatous response was also associated with a marked reduction in Th2 cytokine expression and function, as evidenced by the attenuated IL-4, IL-13, AMCase, Ym1, and FIZZ1 (also referred to as RELMalpha) responses in the tissues. A similarly impaired Th2 response was observed following N. brasiliensis infection. In vitro, IL-21 significantly augmented IL-4Ralpha and IL-13Ralpha1 expression in macrophages, resulting in increased FIZZ1 mRNA and arginase-1 activity following stimulation with IL-4 and IL-13. As such, these data identify the IL-21R as an important amplifier of alternative macrophage activation. Collectively, these results illustrate an essential function for the IL-21R in the development of pathogen-induced Th2 responses, which may have relevance in therapies for both inflammatory and chronic fibrotic diseases.  相似文献   

18.
Continuous administration of soluble proteins, delivered over a 10-d period by a mini-osmotic pump implanted subcutaneously, induces a long- lasting inhibition of antigen-specific T cell proliferation in lymph node cells from BALB/c mice subsequently primed with antigen in adjuvant. The decreased T cell proliferative response is associated with a down-regulation of the T helper cell (Th)1 cytokines interleukin (IL)-2 and interferon (IFN)-gamma and with a strong increase in the secretion of the Th2 cytokines IL-4 and IL-5 by antigen specific CD4+ T cells. This is accompanied by predominant inhibition of antigen- specific antibody production of IgG2a and IgG2b, rather than IgG1 isotype. Interestingly, inhibition of Th1 and priming of Th2 cells is also induced in beta(2) microglobulin-deficient BALB/c mice, indicating that neither CD8+ nor CD4+ NK1.1+ T cells, respectively, are required. The polarization in Th2 cells is stably maintained by T cell lines, all composed of CD4+/CD8- cells expressing T cell receptor for antigen (TCR) alpha/beta chains, derived from BALB/c mice treated with continuous antigen administration, indicating that they originate from Th2 cells fully differentiated in vivo. This polarization is induced in BALB/c mice by continuous administration of any protein antigen tested, including soluble extracts from pathogenic microorganisms. Priming of Th2 cells is dose dependent and it is optimal for low rather than high doses of protein. Blocking endogenous IL-4 in vivo inhibits expansion of antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen, indicating the involvement of two independent mechanisms. Consistent with this, Th2 cell development, but not inhibition of Th1 cells, depends on non-major histocompatibility complex genetic predisposition, since the Th2 response is amplified in BALB/c as compared to DBA/2, C3H, or C57BL/6 mice whereas tested. These findings support the hypothesis that continuous release of low amounts of protein antigens from pathogenic microorganisms may polarize the immune response toward a Th2 phenotype in susceptible mouse strains.  相似文献   

19.
The differentiation of antigen-stimulated naive CD4 T cells into T helper (Th)1 or Th2 effector cells can be prevented in vitro by transforming growth factor (TGF)-beta and anti-interferon (IFN)-gamma. These cells proliferate and synthesize interleukin (IL)-2 but not IFN-gamma or IL-4, and can differentiate into either Th1 or Th2 cells. We have now used two-color Elispots to reveal substantial numbers of primed cells producing IL-2 but not IL-4 or IFN-gamma during the Th1- or Th2-biased immune responses induced by soluble proteins or with adjuvants. These cells were CD4(+)CD44(high) and were present during immediate and long-term immune responses of normal mice. Naive T cell receptor for antigen (TCR) transgenic (DO11.10) T cells were primed in vivo after adoptive transfer into normal hosts and FACS((R)) cloned under conditions that did not allow further differentiation. After clonal proliferation, aliquots of each clone were cultured in Th1- or Th2-inducing conditions. Many in vivo-primed cells were uncommitted, secreting IL-2 but not IL-4 or IFN-gamma at the first cloning step, but secreting either IL-4 or IFN-gamma after differentiation in the appropriate conditions. These in vivo-primed, uncommitted, IL-2-producing cells may constitute an expanded pool of antigen-specific cells that provide extra flexibility for immune responses by differentiating into Th1 or Th2 phenotypes later during the same or subsequent immune responses.  相似文献   

20.
T cells secreting interleukin (IL)-4 and IL-5 (T helper cell type 2 [Th2] cells) play a detrimental role in a variety of diseases, but specific methods of regulating their activity remain elusive. T1/ST2 is a surface ligand of the IL-1 receptor family, expressed on Th2- but not on interferon (IFN)-gamma-producing Th1 cells. Prior exposure of BALB/c mice to the attachment (G) or fusion (F) protein of respiratory syncytial virus (RSV) increases illness severity during intranasal RSV challenge, due to Th2-driven lung eosinophilia and exuberant Th1-driven pulmonary infiltration, respectively. We used these polar models of viral illness to study the recruitment of T1/ST2 cells to the lung and to test the effects of anti-T1/ST2 treatment in vivo. T1/ST2 was present on a subset of CD4(+) cells from mice with eosinophilic lung disease. Monoclonal anti-T1/ST2 treatment reduced lung inflammation and the severity of illness in mice with Th2 (but not Th1) immunopathology. These results show that inhibition of T1/ST2 has a specific effect on virally induced Th2 responses and suggests that therapy targeted at this receptor might be of value in treating Th2-driven illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号