首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy requirements can be estimated from resting energy expenditure (REE). However, little is known about factors influencing REE in Japanese female athletes. This study was performed to evaluate the relationship between REE and body composition in Japanese female athletes with a wide range of body sizes. Ninety-three athletes (age 20.3±1.2 y, height 162.8±6.4 cm, body weight (BW) 57.0±9.2 kg, fat-free mass (FFM) 45.4±6.2 kg) were classified into three groups according to BW: small-size (S) (n=34), medium-size (M) (n=34), and large-size (L) (n=25). Systemic and regional body compositions (skeletal muscle (SM), fat mass (FM), bone mass (BM), and residual mass (RM)) were estimated by dual energy X-ray absorptiometry (DXA). Measured resting energy expenditure (REEm) was evaluated by indirect calorimetry. Marked differences were found in REEm (S: 1,111±150, M: 1,242±133, L: 1,478±138 kcal/d), and systemic and regional body compositions among the three groups. REEm was strongly correlated with FFM, and absolute values of RM and SM increased significantly according to body size. There was good agreement between REEm and estimated REE (REEe) from the specific metabolic rates of four major organ tissue level compartments. These data indicate that REE for female athletes can be attributed to changes in organ tissue mass, and not changes in organ tissue metabolic rate. That is, change in REE can be explained mainly by the change in FFM, and REE can be assessed by FFM in female athletes regardless of body size.  相似文献   

2.
There is conflicting evidence as to whether the age-related decline in resting energy expenditure (REE) can be attributed to i) absolute changes in fat-free mass (FFM), ii) alterations in the composition of FFM or iii) decreasing organ metabolic rates. This study directly addressed the first and second hypotheses by quantification of metabolically active components of FFM assuming constant tissue respiration rates to calculate REE (REEc). REE was measured (REEm) in 26 young (13 females, 13 males, age 22-31 y) and 26 elderly subjects (15 females, 11 males, age 60-82 y) by indirect calorimetry and detailed body composition analysis was obtained using bioelectrical impedance analysis (BIA), dual energy X-ray absorptiometry (DXA), and MRI. Specific organ metabolic rates were taken from the literature. REEm adjusted for differences in FFM was lower in older subjects than in younger control subjects (5.43 +/- 0.61 MJ/d compared with 6.37 +/- 0.48 MJ/d; P < 0.001). Skeletal muscle mass plus liver mass accounted for 86% and 48% of the variance in REE in young and elderly subjects, respectively. The difference between REEm and REEc was 0.03 +/- 0.40 MJ/d and -0.36 +/- 0.70 MJ/d in young and elderly subjects, respectively. In the elderly 58% of the difference in variance was attributed to heart mass. REEm - REEc was -1.40 +/- 0.44 MJ/d in subjects with hypertensive cardiac hypertrophy, i.e., heart mass > 500 g, suggesting a decrease in heart metabolic rate with increasing heart mass. Excluding five elderly subjects with cardiac hypertrophy resulted in agreement between REEm and REEc in the elderly (-0.10 +/- 0.48 MJ/d). We concluded that the age-related decline in REE is attributed to a reduction in FFM as well as in proportional changes in its metabolically active components. There is no evidence for a decreasing organ metabolic rate in healthy aging.  相似文献   

3.
The number of lean young women has been increasing. Fear of being fat may induce unnecessary attempts to reduce body weight, which can cause several types of illness. Many investigations have demonstrated dysfunction of the hypothalamus and metabolic differences in patients with anorexia nervosa. However, it is unclear whether there are any differences in physical characteristics between women with lower body weight and no illness compared to those of normal body weight. In this study, we investigated the differences in body composition, biochemical parameters, and resting energy expenditure (REE) between young women with low and normal body mass index (BMI). Twenty lean women (BMI<18.5 kg/m(2)) and 20 normal women (18.5≤BMI<25 kg/m(2)) were recruited for this study. Body composition, biochemical parameters, and REE (REEm: measurement of REE) were measured, and the REE (REEe: estimation of REE) was estimated by using a prediction model. Marked differences were found in body composition. All of the values of blood analysis were in the normal ranges in both groups. REEm (kcal/d and kcal/kg BW/d) was significantly lower in lean than in normal women, but there were no significant differences in the REEm to fat free mass (FFM) ratio between the two groups. In addition, there was good agreement between REEm and REEe obtained from the specific metabolic rates of four tissue organs. These data indicate that the lean women without any illness have normal values of biochemical parameters and energy metabolism compared to women with normal BMI.  相似文献   

4.
BACKGROUND: Basal energy requirements are higher in adolescents with sickle cell anemia (SCA) than in healthy control subjects. However, no equation is available to accurately predict their energy needs. OBJECTIVE: Our objective was to develop a clinically useful equation to estimate resting energy expenditure (REE) in adolescents with SCA. DESIGN: REE and other components of total energy expenditure were measured in adolescents with SCA (n = 37) and in control subjects (n = 23) for 24 h in a whole-room indirect calorimeter. Multiple linear regression analysis was used to describe the relations of REE with independent variables such as sex, weight, height, fat-free mass, fat mass, age, and hemoglobin concentration in adolescents with SCA. The Bland-Altman comparison technique was used to compare values predicted by existing equations with measured REE values. RESULTS: Mean (+/-SD) measured REEs were 7746 +/- 974 and 6332 +/- 869 kJ/d in the male and female subjects with SCA, respectively, and these values were 16% higher than those in the healthy control subjects. Standard equations underestimated REE by 12% (P 相似文献   

5.
BACKGROUND: To determine the consequences of severe undernutrition and refeeding on whole-body metabolism and protein synthesis. METHODS: Respiratory quotient (RQ), resting energy expenditure (REE), and whole-body protein synthesis (WBPS) were assessed in undernourished patients, with anorexia nervosa (n = 8) or with coexistent disease (n = 17). Results were compared with 17 healthy controls. Six anorexic patients and 13 disease patients consented to study after nutrition support. RESULTS: Mean body mass index was 12.46 +/- 0.53 kg/m2 in the anorexia patients and 13.81 +/- 0.40 kg/m2 in the disease patients (controls 23.71 +/- 0.72 kg/m2; p < .001). Compared with controls, RQ was similar in anorexia patients (0.85 +/- 0.05 vs 0.90 +/- 0.05) but lower in the disease patients (0.76 +/- 0.03 vs 0.90 +/- 0.05; p = .02). REE was lower in the patients (anorexia 1058 +/- 134.0 kcal/d, disease 1189 +/- 101.4 kcal/d vs 1828 +/- 89.76 kcal/d; p < .001); however, expressed as kcal/kg/d, it was higher (anorexia 32.17 +/- 4.25, disease 31.30 +/- 2.14 vs 25.07 +/- 1.00; p < .05). WBPS was lower in the patients (anorexia 140.9 +/- 10.54 g/d, disease 119.8 +/- 8.57 g/d vs 305.0 +/- 21.64 g/d; p < .001); however, when expressed as g/kg/d, the anorexia patients were similar to controls, whereas the disease patients were lower (3.11 +/- 0.24 vs 4.27 +/- 0.32; p < .05). Refeeding increased RQ in the disease patients (0.84 +/- 0.03 vs 0.76 +/- 0.03; p < .05), and normalized REE (anorexia 27.65 +/- 3.05 kcal/kg/d, disease 28.90 +/- 1.85 kcal/kg/d). WBPS increased in the disease patients (173.6 +/- 16.38 g/d vs 116.5 +/- 10.15 g/d; p < .01). CONCLUSIONS: Undernutrition is associated with increased REE (kcal/kg/d). Reduction in RQ and protein synthesis (g/kg/d) was evident in those patients with coexistent disease. Refeeding resulted in normalization of RQ, REE (kcal/kg/d), and protein synthesis (g/kg/d).  相似文献   

6.
BACKGROUND: HIV lipodystrophy and other lipodystrophy syndromes are characterized by extensive loss of subcutaneous adipose tissue. Lipodystrophy syndromes are also associated with increased resting energy expenditure (REE). This hypermetabolism may be an adaptive response to an inability to store triacylglycerol fuel in a normal manner. OBJECTIVE: This study was done to determine whether REE increases significantly after short-term overfeeding in patients with HIV lipodystrophy. DESIGN: REE was measured in HIV-infected patients with lipodystrophy (n = 9) and in HIV-infected (n = 10) and healthy (n = 9) controls after 3 d on a eucaloric diet and again after 3 d on a diet of similar composition but increased in calories by 50%. RESULTS: After 3 d of eucaloric feeding, REE was significantly higher in patients with HIV lipodystrophy [33.2 +/- 0.27 kcal/kg lean body mass (LBM)] than for both HIV-infected and healthy controls (29.9 +/- 0.26 and 29.6 +/- 0.27 kcal/kg LBM, respectively; P < 0.01). Furthermore, after 3 d of overfeeding, REE increased significantly in patients with HIV lipodystrophy but not in the control groups (33.2 +/- 0.27 vs 34.7 +/- 0.27 kcal/kg LBM; P < 0.01). Finally, postprandial thermogenesis did not differ among the groups after a "normal" test meal but tended to be higher in patients with HIV lipodystrophy than in healthy controls after a large test meal. CONCLUSIONS: Adaptive thermogenesis in the resting component of total daily energy expenditure and in the postprandial period may be a feature of the HIV lipodystrophy syndrome and may be due to an inability to store triacylglycerol fuel in a normal manner.  相似文献   

7.
Resting energy expenditure (REE), and body composition, as fat-free mass (FFM) and fat mass, were determined in seven obese adolescents before and after weight loss of a mean 13.5 kg on an approximately 800 kcal/d (3349 kJ), high protein reducing diet regimen. Ideal body weight decreased from 166% to 142% in 8 weeks. There were no significant changes in total body potassium (TBK), extracellular water (ECW), intracellular water (ICW) or total body water (TBW) with weight loss. The REE (kcal/d) fell from 2034 +/- 392 (8514 +/- 1641 kJ) to 1762 +/- 453 (7376 +/- 1896 kJ) with weight loss (P < 0.05). However, when the REE was expressed as kcal/body weight there was no difference between before and after weight loss, 21.4 +/- 2.8 (90 +/- 21 kJ) and 21.6 +/- 4.5 (90 +/- 19 kJ). Similarly, when REE was examined in relation to FFM (kcal/kg) before and after weight loss, there were also no significant differences: 34.6 +/- 5.1 (145 +/- 21 kJ) and 32.1 +/- 7.9 (134 +/- 33 kJ).  相似文献   

8.
The fat-free mass (FFM) of athletes is typically large, and thus the FFM is often utilized to estimate their resting energy expenditure (REE). While the proportional contribution of organ-tissues to the total influence of FFM on REE is known for untrained individuals and female athletes, the extent to which this is valid for male athletes is unclear. The purpose of this study was to clarify the contribution of the components of FFM to REE in male athletes. Fifty-seven male athletes participated in this study. REE was assessed by indirect calorimetry and body composition by dual X-ray absorptiometry. The athletes were equally divided into three groups based on FFM: Small (S), Medium (M), and Large (L). When measured REE (REEm) was compared with REE estimated (REEe) based on the four organ-tissue compartments with set metabolic rates, REEm and REEe had a strong association (r=0.76, p<0.001). In addition, the absolute value of total REE became larger in accordance with body size (S: 1,643±144, M: 1,865±140, and L: 2,060±156 kcal/d) accompanied by increases in mass of all four organ-tissue compartments as body size increased. The consistency of REE/FFM in male athletes in spite of the difference in body size can be explained by the steadiness among the three groups of the relative contribution of each organ-tissue compartment to the FFM. Based on these results, the FFM is the major determinant of REE regardless of body size in male athletes.  相似文献   

9.
BACKGROUND: Nutrition problems are common in cancer patients and are frequently due to metabolic derangements. Thus, accurately assessing energy expenditure (EE) is important in planning adequate nutrition support. Indirect calorimetry (IC) represents the gold standard method but is not always available or applicable to all settings. The purpose of this study was to preliminary compare a new wearable device, the SenseWear armband (SWA), to IC in cancer patients. METHODS: Ten (6 M, 4 F) subjects (mean +/- SD: 56.6 +/- 13.3 years) affected by newly diagnosed acute myelogenous leukemia, undergoing induction chemotherapy, were prospectively enrolled. Resting EE (REE) was measured simultaneously by SWA and IC on admission (day 0) and at discharge (end). Total daily EE (TDEE) was determined by SWA 4 times during the stay (days 0, 7, 14, and end) and predicted values were calculated according to IC REE estimates (TDEE = IC x correction factor 1.2). RESULTS: Mean length of stay was 27.1 +/- 6.2 days. Bland-Altman plots revealed no significant differences between overall REE estimates (day 0 + end) performed by IC and SWA (mean +/- SD; 1645 +/- 282 vs 1705 +/- 278 kcal/d) and the correlation was high (r = 0.84; p < .0001). SWA TDEE showed a progressive reduction during the stay. No bias was detected between overall SWA TDEE (1799 +/- 153 kcal/d) and IC predicted TDEE (1974 +/- 176 kcal/d), but there was a wide 95% confidence interval (-672; +321 kcal/d). Moreover, the correlation between these values was significant (r = 0.68; p = .001). CONCLUSIONS: SWA seems to provide accurate and reliable estimation of REE and useful information on TDEE also in cancer patients. Its use appears promising. Validation studies on larger samples and different cancer types should be considered.  相似文献   

10.
BACKGROUND: We previously derived a whole-body resting energy expenditure (REE) prediction model by using organ and tissue mass measured by magnetic resonance imaging combined with assumed stable, specific resting metabolic rates of individual organs and tissues. Although the model predicted REE well in young persons, it overpredicted REE by approximately 11% in elderly adults. This overprediction may occur because of a decline in the fraction of organs and tissues as cell mass with aging. OBJECTIVE: The aim of the present study was to develop a cellular-level REE prediction model that would be applicable across the adult age span. Specifically, we tested the hypothesis that REE can be predicted from a combination of organ and tissue mass, the specific resting metabolic rates of individual organs and tissues, and the cellular fraction of fat-free mass. DESIGN: Fifty-four healthy subjects aged 23-88 y had REE, organ and tissue mass, body cell mass, and fat-free mass measured by indirect calorimetry, magnetic resonance imaging, whole-body (40)K counting, and dual-energy X-ray absoptiometry, respectively. RESULTS: REE predicted by the cellular-level model was highly correlated with measured REE (r = 0.92, P < 0.001). The mean difference between measured REE (x+/- SD: 1487 +/- 294 kcal/d) and predicted REE (1501 +/- 300 kcal/d) for the whole group was not significant, and the difference between predicted and measured REE was not associated with age (r = 0.009, NS). CONCLUSION: The present approach establishes an REE-body composition link with the use of a model at the cellular level. The combination of 2 aging-related factors (ie, decline in both the mass and the cellular fraction of organs and tissues) may account for the lower REE observed in elderly adults.  相似文献   

11.
Resting energy expenditure (REE), body composition, and the biochemical parameters of liver function were measured in 26 patients before and 432 days (range: 103-1022 days) after liver transplantation (LTX). PreLTX REE was variable (mean: 1638 +/- 308 kcal/day, range: 1220-2190 kcal/day or +10 +/- 11% of Harris Benedict = HB prediction, range: -19 - +33%) and was closely related to body cell mass (r = 0.66, p < 0.0003). PostLTX REE was variable (mean: 1612 +/- 358 kcal/day, range: 1010-2490 kcal/day or +5 +/- 15% of HB prediction, range: -20 - +37%) and was closely related to body cell mass (r = 0.65, p < 0.0006). When compared with preLTX values only small changes in mean REE (-71 +/- 43 kcal/day) and a close correlation between pre and postLTX REE (r = 0.82, p < 0.001) were observed. In contrast to REE, changes in body weight were highly variable (-16.5 - +32.7 kg/year). This variance was not explained by the number of postoperative complications, pre and postLTX liver function, possible graft rejection and/or hepatitis reinfection. Pre-operative hypermetabolism (i.e. REE >+20% of HB prediction) was associated with postoperative hypermetabolism and a reduced liver function before and after LTX. Hypermetabolic patients had a poorer nutritional outcome after LTX (weight change: 0 +/- 8.4 kg/year) when compared with normometabolic controls (weight change: +5.7 +/- 7.4 kg/year; p < 0.05). There was no significant association between deviations in pre and postLTX REE and changes in body weight. When corrected for changes in the nutritional state our data provide evidence for the persistence of resting energy expenditure in liver transplant patients.  相似文献   

12.
It has been demonstrated in a previous study that resting energy expenditure (REE) is associated with adiponectin levels in the blood. However, body composition was not taken into consideration in that study. The purpose of the present study was to again investigate the relationship between blood adipocytokines and REE, adjusted by body composition, in both young and elderly women. REE and blood adipocytokines were measured in 115 young (age: 22.3+/-2.1 y, BMI: 21.3+/-1.9 kg/m(2)) and 71 elderly (63.4+/-6.5 y, 22.9+/- 2.3 kg/m(2)) women. Dual energy X-ray absorptiometry was used to measure percent body fat. Fat mass and fat free mass (FFM) were calculated. REE (kcal/d and kcal/kg BW/d) was lower in elderly women than in young women, but no significant difference was observed in REE, expressed as kcal/kg FFM/d, between the two groups. Although elderly women had a higher percent body fat and higher serum leptin concentrations than young women, plasma adiponectin concentrations did not differ between young and elderly women. In elderly women, REE (kcal/d) was significantly and inversely correlated with plasma adiponectin concentration (r=-0.386, p<0.001), but REE expressed per kilogram of BW or FFM was not significantly correlated. Furthermore, no significant correlation was observed between REE (kcal/d) and concentrations of plasma adiponectin or serum leptin, after adjusting for potential confounders such as body composition and hormones, in either age group. These results suggest that adipocytokines do not influence REE in adult women.  相似文献   

13.
Resting energy expenditure (REE), maximum oxygen uptake (VO2max), and body composition were measured in seven moderately obese women during 9 wk of dietary restriction (800 kcal/d). During weeks 4-6, subjects underwent exercise training (30 min cycling/d, 5 d/wk, at 70% VO2max). The first 3 wk of caloric restriction decreased REE by 13% (from 1437 +/- 76 to 1254 +/- 66 kcal/24 h, means +/- SEM, p less than 0.05). Exercise training increased VO2max (from 1717 +/- 108 to 1960 +/- 120 mL/min, means +/- SEM, p less than 0.05) but did not elevate the dietary-depressed REE (from 1254 +/- 66 to 1262 +/- 62 kcal/24 h). The greatest decrease in body fat (3.7 +/- 0.4 kg) occurred during exercise training, resulting in a small apparent increase in REE when expressed per kilogram total body weight. However, expressed per unit lean body mass, REE remained suppressed throughout the period of caloric restriction. We conclude that exercise training of sufficient intensity to substantially increase VO2max does not reverse the dietary-induced depression of REE.  相似文献   

14.
BACKGROUND: A substantial proportion of total body potassium (TBK) in humans is found in skeletal muscle (SM), thus affording a means of predicting total-body SM from whole-body counter-measured (40)K. There are now > 30 whole-body counters worldwide that have large cross-sectional and longitudinal TBK databases. OBJECTIVE: We explored 2 SM prediction approaches, one based on the assumption that the ratio of TBK to SM is stable in healthy adults and the other on a multiple regression TBK-SM prediction equation. DESIGN: Healthy subjects aged >or= 20 y were recruited for body-composition evaluation. TBK and SM were measured by whole-body (40)K counting and multislice magnetic resonance imaging, respectively. A conceptual model with empirically derived data was developed to link TBK and adipose tissue-free SM as the ratio of TBK to SM. RESULTS: A total of 300 subjects (139 men and 161 women) of various ethnicities with a mean (+/- SD) body mass index (in kg/m(2)) of 25.1 +/- 5.4 met the study entry criteria. The mean conceptual model-derived TBK-SM ratio was 122 mmol/kg, which was comparable to the measurement-derived TBK-SM ratios in men and women (119.9 +/- 6.7 and 118.7 +/- 8.4 mmol/kg, respectively), although the ratio tended to be lower in subjects aged >or= 70 y. A strong linear correlation was observed between TBK and SM (r = 0.98, P < 0.001), with sex, race, and age as small but significant prediction model covariates. CONCLUSIONS: Two different types of prediction models were developed that provide validated approaches for estimating SM mass from (40)K measurements by whole-body counting. These methods afford an opportunity to predict SM mass from TBK data collected in healthy adults.  相似文献   

15.
BACKGROUND: In humans, resting energy expenditure (REE) can be calculated from organ and tissue masses using constant specific organ metabolic rates. However, interspecies data suggest allometric relations between body mass and organ metabolic rate with higher specific metabolic rates in mammals with a smaller body mass. OBJECTIVE: The objective was to compare the accuracy of REE prediction with the use of either constant or body mass-dependent specific organ metabolic rates. DESIGN: Healthy subjects (79 women, 75 men) within the normal range of fat mass (FM) expected for a healthy body mass index and aged 18-78 y were stratified into tertiles of body mass. Fifty subjects were grouped as tertile 1 (<66.3 kg), 52 as tertile 2 (> or =66.3 to < or =77.2 kg), and 52 as tertile 3 (>77.2 kg). Magnetic resonance imaging was used to assess the volume of 4 internal organs (brain, heart, liver, and kidneys). REE was measured by indirect calorimetry (REE(m)) and compared with REE calculated from previously published constant (REE(c1)) and body mass-dependent organ metabolic rates (REE(c2)). RESULTS: REE(m) increased significantly with weight tertile (tertile 1: 5536 +/- 529 kJ/d; tertile 2: 6389 +/- 672 kJ/d; tertile 3: 7467 +/- 745 kJ/d; P < 0.01). The deviation REE(m)-REE(c1) did not differ between weight tertiles (tertile 1: 66 +/- 382 kJ/d; tertile 2: 167 +/- 507 kJ/d; tertile 3: 86 +/- 480 kJ/d; NS) and showed no relation with body mass (r = -0.05, NS). By contrast, REE(m)-REE(c2) increased with increasing weight tertile (tertile 1: -45 +/- 369 kJ/d; tertile 2: 150 +/- 503 kJ/d; tertile 3: 193 +/- 482 kJ/d; P < 0.05) and correlated significantly with body mass (r = 0.16, P < 0.05). CONCLUSION: Our data do not support a lower specific organ metabolic rate in humans with a larger body mass than in those with a smaller body mass.  相似文献   

16.
Normal value of resting energy expenditure in healthy neonates   总被引:5,自引:0,他引:5  
OBJECTIVE: We investigated the value of resting energy expenditure (REE) in healthy neonates and evaluated the impact factors on REE. METHODS: One hundred eighty healthy neonates (95 boys and 85 girls) with birth weights above 2500 g were measured by indirect calorimetry, and the effect of birth weight evaluated. Measured and predicted REEs were compared, and the effects of sex and delivery method on REE were examined in 154 newborn infants with birth weights of approximately 2500 to 4000 g. RESULTS: Birth weight had a significant effect on REE. There was a negative relation between REE and birth weight (r = -0.289). The REEs of newborn infants weighing more than 4000 g were statistically lower than those of infants weighing 2500 to 4000 g (44.5 +/- 5.9 versus 48.3 +/- 6.1 kcal x kg(-1) x d(-1), P = 0.01). The measured and predicted REEs of 154 newborn infants were 48.3 +/- 6.1 and 54.1 +/- 1.1 kcal x kg(-1) x d(-1), respectively. There was a significant difference between the two values. Sex and delivery methods had no effect on REE in healthy neonates. CONCLUSIONS: The value from the predicted equation is not suitable for neonatal energy supplementation in clinical practice. The normal REE value for healthy neonates with birth weights of 2500 to 4000 g is 48.3 +/- 6.1 kcal x kg(-1) x d(-1).  相似文献   

17.
Objective: Accurate estimation of resting energy expenditure (REE) in childrenand adolescents is important to establish estimated energy requirements. The aim of the present study was to measure REE in obese children and adolescents by indirect calorimetry method, compare these values with REE values estimated by equations, and develop the most appropriate equation for this group.

Methods: One hundred and three obese children and adolescents (57 males, 46 females) between 7 and 17 years (10.6 ± 2.19 years) were recruited for the study. REE measurements of subjects were made with indirect calorimetry (COSMED, FitMatePro, Rome, Italy) and body compositions were analyzed.

Results: In females, the percentage of accurate prediction varied from 32.6 (World Health Organization [WHO]) to 43.5 (Molnar and Lazzer). The bias for equations was ?0.2% (Kim), 3.7% (Molnar), and 22.6% (Derumeaux-Burel). Kim's (266 kcal/d), Schmelzle's (267 kcal/d), and Henry's equations (268 kcal/d) had the lowest root mean square error (RMSE; respectively 266, 267, 268 kcal/d). The equation that has the highest RMSE values among female subjects was the Derumeaux-Burel equation (394 kcal/d). In males, when the Institute of Medicine (IOM) had the lowest accurate prediction value (12.3%), the highest values were found using Schmelzle's (42.1%), Henry's (43.9%), and Müller's equations (fat-free mass, FFM; 45.6%). When Kim and Müller had the smallest bias (?0.6%, 9.9%), Schmelzle's equation had the smallest RMSE (331 kcal/d). The new specific equation based on FFM was generated as follows: REE = 451.722 + (23.202 * FFM). According to Bland-Altman plots, it has been found out that the new equations are distributed randomly in both males and females.

Conclusion: Previously developed predictive equations mostly provided unaccurate and biased estimates of REE. However, the new predictive equations allow clinicians to estimate REE in an obese children and adolescents with sufficient and acceptable accuracy.  相似文献   

18.
The aim of this study was to investigate the effect of daytime on resting energy expenditure (REE) and thermic effect of food (TEF), REE and TEF were measured in 11 obese boys (mean age +/- SD 11.9 +/- 1.6 years; body mass index 30.1 +/- 4.0 kg/m2) by indirect calorimetry (SensorMedics 2900) on two consecutive days: early in the morning (7:30 a.m.) on one day and at 12 noon on the other day or vice versa. REE was measured for 30 minutes and TEF for 180 minutes after a 600 kcal liquid meal containing 13% protein, 39% fat and 48% carbohydrates. REE measured in the morning was not statistically different from that measured at noon (2191 +/- 358 vs 2223 +/- 319 kcal/24 hours) and morning values were highly correlated with afternoon values (r2 = 0.805). Therefore we conclude that the effect of daytime is negligible for measurements of REE if the patients are in a postabsorptive state and avoid physical activity and stress 10-12 hours prior to measurements. The thermic effect of food calculated in the morning also was not statistically significantly from values found in the afternoon (8.2 +/- 8.8% in the morning and 6.6 +/- 7.5% in the afternoon). However, because of very high within-patient variability the correlation between morning and afternoon values was weaker than for REE (r2 = 0.289).  相似文献   

19.
BACKGROUND: Inflammation, a clinical condition observed in patients with chronic kidney disease (CKD), may be related to increased resting energy expenditure (REE). OBJECTIVES: The main objective was to investigate the relation between inflammation and REE in patients with CKD who are not undergoing dialysis. We also aimed to analyze whether a decrease in C-reactive protein (CRP) would result in a reduction in REE. DESIGN: This study enrolled 132 patients with CKD who were not undergoing dialysis, who had creatinine clearance from 5 to 65 mL.min(-1).1.73 m(-2), and who were 53.6 +/- 16 y old; 82 (62.1%) were men. Twenty-nine patients had clinical signs of infection. REE was measured by using indirect calorimetry, and inflammation was evaluated by using high-sensitivity CRP measurement. Patients were divided according to tertiles of CRP with the following intertertile ranges: first tertile, CRP < or = 0.14 mg/dL (n = 43); second tertile, CRP 0.15-0.59 mg/dL (n = 46); and third tertile, CRP > or = 0.60 mg/dL (n = 43). REE was measured before and after treatment in 10 patients who had inflammation or infection. RESULTS: After adjustment for age, sex, and lean body mass, the REE of the third (1395 kcal/d; P = 0.02) and second (1355 kcal/d; P = 0.04) tertiles was significantly higher than that of the first tertile (1286 kcal/d). In the multiple linear regression analysis (n = 132), the independent determinants of REE were lean body mass, CRP, and age (R2 = 0.55). After treatment of infection in a subgroup of 10 patients, it was observed that a significant reduction in CRP concentration was accompanied by a significant reduction of 174 +/- 165 kcal that accounted for 13% of the initial REE. CONCLUSION: This study showed that inflammation is associated with increased REE in patients with CKD.  相似文献   

20.
BACKGROUND: Children have a high resting energy expenditure (REE) relative to their body weight. The decline in REE during growth may be due to changes in body composition or to changes in the metabolic rate of individual organs and tissues. OBJECTIVES: The goals were to quantify body-composition components in children at the organ-tissue level in vivo and to determine whether the observed masses 1) account for the elevated REE in children and 2) account, when combined with specific organ-tissue metabolic constants, for children's REE. DESIGN: This was a cross-sectional evaluation of 15 children (aged 9.3 +/- 1.7 y) and 13 young adults (aged 26.0 +/- 1.8 y) with body mass indexes (in kg/m(2)) < 30. Magnetic resonance imaging-derived in vivo measures of brain, liver, kidney, heart, skeletal muscle, and adipose tissue were acquired. REE was measured by indirect calorimetry (REE(m)). Previously published organ-tissue metabolic rate constants were used to calculate whole-body REE (REE(c)). RESULTS: The proportion of adipose-tissue-free mass as liver (3.7 +/- 0.5% compared with 3.1 +/- 0.5%; P < 0.01) and brain (6.2 +/- 1.2% compared with 3.3 +/- 0.9%; P < 0.001) was significantly greater in children than in young adults. The addition of brain and liver mass significantly improved the model but did not eliminate the role of age. REE(c) with published metabolic coefficients underestimated REE(m) (REE(c) = 3869 +/- 615 kJ/d; REE(m) = 5119 +/- 769 kJ/d; P < 0.001) in children. CONCLUSION: The decline in REE during growth is likely due to both a decrease in the proportion of some of the more metabolically active organs and tissues and changes in the metabolic rate of individual organs and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号