首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background Eosinophilic infiltration into the airways is frequently associated with allergic asthma; however, the role of antigen deposition in mediating this phenomenon has not been studied in detail.
Objective Using a murine model of ovalbumin (OVA) allergy, we examined how differential deposition of OVA during antigen challenge affects pulmonary eosinophilia, immune response and airway hyper-reactivity (AHR).
Methods Differential allergen deposition to the upper respiratory tract (URT) alone or combined upper and lower respiratory tract (ULRT) was accomplished by administering OVA intranasally to either anaesthetized or unanaesthetized mice, respectively. BALB/c mice (6–7 weeks old) were sensitized with OVA–alum via the intraperitoneal route, and then challenged intranasally using OVA, with or without anaesthesia. AHR, enumeration of inflammatory cells and quantitative measurement of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF), lung histopathology and immune responses were subsequently assessed.
Results In sensitized animals challenged via the ULRT route, a profound eosinophilia and goblet cell hyperplasia was observed in lung tissue. Conversely, sensitized mice receiving an identical challenge dose via the URT route alone exhibited only negligible levels of inflammation. Interestingly, AHR and OVA-specific IgG1 and IgE systemic responses were comparable between the two groups.
Conclusion This study indicates that direct exposure of allergen in the deep lung is highly correlated with airway eosinophilia and lung inflammation, but does not correlate with AHR or immune response.  相似文献   

2.
Mac-1 (CD11b/CD18) is an important adhesion molecule involved in the migration of leukocytes, cell signaling, and subsequent secretory responses. Its precise role in eosinophil recruitment and activation in vivo is not entirely clear. We wished to directly examine the role of Mac-1 in eosinophil migration in a murine model of allergic pulmonary inflammation. Briefly, wild-type (C57Bl/6) and Mac-1-deficient/knockout (Mac-1 KO) mice were intraperitoneally sensitized with ovalbumin (OVA) and alum (AlOH) on Days 0 and 14, and intranasally challenged with OVA either once on Day 14 or five times on Days 14 and 25 through 28. Control animals were challenged with saline. Bronchial hyperresponsiveness was measured, bronchoalveolar lavage (BAL) fluid was collected, and lungs were harvested for histology 24 h after the last challenge. The data demonstrate that wild-type (WT) mice do not respond to one OVA challenge but do develop bronchial hyperreactivity and airway and tissue eosinophilia after five OVA challenges. Conversely, Mac-1 KO mice develop significant airway eosinophilia after one OVA challenge, and the degree of airway inflammation is comparable to that observed in allergic WT mice after five challenges. In Mac-1 KO mice, after five challenges, bronchial hyperreactivity and airway inflammation was significantly enhanced compared with their wild-type counterparts. Administration of an anti-Mac-1 antibody to WT mice, before each of five intranasal OVA challenges, significantly reduces the airway eosinophilia but has no effect on tissue eosinophilia or bronchial hyperresponsiveness. Intravenous injection of interleukin-5 induced a significant blood eosinophilia in both WT and Mac-1 KO mice. Intranasal eotaxin administration induced similar levels of eosinophil migration into the lung tissues and airways of both WT and Mac-1 KO mice. In conclusion, Mac-1-deficient mice develop enhanced eosinophilic inflammation in the lung in response to allergic antigen challenge.  相似文献   

3.
Sensitized mice acutely challenged with inhaled ovalbumin (OVA) develop allergic airway inflammation, characterized by OVA-specific IgE production, airway eosinophilia, increased pulmonary B and T lymphocytes, and airway hyperreactivity. In this study, a chronic exposure model was developed and two distinct patterns of response were observed. Discontinuous inhalational exposure to OVA (6 weeks) produced airway inflammation and hyperreactivity that were similar to acute (10 days) responses. Continuous inhalational exposure to OVA (6 or 11 weeks) resulted in attenuation of airway eosinophilia and hyperresponsiveness without reduction of OVA-specific IgE and IgG(1) levels. The inhibition of airway inflammation was dependent on continuous exposure to antigen, because continuously exposed mice with attenuated inflammatory responses redeveloped allergic airway disease if the OVA aerosols were interrupted and then restarted (11-week-discontinuous). Inhalational tolerance induced by continuous OVA exposure demonstrated bystander suppression of cockroach allergen-mediated airway eosinophilia. These findings may be attributed to changes in production of the anti-inflammatory cytokine interleukin-10 during continuous OVA aerosol exposure. The symptomatic and asymptomatic allergic responses in human asthmatics could be explained by similar variable or discontinuous exposures to aeroantigens.  相似文献   

4.
BACKGROUND: Th2 lymphocyte responses are associated with inflammation and disease during allergic responses. Exposure to particular environmental factors during the expression of allergy could result in more pronounced Th2-like immune responses and more severe disease. One factor might be a respiratory virus infection. OBJECTIVE: The aim of our study was to investigate the influence of respiratory syncytial virus (RSV) infection on the expression of ovalbumin (OVA)-induced allergy in BALB/c mice. METHODS: We determined OVA-specific IgE in serum, cytokine profiles and histopathological lesions in lungs of OVA-allergic mice after RSV infection. RESULTS: OVA sensitization and challenge induced OVA-specific IgE in serum, Th2 cytokine mRNA expression, and mononuclear and eosinophilic inflammation in the lungs. RSV inoculation during the challenge period enhanced OVA-induced IL-4 and IL-5 mRNA expression in lung tissue. RSV further enhanced the OVA-induced hypertrophy of mucous cells and eosinophilic infiltration in lung tissue. Surprisingly, RSV infection decreased Th2 cytokine secretion and eosinophilic influx in bronchoalveolar lavage of OVA-allergic mice. Because inactivated RSV did not influence these responses, replication of RSV appeared essential for the modification of OVA-induced Th2 cytokine expression. RSV did not change OVA-specific IgE levels in serum. Furthermore, the RSV-induced IL-12 mRNA expression in lung tissue of OVA-allergic mice was diminished, but IFN-gamma mRNA expression was not affected. CONCLUSION: RSV infection enhanced particular OVA-induced Th2 cytokine mRNA responses and pulmonary lesions in allergic mice and thus aggravated allergic respiratory disease.  相似文献   

5.
BACKGROUND: Epidemiological studies suggest that ozone exposure is related to increased asthma symptoms. Dendritic cells (DCs) are the principal antigen-presenting cells in the airways. OBJECTIVE: We have examined whether ambient doses of ozone (100 ppb for 2 h) enhance allergic sensitization and/or airway inflammation in a mouse model. METHODS: C57BL/6 mice were sensitized to inhaled ovalbumin (OVA) by intratracheal instillation of OVA-pulsed DCs on day 0. Daily exposure to OVA aerosol on days 14-20 resulted in an eosinophilic airway inflammation, as reflected in bronchoalveolar lavage fluid and lung histology. In a first experiment, mice were exposed to ozone or room air immediately prior to and following sensitization. Subsequently, we tested the effect of ozone exposure during antigen challenge in DC-sensitized mice. RESULTS: Exposure to ozone during sensitization did not influence airway inflammation after subsequent allergen challenge. In contrast, in sensitized mice, challenge with OVA together with ozone (days 14-20) resulted in enhanced airway eosinophilia and lymphocytosis, as compared with mice exposed to OVA and room air (1.91 x 106 +/- 0.46 x 106 vs. 0.16 x 106 +/- 0.06 x 106 eosinophils/mL lavage fluid; P = 0.015; 0.49 x 106 +/- 0.11 x 106 vs. 0.08 x 106 +/- 0.03 x 106 lymphocytes/mL lavage fluid; P = 0.004). Ozone exposure without subsequent OVA exposure did not cause airway inflammation. CONCLUSION: Ozone exposure does not increase allergic sensitization but enhances antigen-induced airway inflammation in mice that are sensitized via the airways.  相似文献   

6.
BACKGROUND: Histamine elicits many features of immediate hypersensitivity reactions. Recent evidence indicates that H1 receptors modulate immune responses to antigens. Desloratadine (DL), a new, long-acting, H1 receptor antagonist, has both a potent antihistaminic function and anti-inflammatory properties. OBJECTIVE: We sought to evaluate the effect of DL on allergic-airway responses in mice after inhalation of the naturally occurring aeroallergen Aspergillus fumigatus (Af ) and to examine the effects of DL on specific immune responses to a defined protein antigen with the use of an ovalbumin (OVA) model of asthma. METHODS: Mice were subjected either to repeated, intranasal application of Af extract or to intraperitoneal immunization with OVA, followed by inhalation challenge. DL or a control fluid was given daily throughout the sensitization process. Immunoglobulin E (IgE) levels, bronchoalveolar lavage-fluid cytokines and cytology, lung histology, and physiologic responses to methacholine were assessed in the allergen-treated mice. Anti-OVA IgE responses and OVA-driven T-cell cytokine production were examined. RESULTS: Treatment with DL did not impair IgE production but did inhibit bronchial inflammation and bronchial hyperresponsiveness in both Af- and OVA-treated mice. This inhibition required that DL be administered concurrently with allergen sensitization, indicating that the attenuation of bronchial hyperresponsiveness and inflammation was not caused by anticholinergic receptor effects. OVA-responsive T cells from DL-treated mice exhibited depressed production of IL-4, IL-5, and IL-13 and normal amounts of interferon-gamma. The amounts of IL-5 and IL-13 were also diminished in the bronchoalveolar lavage fluid. CONCLUSION: DL, given at the time of exposure to the allergen, inhibits T(H)2 responses, the induction of allergic pulmonary inflammation, and bronchial hyperresponsiveness. These results suggest that DL or similar agents given during times of antigen exposure might alter disease progression in patients with respiratory allergy.  相似文献   

7.
BACKGROUND: Histamine plays an important role in immediate and late immune responses. The histamine type 1 (H1) receptor is expressed on several immune cell populations, but its role in a murine model of asthma remains unclear. The present study evaluated the role of histamine H1 receptors in airway allergic inflammation by comparing the development of bronchial asthma in histamine H1 receptor gene knockout (H1RKO) and wild-type mice. METHODS: H1RKO and wild-type mice were sensitized by intraperitoneal injection of ovalbumin (OVA) or saline, and then challenged with aerosolized OVA or saline. Ventilatory timing in response to inhaled methacholine was measured, and samples of blood, bronchoalveolar lavage, and lung tissues were taken 24 h after the last OVA challenge. RESULTS: OVA-treatedwild-type mice showed significantly increased airway eosinophilic infiltration, and airway response to methacholine compared to OVA-treated H1RKO mice. The serum level of immunoglobulin E and levels of interleukin (IL)-4, IL-5, IL-13, and TGF-beta1 in bronchoalveolar lavage fluid were lower in OVA-treated H1RKO mice than in OVA-treated wild-type mice, but there was no significant difference in interferon-gamma expression. Overall, deletion of histamine H1 receptors reduced allergic responses in a murine model of bronchial asthma. CONCLUSION: Histamine plays an important role via H1 receptors in the development of T helper type 2 responses to enhance airway inflammation.  相似文献   

8.
9.
BACKGROUND: It is well known that the immunoregulatory cytokine interleukin (IL)-10 inhibits the accessory function of human dendritic cells (DC) in vitro. Recently, we have shown that these IL-10 DC inhibit the production of T helper cell 1 (Th1) and T helper cell 2 (Th2) cytokines by T cells from atopic individuals in vitro. The current study was set out to analyze whether IL-10 DC also exert inhibitory effects in vivo in a murine model of allergy to ovalbumin adsorbed to the adjuvant aluminium hydroxide (OVA/alum). METHODS: OVA-pulsed or unpulsed bone marrow-derived DC, treated with IL-10 or left untreated during generation, were injected intravenously into BALB/c mice prior to and during OVA/alum sensitization, and sera and immune responses of mesenterial lymph node cells were analyzed. Additionally, bronchoalveolar lavage was performed after intranasal challenge with OVA. RESULTS: Treatment of BALB/c mice with OVA-pulsed DC led to a significantly enhanced proliferation as well as Th2 (IL-4, IL-5), Th1 (interferon-gamma) and IL-10 cytokine production after restimulation of lymph node cells with OVA in vitro compared with OVA immunization alone. In contrast, using OVA-pulsed IL-10 DC for transfer, proliferation and cytokine production by lymph node cells were not enhanced. OVA-specific immunoglobulin G1 (IgG1) and IgG2a production were significantly increased after transfer of OVA-pulsed DC and OVA-pulsed IL-10 DC, respectively, whereas anti-OVA IgE production and airway eosinophilia remained unchanged. CONCLUSIONS: Our data indicate that IL-10 treatment of DC decreases the Th1 and Th2 stimulatory capacity of DC but does not actually inhibit systemic (IgE) and local (airway inflammation) allergen-specific immune responses in a murine model of allergy.  相似文献   

10.
BACKGROUND: Sex hormones might affect the severity and evolution of bronchial asthma. From existing literature, there exists, however, no convincing evidence for either exacerbation or improvement of allergic symptoms by progesterone. OBJECTIVE: This study was aimed to explore the effect of exogenously administered progesterone in a mouse model of allergic asthma. METHODS: BALB/c mice were sensitized to ovalbumin (OVA) by intraperitoneal injections with OVA followed by chronic inhalation of nebulized OVA or physiologic saline (Sal). Medroxyprogesterone acetate or placebo was instilled daily into the oesophagus before and during the inhalatory OVA challenge phase. RESULTS: Progesterone worsened allergic airway inflammation in OVA-challenged mice, as evidenced by enhanced bronchial responsiveness to inhaled metacholine and increased bronchial eosinophilia. Elevated airway eosinophilia corresponded with higher bronchial and systemic IL-5 levels in the progesterone group. The ratio of IL-4/IFN-gamma levels in bronchoalveolar lavage fluid and numbers of eosinophil colony-forming units in the bone marrow were also elevated in the latter group. Progesterone, however, did not influence allergen-specific IgE production, nor did it affect bronchial responses in Sal-challenged mice. CONCLUSION: Our data show that exogenously administered progesterone aggravates the phenotype of eosinophilic airway inflammation in mice by enhancing systemic IL-5 production. Progesterone also increases bronchial hyper-reactivity.  相似文献   

11.
Phosphoinositide 3-kinases (PI3K) regulate immune activation via their roles in signal transduction of multiple classes of receptors. Here, we examined the effect of genetic inactivation of the hemopoietic cell-restricted PI3K isoform p110delta on systemic cytokine and chemokine responses and allergic airway inflammation. We found that type 2 cytokine responses (IL-4, IL-5 and IL-13) are significantly decreased in p110delta mutants, whereas type 1 cytokine responses (IFN-gamma and CXCL10) were robust. Elevated IFN-gamma production during the primary response to ovalbumin (OVA) was associated with reduced production of the regulatory cytokine IL-10. IFN-gamma and IL-10 production normalized after secondary OVA immunization; however, type 2 cytokine production was persistently reduced. Type 2 cytokine-dependent airway inflammation elicited by intranasal challenge with OVA was dramatically reduced, with reduced levels of eosinophil recruitment and mucus production observed in the lungs. Induction of respiratory hyper-responsiveness to inhaled methacholine, a hallmark of asthma, was markedly attenuated in p110delta-inactivated mice. Adoptive transfer of OVA-primed splenocytes from normal but not p110delta-inactivated mice could induce airway eosinophilia in naive, airway-challenged recipient mice. These data demonstrate a novel functional role for p110delta signaling in induction of type 2 responses in vivo and may offer a new therapeutic target for Th2-mediated airway disease.  相似文献   

12.
BACKGROUND: Immunostimulatory DNA sequences (ISS) inhibit eosinophilic inflammation and airway hyperreactivity in mouse models of asthma. In vitro ISS activate natural killer (NK) cells to secrete IFN-gamma, and this cytokine is hypothesized to contribute to the antiallergic effect of ISS in vivo. OBJECTIVE: We investigated whether ISS activation of NK cells is important in mediating the reduction in airway hyperreactivity and the antieosinophilic effect of ISS in vivo. METHODS: We assessed whether ISS modulated the development of eosinophilic airway inflammation and airway hyperreactivity to methacholine in ovalbumin (OVA)-sensitized and OVA allergen-challenged mice pretreated with an antibody to deplete NK cells. RESULTS: Mice sensitized and challenged with OVA had significant bronchoalveolar lavage and lung eosinophilia, as well as airway hyperresponsiveness. ISS induced significant inhibition of bronchoalveolar lavage and lung eosinophilia, as well as airway hyperresponsiveness, in OVA-sensitized mice pretreated before OVA challenge with an NK cell-depleting antibody (NK(-) mice), as well as in mice pretreated with a control non-NK cell-depleting antibody (NK(+) mice). The NK cell-depleting antibody inhibited ISS-induced IFN-gamma production by spleen cells. CONCLUSION: These studies demonstrate that depletion of NK cells has no significant effect on ISS-mediated inhibition of airway eosinophilia and airway hyperresponsiveness in vivo, suggesting that non-NK cells and cytokines other than IFN-gamma derived from NK cells mediate the majority of the ISS-inhibitory effect on eosinophilic inflammation and airway hyperresponsiveness in vivo.  相似文献   

13.
BACKGROUND: The pathophysiology of infantile asthma may differ from that in older children or in adults, partly because of the different immune response depending upon maturation. In adult mice, the sensitizing dose of antigen is known to be critical to the polarized development of helper T cell subsets and allergic airway inflammation. We wanted to know the characteristics of allergic airway inflammation of infantile asthma by developing a murine model. METHODS: BALB/C mice at different stages of maturation (juvenile: 3 days after birth; adult: 8 weeks of age) were sensitized with 10 or 1,000 microg ovalbumin (OVA) or vehicle. The animals were then challenged with aerosolized OVA or saline once a day during 6 consecutive days. After the final challenge, bronchial hyperresponsiveness (BHR), bronchoalveolar lavage fluid (BALF), histological changes in the airways and immunological status were examined. RESULTS: In both juvenile and adult animals, sensitization with 10 microg OVA induced the T helper 2 response (elevated IL-4 and decreased IFN-gamma levels). BHR, airway eosinophilia, the inflammatory cell infiltration, goblet cell metaplasia (GCM), and IgE antibody production were more prominent in animals given this dose than 1,000 microg OVA. Among these responses, GCM as well as BALF IL-4, and BHR were comparable between juvenile and adult animals, whereas other parameters were lower in juvenile animals, especially in those given 1,000 microg OVA. CONCLUSION: GCM and, consequently, airway mucus hypersecretion may be an important component of allergic airway inflammation in infantile asthma.  相似文献   

14.
15.
BACKGROUND: Antihistamines have been evaluated for usefulness in the treatment of asthma for more than 50 years. Interest was limited until the introduction of newer compounds that were free of much of the dose-limiting sedation associated with the earlier drugs. OBJECTIVE: In a murine model of allergen-induced airway inflammation and hyperresponsiveness, the efficacy of an H1 receptor antagonist to prevent allergic inflammation and altered airway function was evaluated. METHODS: Mice were sensitized and challenged to an allergen, ovalbumin, which elicited marked airway and tissue eosino-philia and airway hyperresponsiveness. Fexofenadine was administered before challenge, and airway responsiveness to inhaled methacholine, airway and tissue eosinophilia, bronchoalveolar lavage fluid cytokine levels, and serum IgE levels were assayed. In a second group of experiments, sensitized and challenged mice were treated or not treated with fexofenadine before challenge. T cells were isolated from the lungs and adoptively transferred into naive recipients before exposure to limited airway allergen challenge, and lung function and inflammation were evaluated. RESULTS: Fexofenadine treatment of sensitized mice prevented the development of airway hyperresponsiveness in both the primary sensitization and challenge, as well as in the adoptive transfer experiments. These changes were accompanied by decreases in bronchoalveolar lavage and tissue eosinophilia, lymphocyte numbers, and T(H)2 cytokine production. CONCLUSION: The results demonstrate the efficacy of an H1 receptor antagonist in preventing allergen-induced alterations in pulmonary inflammation and airway function. The data support the evaluation of drugs such as fexofenadine in the treatment of allergic asthma.  相似文献   

16.
BACKGROUND: Invariant T-cell receptor-positive natural killer (iNKT) cells have been shown to be essential for the development of allergen-induced airway hyperreactivity (AHR). OBJECTIVE: We examined the role of iNKT cells in allergic skin inflammation using a murine model of atopic dermatitis (AD) elicited by epicutaneous sensitization with ovalbumin (OVA). METHODS: Wild-type (WT) and natural killer T-cell-deficient CD1d-/- mice were epicutaneously sensitized with OVA or normal saline and challenged with aerosolized OVA. iNKT cells in skin and bronchoalveolar lavage fluid were analyzed by fluorescence-activated cell sorting, and cytokine mRNA levels were measured by quantitative RT-PCR. AHR to methacholine was measured after OVA inhalation. RESULTS: Skin infiltration by eosinophils and CD4+ cells and expression of mRNA encoding IL-4 and IL-13 in OVA-sensitized skin were similar in WT and CD1d-/- mice. No significant increase in iNKT cells was detectable in epicutaneously sensitized skin. In contrast, iNKT cells were found in the bronchoalveolar lavage fluid from OVA-challenged epicutaneously sensitized WT mice, but not CD1d-/- mice. Epicutaneously sensitized CD1d-/- mice had an impaired expression of IL-4, IL-5, and IL-13 mRNA in the lung and failed to develop AHR in response to airway challenge with OVA. CONCLUSION: These results demonstrate that iNKT cells are not required for allergic skin inflammation in a murine model of AD, in contrast with airway inflammation, in which iNKT cells are essential. CLINICAL IMPLICATIONS: Understanding the potential role of iNKT cells in AD will allow us to have a more specific target for therapeutic use.  相似文献   

17.
The objective of this study was to investigate the effect of airway gene transfer of interleukin (IL)-10, a cytokine with potent anti-inflammatory and immunoregulatory activities, on allergic mucosal sensitization. We used a recently described murine model that involves repeated exposures to aerosolized ovalbumin (OVA), daily for 10 d, in the context of granulocyte macrophage colony-stimulating factor (GM-CSF) expression in the airway environment achieved by intranasal delivery of a replication-deficient adenovirus carrying the GM-CSF transgene. The resulting inflammatory response was characterized by a T-helper 2 cytokine profile and marked airway eosinophilia. After complete resolution of the inflammatory response (Day 28), a single exposure to OVA reconstituted airway eosinophilia and induced airway hyperresponsiveness. We show that concurrent expression of IL-10 inhibited GM-CSF-driven OVA-specific inflammation in a dose-dependent manner. Specifically, IL-10 decreased the number of mononuclear cells, neutrophils, and eosinophils in the bronchoalveolar lavage fluid (BALF). Histologic evaluation of the tissue corroborated the findings in the BALF. Concurrent expression of IL-10 at the time of mucosal sensitization abrogated both the cellular and physiologic recall responses in vivo. Studies in interferon (IFN)-gamma knockout mice demonstrated that prevention of airway eosinophilia by IL-10 was IFN-gamma-independent and that expression of IL-10 was associated with decreased levels of IL-4, IL-5, and tumor necrosis factor-alpha in the BALF. Flow cytometric analysis of dispersed lung cells showed that expression of IL-10 in the airway reduced the absolute number of Class II major histocompatibility complex (MHC)(+)/CD11c(+) (dendritic cells) and Class II MHC(+)/Mac-1(bright) (macrophages) cells expressing the costimulatory molecules B7.1 and B7.2 by 30%. However, IL-10 coexpression did not prevent expansion of CD4 and CD8 T cells or expression of the early activation marker CD69 on T cells. Thus, airway gene transfer of IL-10 altered the immune response to OVA in a way that resulted in inhibition of airway inflammation. These findings suggest that development of an immunoregulatory strategy based on IL-10, alone or in combination with GM-CSF, warrants further consideration.  相似文献   

18.
BACKGROUND: Several studies have demonstrated that mucosal administration of soluble antigens can prevent the onset or reduce the severity of certain autoimmune diseases or allergies. Few studies exist showing the efficacy of mucosal tolerance for therapy of such diseases. OBJECTIVE: The aim of the present study was to modulate an allergic immune response by intranasal antigen administration in an already sensitized organism. METHODS: A murine model of allergic asthma to birch pollen (BP) and its major allergen Bet v 1 was utilized. Sensitized mice were intranasally treated with recombinant (r)Bet v 1 in different concentrations and at different intervals. On the day the mice were killed, blood and bronchoalveolar lavage fluids were taken and immediate type I skin tests were performed. T cell proliferation and cytokine production (interleukin (IL)-5, interferon (IFN)-gamma) were measured in spleen and lung cell cultures. RESULTS: Mucosal treatment with rBet v 1 (3 x 50 microg in 4 day intervals) led to a reduction of type I skin reactions, suppressed immunoglobulin (Ig)G1/IgE antibody levels and markedly decreased IL-5 and IFN-gamma production in vitro in spleen and lung cell cultures. Moreover, lung inflammation (i.e. eosinophilia and IL-5 levels in bronchoalveolar lavage fluids) was significantly suppressed by the treatment. CONCLUSION: Our results demonstrate that intranasal treatment with rBet v 1 reduced systemic allergic immune responses as well as airway inflammation in BP-sensitized mice. We therefore suggest that mucosal tolerance induction with recombinant allergens could be a promising concept for the therapy of allergic diseases.  相似文献   

19.
When wild-type BALB/c mice were transferred with OVA-specific Th2 cells followed by OVA inhalation, a severe eosinophilia, mucus hypersecretion and airway hyper-responsiveness (AHR) was induced in parallel with a marked elevation of IL-4, IL-5 and IL-13 levels in bronchoalveolar lavage fluid (BALF). However, neither eosinophilia, AHR nor mucus hypersecretion was induced in Th2 cell-transferred STAT6-/- mice. The failure of eosinophilia was not due to the defect of Th2 cytokine production in BALF of STAT6-/- mice transferred with Th2 cells, but because of the defect of STAT6-dependent eotaxin production. Indeed, intranasal administration of eotaxin reconstituted pulmonary eosinophilia but not AHR and mucus hypersecretion in OVA-inhalated STAT6-/- mice. These results initially provided direct evidence that STAT6-dependent eotaxin production is essential for pulmonary eosinophilia. We also dissociated the role of STAT6 for eosinophilia from that for AHR and mucus hypersecretion. Thus, STAT6 also plays a critical role at late phase of Th2-dependent allergy induction.  相似文献   

20.
BACKGROUND: Natural rubber latex (NRL) has emerged as a major cause of respiratory allergy among specific exposed groups of individuals. Since latex allergens are dispersed in the environment it is conceivable that latex proteins are both inhaled and ingested. The mechanism of latex allergy and the immune responses following reexposure of latex allergens by the intranasal route was studied in a murine model of latex allergy developed by intragastric sensitization with NRL. METHODS: BALB/c mice were sensitized intragastrically ('ig'), intranasally ('in') or 'ig' followed by 'in' challenge with NRL allergens. The cellular and humoral immune responses, lung function and histological changes were determined. RESULTS: Peripheral blood eosinophilia was observed in the 'ig' and 'ig/in'-NRL-sensitized animals in comparison to normal controls (p < 0.05). The 'ig' group showed a marked increase over control mice in serum total IgE, NRL-specific IgG and IgG subclasses (p < 0.05). Increased levels of IL-4, IL-5, IL-10, and IL-13 were detected in 'ig'-NRL-sensitized mice. Intranasal exposure with NRL after 'ig' sensitization further enhanced the cytokine levels. A tendency towards enhanced stimulation was determined in 'ig'-sensitized mice; a significant difference was shown in the 'ig/in'-group (p < 0.05). Increased airway hyperreactivity was found in 'ig'-NRL-sensitized-mice (15.1 +/- 2.5 vs. 8.9 +/- 1.7 cm H2O x ml(-1) x s, p < 0.05). Mucus secretion from jejunal epithelium and eosinophilic infiltration into the jejunal lamina propria were observed in the 'ig'-NRL-sensitized-mice. CONCLUSIONS: The results demonstrate that intragastric NRL sensitization did not induce specific tolerance, and additional intranasal exposure with latex allergens resulted in systemic allergic manifestations in the murine model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号