首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of a MeOH extract from the aerial parts of Hylomecon vernalis Maxim. (Papaveraceae) using column chromatography furnished a new acetylated flavonol glycoside (1), together with twenty known phenolic compounds (2–21). Structural elucidation of 1 was based on 1D- and 2D-NMR spectroscopy data analysis to be quercetin 3-O-[4‴-O-acetyl-α-L-arabinopyranosyl]-(1‴→6″)-β-D-galactopyranoside (1). The structures of compounds 2–21 were elucidated by spectroscopy and confirmed by comparison with reported data; quercetin 3-O-[2‴-O-acetyl-α-L-arabinopyranosyl]-(1‴→6″)-β -D-galactopyranoside (2), quercetin 3-O-α-L-arabinopyranosyl-(1‴→6″)-β-D-galactopyranoside (3), quercetin 3-O-β -D-galactopyranoside (4), kaempferol 3,7-O-α-L-dirhamnopyranoside (5), diosmetin 7-O-β -D-glucopyranoside (6), diosmetin 7-O-β -D-xylopyranosyl-(1‴→6″)-β-D-glucopyranoside (7), p-hydroxybenzoic acid (8), protocatechuic acid (9), caffeic acid (10), 6-hydroxy-3,4-dihydro-1-oxo-β -carboline (11), (Z)-3-hexenyl-β -D-glucopyranoside (12), (E)-2-hexenyl-β -D-glucopyranoside (13), (Z)-3-hexenyl-α-Larabinopyranosyl-(1″→6′)-β-D-glucopyranoside (14), oct-1-en-3-yl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (15), benzyl-β-D-apiofuranosyl-(1″→6′)-β-D-glucopyranoside (16), benzyl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (17), benzyl-β-D-xylopyranosyl-(1″→6′)-β-Dglucopyranoside (18), 2-phenylethyl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (19), 2-phenylethyl-β-D-apiofuranosyl-(1″→6′)-β-D-glucopyranoside (20), and aryl-β-D-glucopyranoside (21). Compounds 2-21 were isolated for the first time from this plant. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamin B bioassay.  相似文献   

2.
A series of bioactive 3H,7H,8H,11H-9-[(5″-(6′-methyl-2-oxo-2H-[1]-4′-benzopyranoxy)-2″,4″-dihydro-[1″,2″,4″]-triazol-3″-one)methyl]-3,8,11-trioxo-dipyrano[2,3-f;2,3-c]quinoline (4) and 3H,7H,8H,11H-9-[(2′-(3″-phenyl-thiazolidin-4″-one)-phenoxymethyl]-3,8,11-trioxo-dipyrano[2,3-f;2,3-c]quinoline (7) analogs of 3H,7H,8H,11H-9-bromomethyl-3,8,11-trioxo-dipyrano[2,3-f;2,3-c]quinoline (1) have been synthesized and evaluated for their antibacterial activity against Gram-positive bacteria (S. aureus) and Gram-negative bacteria (S. typhi and E. coli). Pyranoquinolines with triazole and thiazolidine moieties exhibited promising antibacterial activity. The structures of all synthesised compounds were confirmed on the basis of analytical and spectral data.  相似文献   

3.
A new lignan glycoside, 5-(3″,4″-dimethoxy-phenyl)-3-hydroxy-3-(4′-hydroxy-3′-methoxybenzyl)-4-hydroxymethyl-dihydrofuran-2-one 4′-O-α-l-rhamnopyranoside (1), with seven known compounds, compound 2, koaburside, icariside E4, cleomiscosin C, cleomiscosin D, scopoletin, and 5′-demethylaquillochin, were isolated from the EtOH extract of the wood of Acer saccharum (Aceraceae). Their structures were determined by 1D and 2D nuclear magnetic resonance (NMR) and mass spectroscopy analysis. All of the isolated compounds, 18, were tested for their antioxidant activity in superoxide dismutase (SOD)-like assay.  相似文献   

4.
Two new dihydrofuranoisoflavanones, 2′,4′,5-trihydroxy-[5″-(1,2-dihydroxy-1-methylethyl)-dihydrofurano(2″,3″:7,8)]-(3S)-isoflavanone (1) and 2′, 4′, 5-trihydroxy-[5″-(1,2-dihydroxy-1-methylethyl)-dihydrofurano(2″,3″:7,8)]-(3R)-isoflavanone (2) as well as one already-known compound, (+)-catechin (3), were isolated from an n-BuOH soluble fraction from the leaves of Lespedeza maximowiczi. Spectroscopic data was used to elucidate the structures of compounds 1 and 2. All of the isolates were evaluated in vitro for their inhibitory activity on the formation of advanced glycation end products (AGEs). Among these, compounds 1, 2, and 3 exhibited inhibitory activity against AGEs formation with IC50 values of 20.6, 18.4, and 5.6 μM, respectively.  相似文献   

5.
The purification of a MeOH extract from the rhizome of Acorus gramineus (Araceae) using column chromatography furnished two new stereoisomers of phenylpropanoid, acoraminol A (1) and acoraimol B (2). It also furnished 17 known phenolic compounds, β-asarone (3), asaraldehyde (4), isoacoramone (5), propioveratrone (6), (1′R,2′S)-1′,2′-dihydroxyasarone (7), (1′S,2′S)-1′,2′-dihydroxyasarone (8), 3′,4′-dimethoxycinnamyl alcohol (9), 3′,4′,5′-trimethoxycinnamyl alcohol (10), kaempferol 3-methyl ether (11), 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (12), hydroxytyrosol (13), tyrosol (14), (2S,5S)-diveratryl-(3R,4S)-dimethyltetrahydrofuran (15), (7S,8R)-dihydrodehydrodiconiferyl alcohol (16), 7S,8S-threo-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan (17), 7S,8R-erythro-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan (18), and dihydroyashsbushiketol (19). The structures of the new compounds were elucidated by analysis of spectroscopic data including 1D and 2D NMR data. The absolute configurations of 1 and 2 were determined using the convenient Mosher ester procedure. Compounds 5–19 were isolated for the first time from this plant source. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamine B (SRB) bioassay.  相似文献   

6.
Two new isoflavone glycosides, tectorigenin 7-O-β-d-glucopyranoside-4′-O-[β-d-glucopyranosyl-(1″″ → 6′′′)-β-d-glucopyranoside] (1) and iristectorigenin B 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (2), together with 11 known compounds, including six isoflavones, tectorigenin 7-O-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3), tectorigenin 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (4), tectorigenin 7-O-β-d-glucopyranoside (5), genistein 7-O-β-d-glucopyranoside (6), tectorigenin 4′-O-β-d-glucopyranoside (7), and tectorigenin (8); two phenolic acid glycosides, vanillic acid 4-O-β-d-glucopyranoside (9) and glucosyringic acid (10); a phenylpropanoid glycoside, E-coniferin (11); an auronol derivative, maesopsin 6-O-β-d-glucopyranoside (12); and a pyrrole derivative, 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (13), were isolated from fresh Iris spuria (Calizona) rhizomes. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. Inhibitory effects on the activation of Epstein–Barr virus early antigen were examined for compounds 18 and 12.  相似文献   

7.
Six chalcone compounds, 2′,4′,4-trihydroxy-3′-[2-hydroxy-7-methyl-3-methylene-6-octaenyl]chalcone (1), 2′,4′,4-trihydroxy-3′-geranylchalcone (2), 2′,4′,4-trihydroxy-3′-[6-hydroxy-3,7-dimethyl-2,7-octadienyl]chalcone (3), 2′,4-dihydroxy-4′-methoxy-3′-[2-hydroperoxy-3-methyl-3-butenyl]chalcone (4), 2′,4-dihydroxy-4′-methoxy-3′-geranylchalcone (5), and 2′,4-dihydroxy-4′-methoxy-3′-[3-methyl-3-butenyl]chalcone (6) were isolated from the leaves of Angelica keiskei K (Umbelliferae). The structure of each isolated compound was determined using spectroscopic methods. Among the isolates, compounds 13 appeared to have potent inhibitory activity of IL-6 production in TNF-α-stimulated MG-63 cell, while compounds 46 did not. The distinct structural difference between compounds 13 and 46 was the presence of C-4′ hydroxyl group in the chalcone moiety. Our results imply that the inhibitory activity of IL-6 production in TNF-α-stimulated MG-63 cell may be affected by the presence of C-4′ hydroxyl group in the chalcone moiety.  相似文献   

8.
Thirteen compounds (113) were isolated from a MeOH extract of leaves of Glochidion rubrum. The structures of four new compounds were elucidated to be (−)-isolariciresinol 2a-O-β-d-glucopyranoside (1), (7R,8S)- and (7R,8R)-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan 7-O-β-d-glucopyranosides (2 and 3, respectively), and tachioside 2′-O-4″-O-methylgallate (4) on detailed inspection of one- and two-dimensional NMR spectral data.  相似文献   

9.
A new C-alkylated flavonoid (5,7-dihydroxy-3′-(4″-acetoxy-3″-methylbutyl)-3,6,4′-trimethoxyflavone (1), along with two known C-alkylated flavonoids (5,7-dihydroxy-3′-(3-hydroxymethylbutyl)-3,6,4′-trimethoxyflavone (2), 5,7,4′-trihydroxy-3′-(3-hyroxymethylbutyl)-3,6-dimethoxyflavone (3) and two new source C-alkylated flavonoids (5,7-dihydroxy-3′-(2-hydroxy-3-methyl-3-butenyl)-3,6,4′-trimethoxyflavone (4), 5,7,4′-trihydroxy-3,6-dimethoxy-3′-isoprenyl-flavone (5) were isolated from the aerial parts of Dodonaea viscosa. The structures of all compounds were established on the basis of 1D and 2D NMR spectroscopy and mass spectrometry. The isolated compounds were evaluated for their inhibitory effect on urease and α-chymotrypsin enzyme. All the compounds (1–5) exhibited mild inhibition against urease but remained recessive in case of α-chymotrypsin.  相似文献   

10.
Eleven compounds of interest were isolated from the aerial parts of Caryopteris incana, specifically a new acyl derivative (3) of 8-O-acetylharpagide, two new (3R)-oct-1-en-3-ol glycosides (5, 6), and 6-O-caffeoylphlinoside A (11) along with seven known compounds, 8-O-acetylharpagide (1), 6′-O-p-coumaroyl-8-O-acetylharpagide (2), (3R)-oct-1-en-3-ol (matsutake alcohol) O-α-l-arabinopyranosyl-(1″ → 6′)-O-β-d-glucopyranoside (4), apigenin 7-O-neohesperidinoside (7), 6′-O-caffeoylarbutin (8), and two phenylethanoids, leucosceptoside A (9) and phlinoside A (10). This paper deals with structural elucidation of the new compounds.  相似文献   

11.
By various chromatographic methods, one new phenylpropanoid glycoside, heterosmilaside (1), two known phenylpropanoid glycosides, helonioside B (2), and 2′,6′-diacetyl-3,6-diferuloyl sucrose (3), and three known flavonoids, isoquercetin (4), quercetin-3-O-β-D-glucuronopyranoside (5), and quercetin-3-O-(2″-α-L-rhamnopyranosyl)-β-D-glucuronopyranoside (6) were isolated from the methanolic extract of the aerial part of Heterosmilax erythrantha Baill. Their structures were elucidated on the basis of spectroscopic analyses. All the isolated compounds were tested for antioxidant activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Among them, compounds 5 and 6 showed significant antioxidant activity with SC50 values of 3.7 and 6.5 μg/mL, respectively.  相似文献   

12.
Two new stilbene derivatives, (E)-2′,3,3′-trihydroxy-5-methoxystilbene (1, Pholidotol C) and (Z)-3,3′-hydroxy-5-methoxystilbene (2, Pholidotol D), were isolated from the air-dried whole plant of Pholidota chinensis Lindl., together with eight known dihydrophenanthrene derivatives, lusianthridin (3), cannabidihydrophenanthrene (4), coelonin (5), hircinol (6), erianthridin (7), 4,5-dihydroxy-2-methoxy-9,10-dihydrophenanthrene (8), eulophiol (9), and 2,4,7-trihydroxy-9,10-dihydrophenanthrene (10), and a benzoxepin derivative bulbophylol B (11). Their inhibitory effects on nitric oxide (NO) production activity and 1,1-diphenyl-2-picrylhydrazil radical-scavenging activity were examined. Among these compounds, 11 exhibited the most potent activity toward NO production inhibition activity and radical-scavenging activity; moreover, 11 reduced inducible nitric oxide synthase mRNA expression.  相似文献   

13.
Four new glycosides, luteolin-7-methoxy-3′-O-(3″-O-acetyl)-β-D-gluco pyranuronic acid-6″-methyl ester (1), benzyl-6-[(2E)-2-butenoate]-β-D-glucopyranoside (2), 2-methoxy-4-(2-propen-1-yl)penyl-6-acetate-β-D-glucopyranoside (3), and 2-methoxy-4-(2-propen-1-yl)penyl-6-[(2E)-2-butenoate]-β-D-glucopyranoside (4), along with benzyl-β-D-glucopyranoside (5), 2-methoxy-4-(2-propen-1-yl)penyl-β-D-glucopyranoside (6), and pectolarigenin (7), were isolated from the whole plant of Dracocephalum tanguticum Maxim. The structures of 1-4 were elucidated by detailed spectroscopic analyses, including HR-ESI-MS and 2D NMR spectroscopic data. The inhibitory effects against nitric oxide production in LPS-stimulated RAW264.7 cells of all seven compounds were also evaluated.  相似文献   

14.
Ten flavonoids were isolated from the ethyl acetate-soluble fraction of the ethanolic extract of the seeds of Trigonella foenum-graecum and their structures were elucidated on the basis of spectroscopic methods to be 5,7,3′-trihydroxy-5′-methoxylisoflavone (1), biochanin A (2), formononetin (3), irilone (4), tricin (5), daidzein (6), calycosin (7), orientin-2″-O-p-trans-coumarate (8), vitexin-2″-O-p-trans-coumarate (9), and tricin-7-O-β-d-glucopyranoside (10). Compounds 1 and 8 are new flavonoids, and 8 and 9 strongly promoted 2BS cell proliferation induced by H2O2.  相似文献   

15.
The purification of the MeOH extract from the rhizome of Sparganium stoloniferum Buch.-Hamil. (Sparganiaceae) using column chromatography furnished one new phenylpropanoid glycoside (7) and known phenolic compounds (1–6, and 8–13). The structural elucidation of 7 was based on 1D- and 2D-NMR spectroscopic data analysis to be β-d-(6-O-trans-feruloyl) fructofuranosyl-α-d-O-glucopyranoside. Compounds 1–6, and 8–13 were elucidated by spectroscopy and confirmed by comparison with reported data; 24-methylenecycloartanol (1), p-hydroxybenzaldehyde (2), ferulic acid (3), p-coumaric acid (4), vanillic acid (5), β-d-(1-O-acetyl-3-O-trans-feruloyl)fructofuranosy-α-d-2′,4′,6′.-O-triacetyglucopyranoisde (6), β-d-(1-O-acetyl-3,6-O-trans-diferuloyl)fructofuranosyl-β-d-2′,4′,6′.-O-triacetylglucopyranoisde (8), hydroxytyrosol acetate (9), hydroxytyrosol (10), isorhamnetin-3-O-rutinoside (11), n-butyl-α-d-fructofuranoside (12), and n-butyl-β-d-fructopyranoside (13). Compounds 3 and 9–13 were isolated for the first time from this plant. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamin B bioassay.  相似文献   

16.
The synthesis of seven 99mTc-labeled nitrophenol radiosensitizers (N2OS chelates) was undertaken for evaluating their in vitro biostabilty as possible hypoxia tumor imaging agents. The title compounds (2–7) were successively synthesized, characterized, and finally radiolabeled (99mTc-NaTcO4, stannous chloride, pH 10) to obtain the new complexes (8a–8f) for evaluation. The purity and stability of complexes (in human and rat serum) were evaluated by chromatographic methods (radio-TLC, ITLC, HPLC). The most stable complex (over 6 h) was 99mTc-labeled 3-[3′-N-(2″-hydroxy-5″-nitrobenzylamino)-2′-propanol]-1-(4′-methyl)thiourea (8e). Biodistribution studies of 8e in mammary tumor-bearing rats are in progress. Published in Khimiko-Farmatsevticheskii Zhurnal, Vol. 40, No. 9, pp. 50–53, September, 2006.  相似文献   

17.
A new ferulic acid ester, 1′-methyl-2′-hydroxyethyl ferulate (1), together with methylcaffeate (2), 4-hydroxy cinnamic acid (3), ferulic acid (4), caffeic acid (5), diosmetin (6), luteolin (7), 5,3′,4′-trihydroxy-3,7-dimethoxyflavone (8), eriodictyol (9), kaempferol (10), quercetin (11), acacetin-7-O-glcopyranoside (12), 4-(β-glucopyranosyloxy) benzoic acid (13), luteolin-7-O-(6″-feruloyl) glucopyranoside (14), luteolin-7-O-glucopyranoside (15), kaempferide-3-O-rhamnopyranoside (16), quercitrin (17), kaempferol-3-O-glucopyranoside (18), prunasin (19), quercetin-7-O-glucopyranoside (20), quercetin-3-O-glucopyranoside (21), plantaginin (22), linarin (23), luteolin-7-O-rutinoside (24), and chlorogenic acid (25) were isolated from the aerial parts of Dacocephalum peregrinum. The structure of 1 was elucidated on the basis of spectroscopic and HR-ESI-MS analyses. In addition, compound 1 exhibited mild inhibitory effect on NO production in LPS-stimulated RAW264.7 cells.  相似文献   

18.
The needles of Pinus densiflora Siebold et Zuccarini, a representative Pinus species that grows in Korea, have been used in oriental traditional medicine as remedies for rheumatitis, hemorrhage, cancer, etc. Phytochemical examination of the needles of Pinus densiflora Siebold et Zuccarini led to the isolation of four lignans, one flavan-3-ol, two flavonols and one organic acid. They were identified as icariside E4 (1), cupressoside A (2), schizandriside (3), (+)-isolariciresinol (4), (+)-catechin (5), quercetin 3-O-β-D-glucopyranoside (6), 5,7,8,4′-tetrahydroxy-3-methoxy-6-methylflavone 8-O-β-D-glucopyranoside (7) and (−)-shikimic acid (8). In order to evaluate the anti-inflammatory effects of these compounds, their inhibitory activities against nitric oxide and prostaglandin E2 production in IFN-γ- and lipopolysaccharide-stimulated RAW 264.7 cells were examined.  相似文献   

19.
A new ceramide, (2S,2′R,3R,4E,8E)-N-2′-hydroxyoctadecanoyl-2-amino-9-methyl-4,8-heptadecadiene-1,3-diol (1), was isolated together with four known sterols, 5α,6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14),22-dien-7-one (2), ergosterol peroxide (3), cerevisterol (4) and 9α-hydroxycerevisterol (5), from the fruiting bodies of Ramaria botrytis (Pers.) Ricken (Ramariaceae). The structure of the new compound was elucidated based on spectral data.  相似文献   

20.
A new dihydroflavone, 5-carboxymethyl-7,4′-dihydroxyflavonone (1), and its glucoside 5-carboxymethyl-7,4′-dihydroxyflavonone-7-O-β-d-glucopyranoside (2), and one new monoterpene glucoside, (4Z,6E)-2,7-dimethyl-8-hydroxyocta-4,6-dienoic acid 8-O-β-d-glucopyranoside (3), were isolated from the whole plants of Selaginella moellendorffii. Their structures were determined by spectroscopic methods and chemical transformation. Compound 2 was evaluated for the ability to enhance glucose consumption in normal and insulin-resistant L6 muscle cells induced by high concentrations of insulin and glucose. Glucose consumption in insulin-resistant cells (but not in normal cells) was increased 15.2 ± 3.3% (p < 0.01) by compound 2 at a concentration of 0.1 μM in the presence of insulin (1 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号