首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary amino acid sequences of the kainate binding proteins from the amphibian and avian central nervous systems are homologous with the functional alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors that have been cloned from rat brain. In this study, we have analysed the anatomical and subcellular distribution of the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors in the rat hippocampus and cerebellum, using a monoclonal antibody that was raised against a kainate binding protein purified from frog brain. Immunoblots of rat hippocampus and cerebellum, and membranes from COS cells transfected with rat brain alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor cDNAs (GluR1, GluR2, or GluR3) showed a major immunoreactive band migrating at a relative molecular weight of 107,000. In the cerebellum, an additional immunoreactive protein of approximately 128,000 mol. wt was also seen on immunoblots probed with the antibody. The distribution of this protein is apparently restricted to the cerebellum since the 128,000 mol. wt band was not present in other brain areas examined. The identity of the 128,000 mol. wt cerebellar protein is not known. Immunocytochemical analyses of the hippocampus demonstrated that alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor subunits are present in the cell bodies and dendrites of pyramidal cells. The granule cells were also immunostained. All of the pyramidal cell subfields were heavily labeled. In the pyramidal cell bodies, a high level of immunoreactivity was observed throughout the cytoplasm. In the cerebellum, the Purkinje cell bodies and dendrites also displayed very high levels of immunoreactivity. In addition to the Purkinje neurons, the Bergmann glia and some Golgi neurons were clearly immunostained. Subcellular fractionation and lesioning experiments using the excitotoxin domoic acid indicated that the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor subunits were associated with postsynaptic membranes. Direct visualization of the immunoreactivity using electron microscopy confirmed the postsynaptic localization of the staining in the dendritic areas in both the hippocampus and the cerebellum. Thus, unlike the kainate binding proteins, which are found primarily extrasynaptically in the frog and on glial cells in the chicken cerebellum, the GluR1, GluR2, and GluR3 receptor subunits are localized to the postsynaptic membrane in the dendrites of neurons in the rat central nervous system.  相似文献   

2.
Human mesial temporal lobe epilepsy is characterized by hippocampal seizures associated with pyramidal cell loss in the hippocampus and dispersion of dentate gyrus granule cells. A similar histological pattern was recently described in a model of extensive neuroplasticity in adult mice after injection of kainate into the dorsal hippocampus [Suzuki et al. (1995) Neuroscience 64, 665-674]. The aim of the present study was to determine whether (i) recurrent seizures develop in mice after intrahippocampal injection of kainate, and (ii) the electroencephalographic, histopathological and behavioural changes in such mice are similar to those in human mesial temporal lobe epilepsy. Adult mice receiving a unilateral injection of kainate (0.2 microg; 50 nl) or saline into the dorsal hippocampus displayed recurrent paroxysmal discharges on the electroencephalographic recordings associated with immobility, staring and, occasionally, clonic components. These seizures started immediately after kainate injection and recurrid for up to eight months. Epileptiform activities occurred most often during sleep but occasionally while awake. The pattern of seizures did not change over time nor did they secondarily generalize. Glucose metabolic changes assessed by [14C]2-deoxyglucose autoradiography were restricted to the ipsilateral hippocampus for 30 days, but had spread to the thalamus by 120 days after kainate. Ipsilateral cell loss was prominent in hippocampal pyramidal cells and hilar neurons. An unusual pattern of progressive enlargement of the dentate gyrus was observed with a marked radial dispersion of the granule cells associated with reactive astrocytes. Mossy fibre sprouting occurred both in the supragranular molecular layer and infrapyramidal stratum oriens layer of CA3. The expression of the embryonic form of the neural cell adhesion molecule coincided over time with granule cell dispersion. Our data describe the first histological, electrophysiological and behavioural evidence suggesting that discrete excitotoxic lesions of the hippocampus in mice can be used as an isomorphic model of mesial temporal lobe epilepsy.  相似文献   

3.
Unilateral intrahippocampal injection of kainic acid in adult mice reproduces most of the morphological characteristics of hippocampal sclerosis (neuronal loss, gliosis, reorganization of neurotransmitter receptors, mossy fiber sprouting, granule cell dispersion) observed in patients with temporal lobe epilepsy. Whereas some neuronal loss is observed immediately after the initial status epilepticus induced by kainate treatment, most reorganization processes develop progressively over a period of several weeks. The aim of this study was to characterize the evolution of seizure activity in this model and to assess its pharmacological reactivity to classical antiepileptic drugs.Intrahippocampal electroencephalographic recordings showed three distinct phases of paroxystic activity following unilateral injection of kainic acid (1 nmol in 50 nl) into the dorsal hippocampus of adult mice: (i) a non-convulsive status epilepticus, (ii) a latent phase lasting approximately 2 weeks, during which no organized activity was recorded, and (iii) a phase of chronic seizure activity with recurrent hippocampal paroxysmal discharges characterized by high amplitude sharp wave onset. These recurrent seizures were first seen about 2 weeks post-injection. They were limited to the injected area and were not observed in the cerebral cortex, contralateral hippocampus or ipsilateral amygdala. Secondary propagation to the contralateral hippocampus and to the cerebral cortex was rare. In addition hippocampal paroxysmal discharges were not responsive to acute carbamazepine, phenytoin, or valproate treatment, but could be suppressed by diazepam.Our data further validate intrahippocampal injection of kainate in mice as a model of temporal lobe epilepsy and suggest that synaptic reorganization in the lesioned hippocampus is necessary for the development of organized recurrent seizures.  相似文献   

4.
Dynorphin A (1-17) is an endogenous opioid peptide that is antinociceptive at physiological concentrations, but in excess can elicit a number of pathological effects. Both kappa-opioid and N-methyl-D-aspartate receptor antagonists modulate dynorphin toxicity, suggesting that dynorphin is acting directly or indirectly through these receptor types. We found in spinal cord neurons that the neurotoxic effects of dynorphin A and several dynorphin-derived peptide fragments are largely mediated by N-methyl-D-aspartate receptors. Despite these findings, aspects of dynorphin A toxicity could not be accounted for by opioid or N-methyl-D-aspartate receptor mechanisms. To address this issue, neurons enriched in kappa-opioid, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors were isolated from embryonic day-15 mouse striata and the effects of extracellularly administered dynorphin A (1-17) and (13-17) on neuronal survival were examined in vitro. Unlike spinal cord neurons, N-methyl-D-aspartate receptors mature later than alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors in striatal neurons, thus providing a strategy to elucidate non-N-methyl-D-aspartate receptor-mediated mechanisms of toxicity. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. Dynorphin A (1-17 or 13-17; 10 microM) caused significant neuronal losses after 48 to 72 hours versus untreated controls. Dynorphin A or A (13-17) toxicity was unaffected by the opioid receptor antagonist naloxone (10 microM) or by dizocilpine (10 microM). In contrast, the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline- 2,3-dione (10 microM) significantly attenuated only dynorphin A (1-17)-induced neuronal losses and not that induced by dynorphin A (13-17). Dynorphin A (1-17) toxicity was accompanied by a proportional loss of R2 and R3 subunits of the AMPA receptor complex, but not non-N-methyl-D-aspartateR1, expressing neurons and was mimicked by the ampakine 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine. Although it is unclear whether dynorphin A activates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors directly or indirectly via glutamate release, our culture conditions do not support glutamate retention or accumulation. Our findings suggest that dynorphin A (1-17) can exert toxic effects on striatal neurons via an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor mechanism.  相似文献   

5.
Y Nakagawa  M Baudry 《Neuroscience》1989,32(2):363-369
Intrahippocampal colchicine injection produces a rapid death of granule cells and pyramidal neurons in the hippocampus in the rat. Under the appropriate assay conditions, [3H]glutamate labels the N-methyl-D-aspartate type of glutamate receptors while [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate labels the quisqualate type. Unilateral injection of colchicine (15 micrograms) in the dorsal hippocampus did not produce any change in [3H]glutamate and [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate binding in membrane fractions from the dentate gyrus or CA1 field contralateral to the injection side, at least up to 12 days after the injection. However, it produced a progressive decrease in the binding of both ligands in dentate gyrus and CA1 of the injected hippocampus. In the dentate gyrus the changes in binding as a function of time after the injection were biphasic with a rapid exponential decrease (t1/2 about 8 days for both [3H]glutamate and [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) until 12 days after the injection followed by a much slower decrease afterwards. A similar pattern was observed in CA1 although the changes in binding were smaller and delayed by about three days as compared to the dentate gyrus. Kinetic analyses of the binding at equilibrium were performed seven days after the injection and indicated that the changes in [3H]glutamate binding were due to a change in the maximum number of sites but not in affinity for the ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In humans, temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death, gliosis and granule cell dispersion (GCD) in the dentate gyrus. Granule cells surviving TLE have been proposed to be hyperexcitable and to play an important role in seizure generation. However, it is unclear whether this applies to conditions of AHS. We studied granule cells using the intrahippocampal kainate injection mouse model of TLE, brain slice patch-clamp recordings, morphological reconstructions and immunocytochemistry. With progressing AHS and GCD, 'epileptic' granule cells of the injected hippocampus displayed a decreased input resistance, a decreased membrane time constant and an increased rheobase. The resting leak conductance was doubled in epileptic granule cells and roughly 70–80% of this difference were sensitive to K+ replacement. Of the increased K+ leak, about 50% were sensitive to 1 m m Ba2+. Approximately 20–30% of the pathological leak was mediated by a bicuculline-sensitive GABAA conductance. Epileptic granule cells had strongly enlarged inwardly rectifying currents with a low micromolar Ba2+ IC50, reminiscent of classic inward rectifier K+ channels (Irk/Kir2). Indeed, protein expression of Kir2 subunits (Kir2.1, Kir2.2, Kir2.3, Kir2.4) was upregulated in epileptic granule cells. Immunolabelling for two-pore weak inward rectifier K+ channels (Twik1/K2P1.1, Twik2/K2P6.1) was also increased. We conclude that the excitability of granule cells in the sclerotic focus of TLE is reduced due to an increased resting conductance mainly due to upregulated K+ channel expression. These results point to a local adaptive mechanism that could counterbalance hyperexcitability in epilepsy.  相似文献   

7.
Neurons of the central nervous system (CNS) exhibit a variety of forms of synaptic plasticity, including associative long-term potentiation and depression (LTP/D), homeostatic activity-dependent scaling and distance-dependent scaling. Regulation of synaptic neurotransmitter receptors is currently thought to be a common mechanism amongst many of these forms of plasticity. In fact, glutamate receptor 1 (GluR1 or GluRA) subunits containing L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors have been shown to be required for several forms of hippocampal LTP and a particular hippocampal-dependent learning task. Because of this importance in associative plasticity, we sought to examine the role of these receptors in other forms of synaptic plasticity in the hippocampus. To do so, we recorded from the apical dendrites of hippocampal CA1 pyramidal neurons in mice lacking the GluR1 subunit (GluR1 −/−). Here we report data from outside-out patches that indicate GluR1-containing receptors are essential to the extrasynaptic population of AMPA receptors, as this pool was nearly empty in the GluR1 −/− mice. Additionally, these receptors appear to be a significant component of the synaptic glutamate receptor pool because the amplitude of spontaneous synaptic currents recorded at the site of input and synaptic AMPA receptor currents evoked by focal glutamate uncaging were both substantially reduced in these mice. Interestingly, the impact on synaptic weight was greatest at distant synapses such that the normal distance-dependent synaptic scaling used by these cells to counter dendritic attenuation was lacking in GluR1 −/− mice. Together the data suggest that the highly regulated movement of GluR1-containing AMPA receptors between extrasynaptic and synaptic receptor pools is critically involved in establishing two functionally diverse forms of synaptic plasticity: LTP and distance-dependent scaling.  相似文献   

8.
Immunocytochemistry was used to study the distribution of the kainate receptors GluR1, GluR2/3 and GluR4 and of the N-methyl-d-aspartate (NMDA) receptor NMDAR1 as well as the astrocyte markers glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP) in the hippocampus of normal and kainate-lesioned rats. Hippocampal pyramidal neurons and dentate granule neurons were labelled heavily for GluR1 and GluR2/3, but only lightly for GluR4. Dense GluR4 immunopositivity was, however, observed in oligodendrocyte-like glial cells. Hippocampal pyramidal neurons and dentate granule neurons were moderately labelled for NMDAR1. Intravenous kainate injections resulted in a decrease in GluR1 and GluR2/3 immunoreactivity on the apical dendrites of pyramidal neurons as early as 7 h postinjection. At 18 h, there was a marked reduction in GluR1 and GluR2/3 receptors in the terminal tuft of dendrites of most hippocampal pyramidal neurons in the affected area, although some cells showed labelling in other portions of the apical dendrites and in basal dendrites. Immunostaining for GluR4 and NMDAR1 was also reduced at this time. At postinjection day 3, only the cell bodies and the basal dendrites of a few scattered pyramidal cells were labelled. Taken together, these results indicate a progressive loss of glutamate receptors, which affects the apical dendritic tree before the basal dendritic tree. The decrease in receptor immunoreactivity could be due to a downregulation of the receptors, since it occurred as early as 7 h postlesion, before cell death was evident in Nissl-stained sections. At long intervals after kainate injection, all pyramidal cells at the centre of the lesion showed a lack of glutamate receptor staining, and no partially labelled pyramidal cells were observed. The periphery of the lesion, however, contained many partially labelled pyramidal neurons among the unlabelled cells and had features of early lesions. The present study also showed an early decrease in GS immunoreactivity in the affected CA fields of the hippocampus (18 h to 3 days postinjection), followed by a medium-term increase (5–68 days) and a late decrease in GS immunoreactivity (81 days). The decrease in GS immunoreactivity at 81 days is not due to an absence of astrocytes, since GFAP staining showed many densely labelled astrocytes in the affected CA field.  相似文献   

9.
Experiments were performed on isolated neurons from hippocampal field CA1 and the dentate fascia to identify the subunit composition and distribution of splicing variants of AMPA receptor subunits. Currents evoked by the application of kainate were recorded using a whole-cell patch clamping method. The presence of GluR2 subunits in receptors was associated with a sharp reduction in the activity of the selective channel blocker IEM-1460. The composition of flip versions of subunits was assessed using cyclothiazide. AMPA receptors in the major cell types (pyramidal and granule cells) had low sensitivity to IEM-1460, while AMPA receptors of other cells (interneurons) had high or intermediate sensitivity. Cyclothiazide had strong potentiating effects on the main cell types in both structures as compared with interneurons. Thus, there is a correlation between the sensitivities of hippocampal neurons to IEM-1460 and cyclothiazide. The main cell types in both structures expressed large quantities of the GluR2 subunit in their AMPA receptors, with high levels of flip subunits, as compared with the other cell types, in which GluR2 subunits were virtually absent and the flop version predominated. This appears to reflect the functional features of different types of neurons.  相似文献   

10.
The dorsal horn of the subnucleus caudalis of the spinal trigeminal nucleus is a relay of oro-facial pain transmission; increase in subnucleus caudalis neuronal activity in response to tissue injury affects the level of chemical mediators participating in nociceptive processing. We investigated, by means of immunocytochemistry, the expression of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) glutamate receptor subunits in this nucleus in a model of inflammation. Rats injected with formalin in the whisker pad were compared with saline-injected control rats. One and two days after formalin injection, the immunostaining of cell bodies and neuropil of the AMPA receptor subunits GluR1 and GluR2/3 was markedly decreased in the ipsilateral superficial laminae of the subnucleus caudalis compared to the contralateral side. Side differences were not evident in the saline-treated animals. The down-regulation of AMPA GluR1 and GluR2/3 was no longer detectable in the subnucleus caudalis three days after formalin injection. No side difference was detected in the N-methyl-D-aspartate receptor subunit NR2A/B immunoreactivity of the subnucleus caudalis at any time-point in the formalin-injected animals. The modulation of AMPA receptor may be related to the decrease of hyperalgesia evident 1 h after formalin injection, in spite of the increasing perioral inflammation evident later on and characteristic of the formalin model. The present findings point out a selective down-regulation of AMPA receptor subunits in the transduction of trigeminal pain. These data also support the involvement of glutamate receptor subunits in the processing of trigeminal inflammation induced by noxious chemical stimulation.  相似文献   

11.
It has been observed that motor neuron death is induced in adult rats by ventral root avulsion which involves pulling out the spinal cord root. Since motor neurons are reported to be selectively vulnerable to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated injury in vitro, we investigated changes in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-receptor subunits in rat spinal motor neurons after ventral root avulsion. The L4-L5 ventral roots of adult Sprague-Dawley rats were avulsed by an extravertebral extraction procedure. After an appropriate survival time, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-receptor subunits were detected immunohistochemically in the L4-L5 segments. Ventral root avulsion resulted in a 60% loss of motor neurons by 14 days after surgery. GluR2 labeling in motor neurons was markedly decreased after avulsion, but before the onset of motor neuron death, while the GluR1 and GluR4 labeling of motor neurons remained unchanged. Intrathecal administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-receptor antagonists rescued a significant number of injured motor neurons from cell death. In contrast, N-methyl-D-aspartate-receptor antagonists did not prevent motor neuron death. Since the presence of GluR2 subunit renders heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors Ca(2+)-impermeable, the downregulation of GluR2 may result in increased formation of GluR2-lacking, Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors in motor neurons and could contribute to motor neuron death after ventral root avulsion.  相似文献   

12.
Voltage-dependent Ca2+ channels constitute a major class of plasma membrane channels through which a significant amount of extracellular Ca2+ enters neuronal cells. Their pore-forming alpha1 subunits are associated with cytoplasmic regulatory beta subunits, which modify the distinct biophysical and pharmacological properties of the alpha1 subunits. Studies in animal models indicate altered expression of alpha1 and/or beta subunits in epilepsy. We have focused on the regulatory beta subunits and have analysed the immunoreactivity patterns of the beta1, beta2, beta3 and beta4 subunits in the hippocampus of patients with temporal lobe epilepsy (n = 18) compared to control specimens (n = 2). Temporal lobe epilepsy specimens were classified as Ammon's horn sclerosis (n = 9) or focal lesions without alteration of hippocampal cytoarchitecture (n = 9). Immunoreactivity for the beta subunits was observed in neuronal cell bodies, dendrites and neuropil. The beta1, beta2 and beta3 subunits were found mainly in cell bodies while the beta4 subunit was primarily localized to dendrites. Compared to the control specimens, epilepsy specimens of the Ammon's horn sclerosis and of the lesion group showed a similar beta subunit distribution, except for beta1 and beta2 staining in the Ammon's horn sclerosis group: in the severely sclerotic hippocampal subfields of these specimens, beta1 and beta2 immunoreactivity was enhanced in some of the remaining neuronal cell bodies and, in addition, strongly marked dendrites. Thus, hippocampal neurons apparently express multiple classes of beta subunits which segregate into particular subcellular domains. In addition, the enhancement of beta1 and beta2 immunoreactivity in neuronal cell bodies and the additional shift of the beta1 and beta2 subunits into the dendritic compartment in severely sclerotic hippocampal regions indicate specific changes in Ammon's horn sclerosis. Altered expression of these beta subunits may lead to increased currents carried by voltage-dependent calcium channels and to enhanced synaptic excitability.  相似文献   

13.
Using quantitative autoradiography, the cellular localization and characterization of cerebellar excitatory amino acid binding sites in normal, Purkinje cell-deficient and granuloprival (granule cell-deficient) mouse cerebella were investigated. In the molecular layer of normal mouse cerebellum, the quisqualate subtype of excitatory amino acid receptor (assayed by [3H](RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate, quisqualate-sensitive L-[3H]glutamate, and [3H]6-cyano-7-nitroquinoxaline-2,3-dione binding) predominated. In the granule cell layer of the cerebellum, N-methyl-D-aspartate-sensitive L-[3H]glutamate and [3H]glycine binding sites were predominant. In the molecular layer of Purkinje cell-deficient mutant mice, [3H](RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate binding sites and [3H]6-cyano-7-nitro-quinoxaline-2,3-dione binding were reduced to 24% (P less than 0.01) and 36% (P less than 0.001) of control, respectively, while quisqualate-sensitive [3H]glutamate binding sites were reduced to 54% of control (P less than 0.01). N-Methyl-D-aspartate-sensitive [3H]glutamate and [3H]glycine binding were unchanged. In the granule cell layer of these mouse cerebella, there was no change in excitatory amino acid receptor binding. In the molecular layer of granuloprival mouse cerebella, [3H](RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate binding was increased to 205% of control (P less than 0.01), [3H]6-cyano-7-nitro-quinoxaline-2,3-dione binding was increased to 136% of control (P less than 0.02), and quisqualate-sensitive [3H]glutamate binding was increased to 152% of control (P less than 0.01). N-Methyl-D-aspartate-sensitive [3H]glutamate and [3H]glycine binding were unchanged. In areas of granule cell depletion N-methyl-D-aspartate-sensitive [3H]glutamate and [3H]glycine binding were reduced to 68% (P less than 0.01) and 59% (P less than 0.01) of control, respectively. In the granule cell layer, binding to quisqualate receptors was not significantly different from binding in controls with any of the ligands tested. These results suggest that three different receptor assays: [3H](RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate, quisqualate-sensitive L-[3H]glutamate, and [3H]6-cyano-7-nitro-quinoxaline-2,3-dione binding can be used to demonstrate that quisqualate receptor specific binding sites are located on Purkinje cell dendrites in the molecular layer of cerebellum, and that these binding sites apparently up-regulate in response to granule cell ablation and Purkinje cell deafferentation.  相似文献   

14.
The functional role of the calcium-binding proteins parvalbumin, calretinin, and calbindin D-28k for epileptogenesis and long-term seizure-related alterations of the hippocampal formation was assessed in single- and double-knockout mice, using a kainate model of mesial temporal lobe epilepsy. The effects of a unilateral intrahippocampal injection of kainic acid were assessed at one day, 30 days, and four months post-injection, using various markers of GABAergic interneurons (GABA-transporter type 1, GABA(A)-receptor alpha1 subunit, calretinin, calbindin D-28k, somatostatin, and neuropeptide Y). Parvalbumin-deficient, parvalbumin/calbindin-deficient, and parvalbumin/calretinin-deficient mice exhibited no difference in cytoarchitecture of the hippocampal formation and in the number, distribution, or morphology of interneurons compared to wild-type mice. Likewise, mutant mice were not more vulnerable to acute kainate-induced excitotoxicity or to long-term effects of recurrent focal seizures, and exhibited the same pattern of neurochemical alterations (e.g., bilateral induction of neuropeptide Y in granule cells) and morphogenic changes (enlargement and dispersion of dentate gyrus granule cells) as wild-type animals. Quantification of interneurons revealed no significant difference in neuronal vulnerability among the genotypes.These results indicate that the calcium-binding proteins investigated here are not essential for determining the neurochemical phenotype of interneurons. Furthermore, they are not protective against kainate-induced excitotoxicity in this model, and do not appear to modulate the overall level of excitability of the hippocampus. Finally, seizure-induced changes in gene expression in granule cells, which normally express high levels of calcium-binding proteins, apparently were not affected by the gene deletions analysed.  相似文献   

15.
Keefe KA  Gerfen CR 《Neuroscience》1999,89(2):491-504
Administration of selective agonists of D1 dopamine receptors increases immediate early gene expression in striatal neurons, a response which is particularly robust in the dopamine-depleted striatum. Although interactions between dopamine and glutamate receptor-mediated responses in striatal neurons have been demonstrated in a number of experimental paradigms, our previous findings indicate that N-methyl-D-aspartate antagonists do not block D1 receptor-mediated induction of immediate early genes in the dopamine-depleted striatum. In the present study, we therefore examined interactions between D1 dopamine receptors and the (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate subtypes of glutamate receptor by determining whether striatal infusion of the (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione would block D1 receptor-mediated induction of the immediate early genes c-fos and zif268 in the dopamine-depleted striatum. Striatal infusion of 6-cyano-7-nitroquinoxaline-2,3-dione (1 mM) completely blocked (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate-induced c-fos and zif268 expression. However, 6-cyano-7-nitroquinoxaline-2,3-dione (1 microM-1 mM) did not significantly affect induction of c-fos and zif268 by D1 receptor stimulation (SKF 38393, 2 mg/kg, i.p.) in the dopamine-depleted striatum. To more generally block excitatory input, tetrodotoxin (10 microM) was infused into the striatum of rats receiving a D1 agonist. Local infusion of tetrodotoxin had minimal effect on induction of c-fos and zif268 in the dopamine-depleted striatum. In contrast, tetrodotoxin abolished induction of c-fos and zif268 messenger RNAs by the D2 antagonist eticlopride (0.5 mg/kg, i.p.) in both intact rats and dopamine-depleted rats receiving continuous D2 agonist treatment (quinpirole, 0.5 mg/kg/day). The results indicate that D1 receptor-mediated induction of immediate early genes in the dopamine-depleted striatum occurs by mechanisms that are independent of excitatory input through (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors.  相似文献   

16.
Using a new in vitro superfusion device, the release of preloaded [3H]GABA was examined in microdiscs of tissues taken from sagittal slices in matrix-enriched areas of the rat striatum. Potassium (9 mM, 15 mM) stimulated the release of [3H]GABA in a concentration- and calcium-dependent manner and the veratridine (1 microM)-evoked release of [3H]GABA was completely abolished in the presence of tetrodotoxin (1 microM). The selective glutamatergic agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (1 mM) enhanced the potassium-evoked release of [3H]GABA as well as the basal outflow of [3H]GABA. This latter effect was found to be calcium-dependent, partially diminished by tetrodotoxin (1 microM), completely blocked by 6,7-dinitro-quinoxaline-2,3-dione (0.1 mM), which is generally used as an antagonist of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors, but not affected by (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK801, 10 microM), a specific antagonist of N-methyl-D-aspartate receptors. Similarly, N-methyl-D-aspartate (1 mM) enhanced both the potassium (9 mM) and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (1 mM)-evoked release of [3H]GABA but when used alone, due to the presence of magnesium in the superfusion medium, was ineffective on the basal efflux of [3H]GABA. A stimulatory effect of N-methyl-D-aspartate (1 mM) on the basal outflow of [3H]GABA was observed, however, when magnesium was omitted from the superfusion medium. The stimulatory effect of N-methyl-D-aspartate (1 mM) observed in the presence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate was not potentiated by glycine (1 microM, in the presence of strychnine 1 microM) and the N-methyl-D-aspartate-evoked response seen in the absence of magnesium was not enhanced by D-serine (1 mM), suggesting that endogenous glycine is already acting on N-methyl-D-aspartate receptors. In fact, in the absence of magnesium, 7-chloro-kynurenate (1 mM) completely abolished the stimulatory effect of N-methyl-D-aspartate on the release of [3H]GABA confirming that under our conditions, the glycine site of the N-methyl-D-aspartate receptor is saturated. N-methyl-D-aspartate-evoked responses were all blocked by MK801 (10 microM). Finally, the N-methyl-D-aspartate-evoked response seen in the absence of magnesium was markedly reduced in the presence of tetrodotoxin (1 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Using immunohistochemistry, the occurrence and distribution of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) glutamate receptor subunits GluR2/3 is shown in the human trigeminal ganglion and subnucleus caudalis from 20 weeks of gestation to adulthood. In the trigeminal ganglion a subpopulation of GluR2/3-like immunoreactive (LI) primary sensory neurons occurred at all examined ages, amounting to about 20% of all ganglion cells in the earliest pre-term newborn and in the adult, to about 30% at 24 and 32 weeks of gestation, and peaking to about 40% in the neonate. At all ages examined, GluR2/3-LI neurons were heterogeneous in size, although in the adult most of the labeled perikarya were large-sized, with a mean cell diameter above 35 microm. In the trigeminal subnucleus caudalis, positive elements could be first detected at 30 weeks of gestation and persisted at all other examined ages. At pre- and perinatal ages, the immunoreactivity was restricted to neuronal perikarya in the superficial layers and in the marginal zone of the nucleus. In the adult tissue, the subnucleus caudalis harbored a loose meshwork of varicose thread- and dot-like elements in the superficial layers and numerous immunoreactive neurons, distributed in lamina I, substantia gelatinosa, and in the superficial zone of the magnocellular region.  相似文献   

18.
Rhythmic electrical activity is ubiquitous in neuronal networks of the brain and is implicated in a multitude of different processes. A prominent example in the healthy brain is electrical oscillations in the gamma-frequency band (20–80 Hz) in hippocampal and neocortical networks, which play an important role in learning, memory and cognition. An example in the pathological brain is electrographic seizures observed in certain types of epilepsy. Interestingly the activation of kainate receptors (KARs) plays an important role in synaptic physiology and plasticity, and can generate both gamma oscillations and electrographic seizures. Electrophysiological recordings of extracellular gamma oscillations and intracellular currents in a hippocampal slice combined with computer modelling can shed light on the expression loci of KAR subunits on single neurones and the distinct roles subunits play in rhythmic activity in the healthy and the pathologicalal brain. Using this approach in wild-type (WT) and KAR knockout mice it has been shown that KAR subunits GluR5 and GluR6 have similar functions during gamma oscillations and epileptiform bursts and that small changes in the overall activity in the hippocampal area CA3 can tilt the balance between excitation and inhibition and cause the neuronal network to switch from gamma oscillations to epileptiform bursts.  相似文献   

19.
Wu WR  Li N  Sorg BA 《Neuroscience》2002,114(2):507-516
In the medial prefrontal cortex, repeated cocaine produces tolerance of the extracellular dopamine response to subsequent cocaine injection. These studies characterized the influence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors on the medial prefrontal cortex dopamine response to acute cocaine, amphetamine and potassium chloride as a first step to assess whether these receptor subtypes may be candidates for mediating dopamine tolerance after repeated cocaine. Local infusion of 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) produced an approximate 40% increase in dopamine levels in the medial prefrontal cortex, while a 30 microM dose did not alter basal levels infused over a 3-h period. Thus, 30 microM CNQX was chosen for the remaining experiments, and was infused for 1 h prior to and during all in vivo treatments. Local medial prefrontal cortex infusion of the 30 microM dose blocked the small increase in dopamine levels elicited by systemic saline injection (maximum of 26%), as well as the much larger increase in response to acute cocaine injection (maximum of 340%). Local infusion of D-amphetamine (3 and 30 microM) through the probe increased dopamine to 300 and 600% of basal levels, respectively. Co-infusion of CNQX partially blocked the response for the first 40 min, but dopamine levels recovered by 60 min later. Local infusion of 100 mM potassium chloride elicited a 600% increase in dopamine levels, which was attenuated approximately 50% by CNQX co-infusion. Potassium-stimulated release of dopamine was also measured in vitro in medial prefrontal cortical and striatal tissue. By 30 s after potassium addition, dopamine levels increased to 800% above baseline in the medial prefrontal cortex, and this increase was blocked by the presence of 30 microM CNQX. In contrast, potassium-stimulated dopamine release in striatal tissue was approximately 250% above basal levels, with no effect of CNQX on dopamine release. Locomotor behavior collected during dialysis experiments demonstrated that increased activity induced by local infusion of potassium chloride was severely attenuated by co-infusion of 30 microM CNQX, while no effects of this drug were found for cocaine-elicited behavior. These results suggest a potent influence of glutamate via alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors on extracellular dopamine in the medial prefrontal cortex, and these receptors may regulate dopamine release through a presynaptic mechanism. The findings may help elucidate the role of medial prefrontal cortex dopamine-glutamate interactions in drug abuse and stress- and drug-precipitated psychosis.  相似文献   

20.
Cholinergic projections from the nucleus basalis play a critical role in cortical plasticity. For instance, cholinergic deafferentation increases dendritic spine density and expression of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor in frontal cortex. Acetylcholine modulates glutamatergic activity in cortex, and the N-methyl-d-aspartate subtype of glutamate receptor plays a role in many forms of synaptic plasticity. To assess whether N-methyl-d-aspartate receptors mediate the increase in GluR1 and spine density resulting from cholinergic deafferentation, we examined the effect of N-methyl-d-aspartate receptor blockade on nucleus basalis lesion-induced upregulation of GluR1 and dendritic spines. Rats received unilateral sham or 192 IgG saporin lesions of the nucleus basalis. Half of the rats in each group were treated with the N-methyl-d-aspartate antagonist MK-801 or phosphate-buffered saline. Two weeks later, brains were processed for either immunohistochemical staining of the GluR1 subunit or Golgi histology. In layer II-III of frontal cortex, neuronal GluR1 expression was assessed using an unbiased stereological technique, and spine density was assessed on basilar branches of pyramidal neurons. GluR1 expression was increased after nucleus basalis lesion, but this increase was prevented with MK-801. Similarly, nucleus basalis-lesioned animals had significantly higher spine densities, and this effect was also prevented by treatment with MK-801. Thus, N-methyl-d-aspartate receptor blockade prevented both GluR1 and spine density upregulation following cholinergic deafferentation, suggesting that these effects are N-methyl-d-aspartate receptor-mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号