首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Among other characteristics, the steady-state current-voltage relationship of patch-clamped single atrial myocytes from guinea-pig hearts is defined by an outward current hump in the potential region –15 to +40mV. This hump was reversibly suppressed by Co2+ (3 mM) or nitrendipine (5 M) and enhanced by Bay K 8644 (5 M). The maintained outward current component suppressed by Co2+ extended between –15.2±1.9 mV and +39.5 ±1.7 mV (mean±SEM of 14 cells) and has an amplitude of 95.7±9.4 pA at +10 mV. In isochronal I-V curves, the hump was already visible at 400 ms with essentially the same amplitude as at 1500 ms. The Co2+ -sensitive outward current underlying the hump was poorly time-dependent during 1.5 s voltage pulses but slowly relaxed upon repolarization. Tail currents reversed near the K+ equilibrium potential under our experimental conditions. The current hump of the steady-state I-V curve was also abolished by caffeine (10 mM) or ryanodine (3 M), both drugs that interfere with sarcoplasmic reticulum function. Apamin (1 M) or quinine (100 M) but not TEA (5–50 mM) markedly reduced its amplitude. However, at similar concentrations as required to inhibit the hump, both apamin and quinine appeared to be poorly specific for Ca2+ -activated K+ currents in heart cells since they also inhibited the L-Type Ca2+ current. It is concluded that a long lasting Ca2+ -activated outward current, probably mainly carried by K+ ions but not sensitive to TEA, exists in atrial myocytes which is responsible for the current hump of the background I-V curve.  相似文献   

2.
This study was designed to identify and characterize Na+-activated K+ current (I(K(Na))) in guinea pig gastric myocytes under whole-cell patch clamp. After whole-cell configuration was established under 110 mM intracellular Na+ concentration ([Na+]i) at holding potential of -60 mV, a large inward current was produced by external 60 mM K+([K+]degrees). This inward current was not affected by removal of external Ca2+. K+ channel blockers had little effects on the current (p>0.05). Only TEA (5 mM) inhibited steady-state current to 68+/-2.7% of the control (p<0.05). In the presence of K+ channel blocker cocktail (mixture of Ba2+, glibenclamide, 4-AP, apamin, quinidine and TEA), a large inward current was activated. However, the amplitude of the steady-state current produced under [K+]degrees (140 mM) was significantly smaller when Na+ in pipette solution was replaced with K+- and Li+ in the presence of K+ channel blocker cocktail than under 110 mM [Na+]i. In the presence of K+ channel blocker cocktail under low Cl- pipette solution, this current was still activated and seemed K+-selective, since reversal potentials (E(rev)) of various concentrations of [K+]degrees-induced current in current/voltage (I/V) relationship were nearly identical to expected values. R-56865 (10-20 microM), a blocker of I(K(Na)), completely and reversibly inhibited this current. The characteristics of the current coincide with those of I(K(Na)) of other cells. Our results indicate the presence of I(K(Na)) in guinea pig gastric myocytes.  相似文献   

3.
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV, and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+]i) with a Hill plot giving a half-saturating [Ca2+] (K0.5) of 1.35 microM and slope of approximately equals 3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 microM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+]i <100 nM and the increased channel activity evoked by ionomycin was consistent with a rise in [Ca2+]i to > or =0.3 microM. TEA (0.2-1 mM) increased the action potential duration approximately equals 1.5-fold and reduced the amplitude and duration of the afterhyperpolarization (AHP) by 26%. Charybdotoxin (100 nM) did not significantly alter the action potential duration or AHP amplitude but reduced the AHP duration by approximately equals 40%. Taken together, these data indicate that BK channel activation contributes to the action potential and AHP duration in rat intracardiac neurons.  相似文献   

4.
1. Outward Na(+)-Ca2+ exchange currents were measured in freshly dissociated guinea-pig myocytes to probe in intact cells the functional status of exchanger inactivation reactions, described previously in giant excised cardiac membranes patches. 2. When the cytoplasmic (pipette) solution contained 40 mM Na+ and 0.1 microM free Ca2+ (50 mM EGTA), the outward exchange current activated by extracellular Ca2+ decayed with time (time constant, 13.1 +/- 2.6 s; n = 6), and an inward current transient was observed upon removal of extracellular Ca2+. Both the current decay and the subsequent inward current transient were remarkably diminished with a saturating (100 mM) pipette Na+ concentration. 3. With 100 mM cytoplasmic Na+ and 140 mM extracellular Na+, a significant fraction of the exchanger population is predicted to be in an inactive state. Intracellular application of 2 mg ml-1 chymotrypsin and 5 microM sodium tetradecylsulphate, both of which decrease Na(+)-dependent inactivation in giant membrane patches, increased the outward exchange current by about 160-170%, suggesting that about 60-70% of exchangers might be inactivated. 4. With 100 mM cytoplasmic Na+ and no extracellular Na+ (replaced with 140 mM Li+), application of extracellular Ca+ was predicted to reorient exchanger binding sites from the extracellular side to the cytoplasmic side and thereby favour inactivation. During such protocols, the outward exchange current decayed by 60-80% when activated by extracellular Ca2+. The current decayed similarly when extracellular Ca2+ and Na+ were applied together, whereby current magnitudes were about 3-fold smaller. 5. The decay of outward exchange current usually followed a biexponential time course (5.8 +/- 3.5 and 27.3 +/- 16.3 s, means +/- S.D., n = 11). Intracellular application of 0.5-2 mg ml-1 trypsin attenuated the fast component more than the slow component, suggesting that the fast component reflects an inactivation process. 6. Current-voltage (I-V) relations of the outward exchange current became less steep during the inactivation protocols, but this flattening could not be correlated with inactivation. 7. Replacement of extracellular Li+ with N-methyl-D-glucamine (NMG), tetraethylammonium (TEA), sucrose or Cs+ resulted in a flattening of I-V relations and a decrease of the outward exchange current amplitude by approximately 3-fold, but the kinetics and extent of inactivation were not remarkably changed. Thus, the mechanism of inactivation appears to be independent of the mechanism(s) of activation by extracellular monovalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The net outward current in bursting pace-maker neurones of the snail (Helix pomatia) during sustained and repeated voltage clamp pulses was studied. The properties of currents remaining in cobalt-Ringer or after TEA injection were compared with those in untreated cells. 2. With sustained voltage clamp depolarizations the net outward current first increases to a maximum at 150 msec and then declines to 60% or less of its peak intensity. This depression, which is greater during repetition of short pulses (e.g. 100 msec pulses at 0-5 sec intervals), represents a true decrease in the outward flow of K (designated IK) and is not due to a decreased driving force resulting from extracellular K accumulation. The steady-state current-voltage (I-V) relationship for IK is N-shaped (Heyer & Lux, 1976). 3. A component of IK persists when Ca and Mg in the medium are replaced by Co (ICo-res). With voltage clamp depolarizations ICo-res increases rapidly to a maximum and then partially inactivates with voltage dependent time constants of hundredths or tenths of seconds. Repolarization removes the inactivation. Thus, repeated stimulation with short pulses does not increase the depression of ICo-res-ICo-res (e.g. measured during voltage steps from holding potentials of -50 to near 0 mV) is smaller in test pulses preceded by depolarization and larger in pulses preceded by hyperpolarization. The steady state I-V relationship is not N-shaped. ICo-res is blocked by intracellular injection of tetraethylammonium (TEA). 4. Repeated voltage clamp depolarization to near 0 mV with 100 msec pulses for neurones with large Ca currents in normal Ringer produces a long-term depression which is maximal with 300-400 msec repolarizations (to -50 mV) between pulses. This corresponds with stimulus parameters for the maximum Ca current (Heyer & Lux, 1976). Intracellular injection of Ca2+ (also Ba2+ and Co2+) likewise reduces the total net outward current and especially the delayed outward current under voltage clamp. 5. The component of IK which is removed by Co is identified as Ca dependent and designated IK(Ca). With single voltage clamp pulses IK(Ca) follows the approximate time course and voltage dependence of the slow inward Ca current (Iin slow; Heyer & Lux, 1976). Several lines of evidence suggest that Ca ions moving through the membrane activate IK(Ca). 6. Part of IK cannot be blocked by intracellular TEA injection. In different neurones the magnitude of the IK component resistant to TEA (ITEA-res) is approximately proportional to the relative magnitudes of Iin slow.ITEA-res does not inactivate with sustained depolarization and shows pronounced long-term depression with repetitive stimulation at intermediate intervals and an increased outward current at the onset of the second and subsequent pulses following short repolarizations. The steady-state I-V relationship is N-shaped. ITEA-res is abolished by extracellular Co. 7. A net inward current with low depolarizations can be measured after TEA injection...  相似文献   

6.
1. Ca(2+)-dependent K+ currents were studied in large pyramidal neurons (Betz cells) from layer V of cat sensorimotor cortex by use of an in vitro brain slice and single microelectrode voltage clamp. The Ca(2+)-dependent outward current was taken as the difference current obtained before and after blockade of Ca2+ influx. During step depolarizations in the presence of tetrodotoxin (TTX), this current exhibited a fast onset of variable amplitude and a prominent slowly developing component. 2. The Ca(2+)-dependent outward current first appeared when membrane potential was stepped positive to -40 mV. Downsteps from a holding potential of -40 mV revealed little or no time-, voltage-, or Ca(2+)-dependent current. When membrane potential was stepped positive to -40 mV, a prolonged Ca(2+)-dependent outward tail current followed repolarization. The decay of this tail current at -40 mV was best described by a single exponential function having a time constant of 275 +/- 75 (SD) ms. The tail current reversed at 96 +/- 5 mV in 3 mM extracellular K+ concentration ([K+]o) and at more positive potentials when [K+]o was raised, suggesting that it was carried predominantly by K+. 3. The Ca(2+)-dependent K+ current consisted of two pharmacologically separable components. The slowly developing current was insensitive to 1 mM tetraethylammonium (TEA), but a substantial portion was reduced by 100 nM apamin. Most of the remaining current was blocked by the addition of isoproterenol (20-50 microM) or muscarine (10-20 microM). 4. The time courses of the apamin- and transmitter-sensitive components were similar when activated by step depolarizations in voltage clamp, but they were quite different when activated by a train of action potentials. Applying the voltage clamp at the end of a train of 90 spikes (evoked at 100-200 Hz) resulted in an Ca(2+)-dependent K+ current with a prominent rapidly decaying portion (time constant approximately 50 ms at -64 mV) and a smaller slowly decaying portion (time constant approximately 500 ms at -64 mV). The rapidly decaying portion was blocked by apamin (50-200 nM), and the slowly decaying portion was blocked by isoproterenol (20-50 microM). 5. When recorded with microelectrodes containing 2 mM dimethyl-bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA), which causes prolonged afterhyperpolarizations, the Ca(2+)-dependent K+ current evoked by step depolarizations had an extremely slow onset and decay. The current recorded after a train of evoked spikes had a similar slow decay.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Whole-cell voltage-clamp recordings of outward currents were obtained from acutely dissociated neurons of the rat neostriatum in conditions in which inward Ca2+ current was not blocked and intracellular Ca2+ concentration was lightly buffered. Na+ currents were blocked with tetrodotoxin. In this situation, about 53 +/- 4% (mean +/- S.E.M.; n = 18) of the outward current evoked by a depolarization to 0 mV was sensitive to 400 microM Cd2+. A similar percentage was sensitive to high concentrations of intracellular chelators or to extracellular Ca2+ reduction (<500 microM); 35+/-4% (n=25) of the outward current was sensitive to 3.0 mM 4-aminopyridine. Most of the remaining current was blocked by 10 mM tetraethylammonium. The results suggest that about half of the outward current is activated by Ca2+ entry in the present conditions. The peptidic toxins charybdotoxin, iberotoxin and apamin confirmed these results, since 34 +/- 5% (n = 14), 29 5% (n= 14) and 28 +/- 6% (n=9) of the outward current was blocked by these peptides, respectively. The effects of charybdotoxin and iberotoxin added to that of apamin, but their effects largely occluded each other. There was additional Cd2+ block after the effect of any combination of toxins. Therefore, it is concluded that Ca2+-activated outward currents in neostriatal neurons comprise several components, including small and large conductance types. In addition, the present experiments demonstrate that Ca2+-activated K+ currents are a very important component of the outward current activated by depolarization in neostriatal neurons.  相似文献   

8.
Sharp electrode current-clamp recording techniques were used to characterize the response of nigral dopamine (DA)-containing neurons in rat brain slices to injected current pulses applied in the presence of TTX (2 microM) and under conditions in which apamin-sensitive Ca2+-activated K+ channels were blocked. Addition of apamin (100-300 nM) to perfusion solutions containing TTX blocked the pacemaker oscillation in membrane voltage evoked by depolarizing current pulses and revealed an afterdepolarization (ADP) that appeared as a shoulder on the falling phase of the voltage response. ADP were preceded by a ramp-shaped slow depolarization and followed by an apamin-insensitive hyperpolarizing afterpotential (HAP). Although ADPs were observed in all apamin-treated cells, the duration of the response varied considerably between individual neurons and was strongly potentiated by the addition of TEA (2-3 mM). In the presence of TTX, TEA, and apamin, optimal stimulus parameters (0.1 nA, 200-ms duration at -55 to -68 mV) evoked ADP ranging from 80 to 1,020 ms in duration (355.3 +/- 56.5 ms, n = 16). Both the ramp-shaped slow depolarization and the ensuing ADP were markedly voltage dependent but appeared to be mediated by separate conductance mechanisms. Thus, although bath application of nifedipine (10-30 microM) or low Ca2+, high Mg2+ Ringer blocked the ADP without affecting the ramp potential, equimolar substitution of Co2+ for Ca2+ blocked both components of the voltage response. Nominal Ca2+ Ringer containing Co2+ also blocked the HAP evoked between -55 and -68 mV. We conclude that the ADP elicited in DA neurons after blockade of apamin-sensitive Ca2+-activated K+ channels is mediated by a voltage-dependent, L-type Ca2+ channel and represents a transient form of the regenerative plateau oscillation in membrane potential previously shown to underlie apamin-induced bursting activity. These data provide further support for the notion that modulation of apamin-sensitive Ca2+-activated K+ channels in DA neurons exerts a permissive effect on the conductances that are involved in the expression of phasic activity.  相似文献   

9.
Muscarine-induced membrane responses were studied in dissociated chromaffin cells of the guinea-pig adrenal medulla, using the whole-cell version of the patch-clamp technique. Bath application of muscarine (1-10 microM) produced two distinct current responses at a holding potential of -40 mV. One is an inward current associated with an increase in current noise. This current response was sustained during stimulation and had a reversal potential of 4.5 +/- 3.4 mV (n = 6) with a negative slope conductance below about -30 mV in 12.5 mM K(+)-containing perfusate. The other is a transient outward current. This was evoked at membrane potentials more positive than -60 mV and completely suppressed by addition of 2 mM TEA to the bath solution, suggesting a possible involvement of the Ca2(+)-dependent K+ channel. Generation of the outward current response was suppressed for at least 60-90 s following 25 s muscarinic stimulation and was facilitated by activation of the nicotinic receptor. The maximum inward current seemed to be produced by 3 microM, whereas the threshold concentration required for generation of the outward current was somewhere between 3 and 10 microM. The outward current was evoked less often in cells treated with 2% collagenase for 1 h than in those treated with 0.2% for 30 min. The results suggest that guinea-pig chromaffin cells have two muscarinic receptors: one is coupled with a cation nonselective channel and the other may be related to a Ca2(+)-dependent K+ channel.  相似文献   

10.
1. Voltage-gated K currents were studied in relay neurons (RNs) acutely isolated from somatosensory (VB) thalamus of 7- to 14-day-old rats. In addition to a rapidly activated, transient outward current, IA, depolarizations activated slower K+ currents, which were isolated through the use of appropriate ionic and pharmacological conditions and measured via whole-cell voltage-clamp. 2. At least two slow components of outward current were observed, both of which were sensitive to changes in [K+]o, as expected for K conductances. The first, IK1, had an amplitude that was insensitive to holding potential and a relatively small conductance of 150 pS/pF. It was blocked by submillimolar levels of tetraethylammonium [TEA, 50%-inhibitory concentration (IC50 = 30 microM)] and 4-aminopyridine (4-AP, 40 microM). In the absence of intracellular Ca2+ buffering, the amplitude of IK1 was both larger and dependent on holding potential, as expected for a Ca(2+)-dependent current. Replacement of [Ca2+]o by Co2+ reduced IK1, although the addition of Cd2+ to Ca(2+)-containing solutions had no effect. 3. The second component, IK2, had a normalized conductance of 2.0 nS/pF and was blocked by millimolar concentrations of TEA (IC50 = 4 mM) but not by 4AP. The kinetics of IK2 were analogous to (but much slower than) those of IA in that both currents displayed voltage-dependent activation and voltage-independent inactivation. IK2 was not reduced by the addition of Cd2+ to Ca(2+)-containing solutions or by replacement of Ca2+ by Co2+. 4. IK2 had a more depolarized activation threshold than IA and attained peak amplitude with a latency of approximately 100 ms at room temperature. IK2 decay was nonexponential and could be described as the sum of two components with time constants (tau) near 1 and 10 s. 5. IK2 was one-half steady-state inactivated at a membrane potential of -63 mV, near the normal resting potential for these cells. The slope factor of the Boltzman function describing steady-state inactivation was 13 mV-1, which indicates that IK2 varies in availability across a broad voltage range between -100 and -20 mV. 6. Activation kinetics of IK2 were voltage dependent, with peak latency shifting from 300 to 50 ms in the voltage range -50 to +30 mV. Deinactivation and deactivation were also voltage dependent, in contrast to inactivation, which showed little dependence on membrane potential. Increase in temperature sped the kinetics of IK2, with temperature coefficient (Q10) values near 3 for activation and inactivation. Heating increased the amplitude of IK2 with a Q10 value near 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Na+ and Ca2+ currents of acutely isolated adult rat nodose ganglion cells   总被引:9,自引:0,他引:9  
The electrical properties of nodose ganglion cells acutely isolated from adult rats were studied using the whole-cell patch-clamp recording method. Current-clamp recordings revealed a mean resting membrane potential of -54.3 mV and an input resistance of 527 M omega. Depolarizing current steps evoked action potentials with the following properties (mean): amplitude 111 mV, threshold -36 mV, and rate of rise 117 V/s. Two types of action potentials were observed, short and long duration. These properties, with the exception of input resistance (527 M omega cf. 50 M omega), are similar to those reported previously using intracellular recording methods in intact nodose ganglia (11, 20, 28). Brief application of 10 microM 5-hydroxytryptamine resulted in a rapid depolarization and burst of action potentials in the majority of cells. With voltage-clamp recording, step depolarizations to potentials positive to -10 mV elicited a transient inward current that was followed by a sustained outward current. Inward Na+ current was isolated by ion substitution and pharmacological agents. Two types of Na+ current were observed. One current was completely abolished by 3-15 microM tetrodotoxin (TTX), had a rapid time course, activated over the potential range -60 to -10 mV, and attained half-maximal conductance at -30 mV. The other current persisted in the presence of 15 microM TTX, had a slower time course, activated over the potential range -30 to 0 mV, and attained half-maximal conductance at -15 mV. In addition, 500 microM Cd2+ and 5.0 mM Co2+ reduced the TTX-insensitive current to 53 and 42% of control, respectively. Inward Ca2+ current was isolated by ion substitution and pharmacological agents and was identified by a dependence on external Ca2+. Cd2+ (500 microM) and Co2+ (5 mM) reduced the maximal inward current to 5 and 20% of control, respectively. When Ba2+ was substituted for Ca2+ as the charge carrier, the maximal inward current increased to 175% of control. Some cells had two Ca2+ current components, an inactivating component that activated near -60 mV and a large sustained current that activated near -40 mV. The initial inactivating current appeared as a "hump" on the current-voltage (I-V) curve over the potential range of -60 to -30 mV. The results indicate that, following isolation of these adult mammalian neurons, the membrane surfaces are sufficiently clean to allow patch-clamp recording.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A Ba(2+)-sensitive K(+) current was studied in neurons of the suprachiasmatic nucleus (SCN) using the whole cell patch-clamp technique in acutely prepared brain slices. This Ba(2+)-sensitive K(+) current was found in approximately 90% of the SCN neurons and was uniformly distributed across the SCN. Current-clamp studies revealed that Ba(2+) (500 microM) reversibly depolarized the membrane potential by 6.7 +/- 1.3 mV (n = 22) and concomitantly Ba(2+) induced an increase in the spontaneous firing rate of 0.8 +/- 0.2 Hz (n = 12). The Ba(2+)-evoked depolarizations did not depend on firing activity or spike dependent synaptic transmission. No significant day/night difference in the hyperpolarizing contribution to the resting membrane potential of the present Ba(2+)-sensitive current was observed. Voltage-clamp experiments showed that Ba(2+) (500 microM) reduced a fast-activating, voltage-dependent K(+) current. This current was activated at levels below firing threshold and exhibited outward rectification. The Ba(2+)-sensitive K(+) current was strongly reduced by tetraethylammonium (TEA; 20 and 60 mM) but was insensitive to 4-aminopyridine (4-AP; 5 mM) and quinine (100 microM). A component of Ba(2+)-sensitive K(+) current remaining in the presence of TEA exhibited no clear voltage dependence and is less likely to contribute to the resting membrane potential. The voltage dependence, kinetics and pharmacological properties of the Ba(2+)- and TEA-sensitive K(+) current make it unlikely that this current is a delayed rectifier, Ca(2+)-activated K(+) current, ATP-sensitive K(+) current, M-current or K(+) inward rectifier. Our data are consistent with the Ba(2+)- and TEA-sensitive K(+) current in SCN neurons being an outward rectifying K(+) current of a novel identity or belonging to a known family of K(+) channels with related properties. Regardless of its precise molecular identity, the current appears to exert a significant hyperpolarizing effect on the resting potential of SCN neurons.  相似文献   

13.
Long lasting outward currents mediated by Ca2+-activated K+ channels can be induced by Ca2+ influx through N-methyl-D-aspartate (NMDA)-receptor channels in voltage-clamped hippocampal pyramidal neurons. Using specific inhibitors, we have attempted to identify the channels that underlie these outward currents. At a holding potential of -50 mV, applications of 1 mM NMDA to the soma of cultured hippocampal pyramidal neurons induced the expected inward currents. In 44% of cells tested, these were followed by outward currents (average amplitude 60 +/- 7 pA) that peaked 2.5 s after the initiation of the inward NMDA currents and decayed with a time constant of 1.4 s. In 43% of those cells exhibiting an outward current, SK channel inhibitors, UCL 1848 (100 nM) and apamin (100 nM) abolished the outward current. In the remainder of the cells, the outward currents were either insensitive or only partly inhibited (44 +/- 4%) by 100 nM UCL 1848. In these cells, the outward currents were reduced by the slow afterhyperpolarization (sAHP) inhibitors, muscarine (3 microM; 43 +/- 9%), UCL 1880 (3 microM; 34 +/- 10%), and UCL 2027 (3 microM; 57 +/- 6%). Neither the BK channel inhibitor, charybdotoxin (100 nM), nor the Na+/K+ ATPase inhibitor, ouabain (100 microM), reduced these outward currents. Irrespective of the pharmacology, the time course of the outward current did not differ. Interestingly, no correlation was observed between the presence of a slow apamin-insensitive afterhyperpolarization and an outward current insensitive to SK channel blockers following NMDA-receptor activation. It is concluded that an NMDA-mediated rise in [Ca2+]i can result in the activation of apamin-sensitive SK channels and of the channels that underlie the sAHP. The activation of these channels may, however, depend on their location relative to NMDA receptors as well as on the spatial Ca2+ buffering within individual neurons.  相似文献   

14.
Cochlear ganglion neurons were isolated from chick embryos and membrane currents recorded using the patch-clamp technique. Depolarizing voltage steps elicited transient outward currents whose inactivation was best fitted by a double-exponential function with time constants < 30 ms and > 100 ms. The fast inactivating transient outward current (Ito,f) had a threshold for activation of -61 +/- 5.5 mV; steady-state inactivation was voltage-dependent between -90 and -60 mV, with half-inactivation near -75 mV. The slowly inactivating outward current (Ito,s) showed an activation threshold of 34 +/- 4 mV. Half-inactivation was at -67 +/- 3 mV. Ito,f was blocked by 4-aminopyridine which did not affect Ito,s. The effect was concentration- and voltage-dependent. Tetraethylammonium had no effect on either fast or slow transient currents but reduced the amplitude of the non-inactivating outward current in a dose-dependent manner. Ito,f was strongly inhibited by removing Ca2+ from the extracellular bathing solution. Cobalt ions inhibited Ito,f in a dose-dependent manner between 2 and 20 mM. The inhibitory effect of Co2+ was voltage-dependent, displaying a bell-shaped inhibition curve as a function of membrane voltage, maximal inhibition occurring between -20 and 0 mV. Ca2+ removal did not affect Ito,s and partially reduced the amplitude of the steady-state current. These results provide kinetic and pharmacological evidence for the presence of two distinct transient outward currents in cochlear neurons. These currents may play a role in the first synaptic relay of sound transmission.  相似文献   

15.
The effect of protein kinase C (PKC) on the Ca2+-activated K+ current (IK,Ca) in guinea-pig gastric myocytes was studied using the whole-cell voltage-clamp technique. At a holding potential of 0 mV, IK,Ca, recorded as spontaneous, transient, outwards currents (STOCs), was markedly inhibited, both in mean amplitude (54 +/- 5%) and frequency (60 +/- 8%) by 1 microM phorbol 12, 13 dibutyrate (PDBu, n = 6). These effects were antagonized by pretreatment with 10 nM bisindolylmaleimide I (n = 5), a selective inhibitor of PKC. The possibility that the inhibition of STOCs was due to direct channel inhibition by PKC was addressed using inside-out or open-cell-attached patch-clamp techniques, the latter established using beta-escin. PDBu did not alter the conductance or open probability of the KCa channel in any mode, suggesting that PKC does not inhibit the KCa channel directly. To study the involvement of the Na/Ca exchanger in the inhibition of STOCs by PDBu, its operation was prevented by replacing Na+ in the internal solution by tris(hydroxymethyl)aminomethane (TRIS) and external Na+ by equimolar K+ and Ca2+-activated inwards K+ currents recorded at a holding potential of 0 mV. Neither the mean amplitude (96 +/- 8%) nor the frequency of these currents was inhibited significantly by 1 microM PDBu (n = 5). Like PDBu, 5 microM 2-(2-[4-(4-nitrobenzyloxy)phenyl]ethyl) isothiourea methanesulphonate (KB-R7943), a selective inhibitor of the reverse mode Na/Ca exchanger, also inhibited the mean amplitude (45 +/- 6%) and frequency (26 +/- 2%) of STOCs at the holding potential of 0 mV (n=6). The results suggest that the suppression of STOCs by PKC is mediated by inhibition of the Na/Ca exchanger.  相似文献   

16.
We investigated the permeability of Cs+ and Na+ through various ion channels in rat atrial myocytes using the whole-cell voltage-clamp technique. With isotonic CsCl (140 mM) on both sides of the membrane and nominally [Ca2+]o-free conditions, depolarising clamp pulses induced an increase of outward currents which showed a biphasic time course. Repolarisation to the holding potential induced inward tail currents. With isotonic NaCl, depolarisation also induced outward currents which showed a monotonic decay, but inward tail currents were not observed. Both in NaCl and CsCl, currents were hardly affected by TEA (10 mM), 4-AP (5 mM) and DIDS (100 microM). Nicardipine (1 M) almost completely blocked time-dependent outward currents in isotonic NaCl solution, leaving only time-independent currents which showed linear I-V relationship. In isotonic CsCl conditions, nicardipine blocked outward current considerably, but there still remained time-dependent outward currents and inward tail currents. Addition of E-4031 (2-20 M) which is known as a specific blocker of the rapidly activating delayed rectifier K+ current (IKr) completely blocked these time-dependent outward and inward currents, leaving only a time-independent current. Time-independent currents recorded in the presence of nicardipine and E-4031 were inhibited by GdCl3, which is known to block non-selective cation (NSC) currents. From these results, it was suggested that NSC current in atrial myocytes can be investigated in isotonic Cs+ or Na+ solution in the presence of Ca2+ channel and IKr blockers.  相似文献   

17.
Rat hippocampal neurons grown in dissociated cell culture were studied in a medium containing 1 microM tetrodotoxin (TTX) and 25 mM tetraethylammonium (TEA), which eliminated the Na+ and K+ conductances normally activated by depolarizing current injections. In this medium depolarizing current pulses evoked depolarizing regenerative potentials and afterhyperpolarizations in most cells. Both of these events were blocked by close application of Co2+ or Cd2+. These events resemble Ca2+ spikes reported previously in hippocampal pyramidal cells. The membrane potential at which these Ca2+ spikes could be triggered and the rheobase current necessary were dependent on the potential at which the cell was conditioned: the more depolarized the holding potential, the more negative the absolute potential at which a spike could be triggered and the less rheobase current required. The duration of these Ca2+ spikes was also sensitive to the holding potential: the more depolarized the holding level, the longer the duration of the triggered spikes. The amplitude and duration of the Ca2+ spikes were enhanced in a reversible manner by 0.5-1.0 mM 4-aminopyridine (4-AP) delivered in the vicinity of the cell. Two-electrode voltage-clamp analysis of cells studied in TTX, TEA-containing medium revealed an inward current response that peaked in 25-50 ms during depolarizing commands. This response first became detectable during commands to -30 mV. It peaked in amplitude during commands to -10 mV and was enhanced in medium containing elevated [Ca2+]0. It was blocked by either 20 mM Mg2+, 0.2 mM Cd2+, 5 mM Co2+, or 5 mM Mn2+. These results have led us to identify this inward current response as ICa2+. 4-AP enhanced the magnitude and duration of ICa2+ independent of the drug's depressant effects on a transient K+ current also observed under these same experimental conditions. In many but not all cells the Ca2+ spike was followed by a long-lasting hyperpolarization associated with an increase in membrane conductance. This was blocked by Co2+. Under voltage clamp ICa2+ was followed by a slowly developing outward current response that was attenuated by Co2+ or Cd2+. These properties observed under current- and voltage-clamp recording conditions are superficially similar to those previously reported for Ca2+-dependent K+ conductance mechanisms (IC) recorded in these and other membranes. Long-lasting tail currents following activation of IC inverted in the membrane potential range for the K+ equilibrium potential found in these cells.  相似文献   

18.
We used the patch-clamp method to characterize the BK channel in freshly isolated myocytes from the saphenous branch of the rat femoral artery. Single-channel recordings revealed that the BK channel had a conductance of 187 pS in symmetrical 150 mM KCl, was blocked by external tetraethylammonium (TEA) with a KD(TEA) of approx. 300 microM at +40 mV, and by submicromolar charybdotoxin (CTX). The sensitivity of the BK channel to Ca was especially high (KD(ca) approx. 0.1 microM at +60 mV) compared to skeletal muscle and neuronal tissues. We also investigated the macroscopic K current, which under certain conditions is essentially sustained by BK channels. This conclusion is based on the findings that the macroscopic current activated upon depolarization follows a single exponential time course and is virtually fully blocked by 100 nM CTX and 5 mM external TEA. We made use of this occurrence to assess the voltage and Ca dependence of the macroscopic BK current. In intact myocytes, the BK channel showed a strong and voltage-dependent reduction of the outward current (62% at +40 mV), most likely due to block by intracellular Ba and polyamines. The results obtained from macroscopic and unitary current indicate that approx. 2.5% of the BK channels are active under physiological conditions, sustaining approx. 20 pA of outward current. Given the high input resistance of these cells, few BK channels are required to open in order to cause a significant membrane hyperpolarization, and thus function to limit the contraction resulting from acute increases in intravascular pressure, or in response to hypertensive pathologies.  相似文献   

19.
We examined modulation of ionic currents by Zn2+ in acutely dissociated neurons from the rat's horizontal limb of the diagonal band of Broca using the whole-cell patch-clamp technique. Application of 50 microM Zn2+ increased the peak amplitude of the transiently activated potassium current, I(A) (at + 30 mV), from 2.20+/-0.08 to 2.57+/-0.11 nA (n = 27). This response was reversible and could be repeated in 0 Ca2+/1 microM tetrodotoxin (n = 15). Zn2+ shifted the inactivation curve to the right, resulting in a shift in the half-inactivation voltage from 76.4+/-2.2 to -53.4+/-2.0 mV (n = 11), with no effect on the voltage dependence of activation gating (n = 15). There was no significant difference in the time to peak under control conditions (7.43+/-0.35 ms, n = 14) and in the presence of Zn2+ (8.20+/-0.57 ms, n = 14). Similarly, the time constant of decay of I(A) (tau(d)) at + 30 mV showed no difference (control: 38.68+/-3.68 ms, n = 15; Zn2+: 38.48+/-2.85 ms, n = 15). I(A) was blocked by 0.5-1 mM 4-aminopyridine. In contrast to its effects on I(A), Zn2+ reduced the amplitude of the delayed rectifier potassium current (I(K)). The reduction of outward K+ currents was reproducible when cells were perfused with 1 microM tetrodotoxin in a 0 Ca2+ external solution. The amplitude of the steady-state outward currents at +30 mV under these conditions was reduced from 6.40+/-0.23 (control) to 5.76+/-0.18 nA in the presence of Zn2+ (n = 16). The amplitudes of peak sodium currents (INa) were not significantly influenced (n = 10), whereas barium currents (I(Ba)) passing through calcium channels were potently modulated. Zn2+ reversibly reduced I(Ba) at -10 mV by approximately 85% from -2.06+/-0.14 nA under control conditions to -0.30+/-0.10 nA in the presence of Zn2+ (n = 14). Further analyses of Zn2+ effects on specific calcium channels reveals that it suppresses all types of high-voltage-activated Ca2+ currents. Under current-clamp conditions, application of Zn2+ resulted in an increase in excitability and loss of accommodation (n = 13), which appears to be mediated through its effects on Ca2+-dependent conductances.  相似文献   

20.
BK channels in human glioma cells   总被引:4,自引:0,他引:4  
Ion channels in inexcitable cells are involved in proliferation and volume regulation. Glioma cells robustly proliferate and undergo shape and volume changes during invasive migration. We investigated ion channel expression in two human glioma cell lines (D54MG and STTG-1). With low [Ca2+]i, both cell types displayed voltage-dependent currents that activated at positive voltages (more than +50 mV). Current density was sensitive to intracellular cation replacement with the following rank order; K+ > Cs+ approximately = Li+ > Na+. Currents were >80% inhibited by iberiotoxin (33 nM), charybdotoxin (50 nM), quinine (1 mM), tetrandrine (30 microM), and tetraethylammonium ion (TEA; 1 mM). Extracellular phloretin (100 microM), an activator of BK(Ca2+) channels, and elevated intracellular Ca2+ negatively shifted the I-V curve of whole cell currents. With 0, 0.1, and 1 microM [Ca2+]i, the half-maximal voltages, V(0.5), for whole cell current activation were +150, +65, and +12 mV, respectively. Elevating [K+]o potentiated whole cell currents in a fashion proportional to the square-root of [K+]o. Recording from cell-attached patches revealed large conductance channels (150-200 pS) with similar voltage dependence and activation kinetics as whole cell currents. These data indicate that human glioma cells express large-conductance, Ca2+ activated K+ (BK) channels. In amphotericin-perforated patches bradykinin (1 microM) activated TEA-sensitive currents that were abolished by preincubation with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM). The BK channels described here may influence the responses of glioma cells to stimuli that increase [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号