首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfluorooctane sulfonate (PFOS), a kind of widely distributed environmentally organic compound, has been found to cause developmental toxicity. Although microRNAs (miRNAs) play an important role in many metabolic tasks, whether and how they are involved in the process of PFOS‐induced toxicity is largely unknown. To address this problem, PFOS‐induced changes in miRNAs and target gene expression in zebrafish embryos, and the potential mechanism of PFOS‐induced toxic action were studied in this research. Zebrafish embryos were exposed to 1 µg ml?1 PFOS or DMSO control from 6 h post‐fertilization (hpf) to 24 or 120 hpf. Subsequently, RNA was isolated from the embryo pool and the expression profiles of 219 known zebrafish miRNAs were analyzed using microarray. Finally, quantitative real‐time polymerase chain reaction was used to validate several miRNAs expression of microarray data. The analysis revealed that PFOS exposure induced significant changes in miRNA expression profiles. A total of 39 and 81 miRNAs showed significantly altered expression patterns after PFOS exposure 24 and 120 hpf. Of the changed miRNAs, 20 were significantly up‐regulated and 19 were significantly down‐regulated (p < 0.01) at 24 hpf, whereas 41 were significantly up‐regulated and 40 were significantly down‐regulated (p < 0.01) at 120 hpf. These miRNAs were involved in development, apoptosis and cell signal pathway, cell cycle progression and proliferation, oncogenesis, adipose metabolism and hormone secretion, whereas there is still little functional information available for 32 miRNAs. Our results demonstrate that PFOS exposure alters the expression of a suite of miRNAs and may induce developmental toxicity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Perfluorooctane sulfonate (PFOS) is an environmental organic pollutant, the potential neurotoxicity of which is causing great concern in fish. In the present study, we examined the effects of PFOS on motor neurons, and investigated the potential toxicological mechanisms oxidative stress in zebrafish embryos. Six-hour post-fertilization (hpf) zebrafish embryos were exposed to 1.0 mg/L PFOS, then we examined the expression of alpha-tubulin, proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 5 (CDK5), and peroxiredoxin 2 (PRX2) after PFOS exposure until 120 hpf. The results showed that PFOS increased alpha-tubulin in the coccygeal spinal cord (CSC) at 96 hpf, whereas decreased alpha-tubulin in the brain and spinal cord at 120 hpf. PCNA expression was highly increased in CSC and abdomen compared with control at 96 and 120 hpf after PFOS exposure. In addition, PFOS exposure caused CDK5 expression to be highly increased in brain region following by down-regulation of PRX2 expression at 96 hpf. These results indicated that, at least in part, the effect on motor neurons induced by PFOS was mediated by dynamically interfering with the expression of alpha-tubulin and PCNA. Furthermore, PFOS-induced toxicity was associated with oxidative stress by deregulating CDK5 and PRX2.  相似文献   

3.
目的以致胚胎毒性阳性药物全反式维甲酸(ATRA)及丙戊酸钠进行斑马鱼胚胎发育毒性试验,建立有效的斑马鱼胚胎发育毒性评价方法。方法采用水浴染毒法,将受精后2h(2hpf)的斑马鱼胚胎暴露于不同浓度梯度的阳性约物。分别在24、48、72和144hpf观察并记录畸形及死亡的胚胎数目。统计阳性药物的EC50和LG50,计算致畸指数(TI=LC50/EG50)。结果两种阳性药物所致斑马鱼胚胎发育早期(24~48hpf)与发育后期(72~144hpf)的畸形表现不同。在72hpf,两种阳性药物对胚胎孵化率均有明显抑制作甩144hpf可见ATRA(≥1.6×10^-3mg/L)和丙戊酸钠(≥1.25×10^2mg/L)严晕致畸作用,T1分别为10.35和5.72。两种阳性药物胚胎敛畸率及死亡率均呈明显的浓度依赖关系,且与已有动物试验及体外试验结果相符。结论以两种阳性药物建立有效的斑马鱼胚胎发育毒性评价方法,可进行进一步的验证。  相似文献   

4.
5.
6.
This study evaluated the effects of β‐diketone antibiotics (DKAs) on the development of embryo‐larval zebrafish (Danio rerio). When exposure to DKAs, developmental malformations, such as hatching delay, curved body axis, pericardial edema, uninflated swim bladder and yolk sac edema, were observed at 120 h postfertilization (hpf). The estimated 120 hpf nominal concentrations of no observed effect concentration and lowest observed effect concentration for DKAs were 18.75 and 37.50 mg/L, respectively, suggesting that DKAs have much lower toxicity than other persistent pollutants. Following DKA exposure, embryonic heart rates were significantly reduced as compared to the controls at 48 and 60 hpf. The peak bending motion frequency appeared 1 h earlier than in control embryos. The 2.34 and 9.38‐mg/L treatment groups had a higher basal swim rate than control groups at 120 hpf in both light and light‐to‐dark photoperiod experiments. The occurrence of high speed swim rates was enhanced approximately threefold to sevenfold in the 2.34 and 9.38 mg/L treatments compared to the control. Glutathione (GSH) concentrations in the 2.34 and 9.38‐mg/L treatments were significantly higher than the control at 72 hpf, suggesting that GSH production was induced at the end of the hatching period. When exposed to DKAs, zebrafish superoxide dismutase enzyme (SOD) activities were significantly inhibited in the early embryonic period, demonstrating that the clearing ability in zebrafish was lower than the generation rate of free radicals. In summary, the combined DKAs were developmentally toxic to zebrafish in their early life stages and had the ability to impair individual behaviors that are of great importance in the assessment of their ecological fitness. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 1134–1146, 2014.  相似文献   

7.
Perfluorooctane sulfonate (PFOS) and ZnO nanoparticles (ZnO–NPs) are frequently detected in the environment, but few studies have assessed their joint toxicity. In this study, the acute toxicity and chronic toxicity to zebrafish (Danio rerio) induced by PFOS in the presence of ZnO–NPs were investigated, including developmental toxicity and DNA damage. The embryos were exposed to PFOS (only) (0.4, 0.8, and 1.6 mg/L) and PFOS plus ZnO–NPs (0.4 + 50, 0.8 + 50, and 1.6 + 50 mg/L) solutions to evaluate mortality (96 h), body length (96 h), hatch rate (72 h), heart rate (48 h),and malformation rate (96 h). The results revealed that the co‐treatment could cause more severe developmental toxicity compared with the control and single‐treatments, and the toxic effects generally increased in a dose–response manner. In addition, adult zebrafish were exposed to single and mixed solutions of PFOS and ZnO–NPs (at the concentrations mentioned above) for 30 days. DNA damage to zebrafish was evaluated by the comet assay and micronucleus test. We found that the PFOS single‐treatment at all doses (0.4, 0.8, and 1.6 mg/L) could strongly induce DNA damage to peripheral blood cells and that ZnO–NPs could aggravate the formation of DNA damage in co‐treatments. Histological examination of liver, testicle, and ovary showed that the presence of ZnO–NPs (50 mg/L) could also cause more serious histological damage to adult zebrafish than PFOS alone. As a result, the synergistic effects played an important role during joint exposure. Our observations provide a basic understanding of the joint toxicity of PFOS and ZnO–NPs to aquatic organisms. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 360–371, 2016.  相似文献   

8.
9.
Lead is a persistent metal and commonly present in our living environment. The present study was aimed to investigate lead-induced embryonic toxicity, behavioral responses, and adult learning/memory deficit in zebrafish. Lead acetate (PbAc) induced malformations such as uninflated swim bladder, bent spine and yolk-sac edema with an EC50 of 0.29 mg/L at 120 h post fertilization (hpf). Spontaneous movement as characterized by tail bend frequency was significantly altered in zebrafish embryos following exposure to PbAc. Behavior assessment demonstrated that lead exposure changed behavioral responses in zebrafish larvae, as hyperactivity was detected within the first minute of light-to-dark transition in the fish exposed to PbAc from 6 to 96 hpf, and a different dose-dependent change was found in swimming speeds in the dark and in the light at 120 hpf following lead exposure. Learning/memory task assay showed that embryos exposed to PbAc from 6 to 120 hpf developed learning/memory deficit at adulthood as exhibited by a significant decrease in accuracy rate to find the food and a significant increase in finding time. Overall, our results suggested that low dose of developmental lead exposure resulted in embryonic toxicity, behavioral alteration, and adult learning/memory deficit in zebrafish.  相似文献   

10.
Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant and has been widely detected in the sea water. However, toxic effects of PFOS on cardiac development in marine organisms have not been reported. In the present study, we investigated the toxicity of PFOS on the cardiac development using Oryzias melastigma embryos. The embryos at 2 days post-fertilization (dpf) were continuous exposed to PFOS (1, 4 and 16 mg/L) for various periods, cardiac function and morphology were examined at different developmental stages. The results showed that exposure to 4 and 16 mg/L PFOS resulted in enlarged the sinus venosus (SV)-bulbus arteriosus (BA) distance and altered the heart rate. We further investigated eight heart-development related genes to test the effects of PFOS on molecular level. Seven genes were first cloned in O. melastigma and their temporal expression patterns were assayed. Most of the genes were highly expressed in the 6dpf, which is the critical stage for heart development. Their expression levels upon PFOS exposure were studied. The expressions of GATA4 and NKX2.5 were significantly down-regulated while COX-2, FGF8 and ATPase were significantly up-regulated at 6dpf. Our results showed for the first time that PFOS exposure affected the expression of cardiac development-related genes, development and function of heart in the marine medaka.  相似文献   

11.
Toxicological effects of butylparaben (BuP) and ethylparaben (EtP) on zebrafish (Danio rerio) early-life stages are not well established. The present study evaluated, using zebrafish embryos and larvae, the toxicity of BuP and EtP through benchmark dose (BMD) approach. BuP was more toxic than EtP to zebrafish larvae. In fact, Lethal Concentration 50 (LC50) values at 96 h post-fertilization (hpf) for BuP and EtP were 2.34 mg/L and 20.86 mg/L, respectively. Indeed, BMD confidence interval (lower bound (BMDL) - upper bound (BMDU) was 0.91–1.92 mg/L for BuP and 10.8–17.4 mg/L for EtP. Zebrafish embryos exposed to 1 mg/L, 2.5 mg/L of BuP and 5 mg/L, 10 mg/L, 20 mg/L, 30 mg/L of EtP showed several developmental abnormalities and teratological effects compared to negative control. Exposed zebrafish developed reduced heartbeat, reduction in blood circulation, blood stasis, pericardial edema, deformed notochord and misshaped yolk sac. Embryos exposed to the highest concentrations of the chemicals (2.5 mg/L of BuP, 10 mg/L, 20 mg/L and 30 mg/L of EtP) showed the developmental abnormalities at 48 hpf while those treated with 1 mg/L of BuP and 10 mg/L of EtP reported behavioral changes at 72 hpf, including trembling of head, pectoral fins and spinal cord. This research identified the lethal and sublethal effects of BuP and EtP in zebrafish early-life stages and could be helpful to elucidate the developmental pathways of toxicity of parabens.  相似文献   

12.
ABSTRACT

Due to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology. Zebrafish embryos were exposed to CTAB-AuNR (0–150 µg/L) to determine for developmental assessment until 96 hr post fertilization (hpf) and lethality. Uptake of CTAB-AuNR by embryos and nanoparticles potential to induce DNA damage was also measured at 48 and 96 hpf. Analysis of the concentration-response curves with cumulative mortality at 96 hpf revealed a median lethal concentration (LC50,96h) of 110.2 μg/L. At sublethal concentrations, CTAB-AuNR suspensions were found to produce developmental abnormalities such as tail deformities, pericardial edema, decreased body length, and delayed eye, head, and tail elongation development. Further, less than 1% of the initial concentration of CTAB-AuNR present in the exposure media was internalized by zebrafish embryos prior to (48 hpf) and after hatching (96 hpf). In addition, no marked DNA damage was detected in embryos after exposure to CTAB-AuNR. Overall, CTAB-AuNR suspensions produced lethal and sublethal effects on zebrafish embryos with possible repercussions in fitness of adult stages. However, these results foresee a low risk for fish since the observed effects occurred at concentrations above the levels expected to find in the aquatic environment.  相似文献   

13.
14.
Auranofin (AF) is used in clinic for the treatment of rheumatoid arthritis, repurposing of AF as an anticancer drug has just finished a phase I/II clinical trial, but the developmental toxicity of AF remains obscure. This study focused on its developmental toxicity by using zebrafish embryos. Zebrafish embryos were exposed to different concentrations (1, 2.5, 5, 10 μm ) of AF from 2 h post‐fertilization (hpf) to 72 hpf. At 72 hpf, two major developmental defects caused by AF were found, namely severe pericardial edema and hypopigmentation, when embryos were exposed to concentrations higher than 2.5 μm . Biochemical detection of oxidative stress enzyme combined with expressions of a series of genes related to oxidative stress, cardiac, metal stress and pigment formation were subsequently tested. The superoxide dismutase activity was decreased while malondialdehyde content was accumulated by AF treatment. The expression of oxidative stress‐related genes (sod1 , gpx1a , gst ), pigment‐related genes (mitfb , trp‐1a ) and one metal stress‐related gene ctr1 were all decreased by AF exposure. The expressions of cardiac‐related genes (amhc , vmhc ) and one metal‐related gene hsp70 were found to be significantly upregulated by AF exposure. These findings indicated the potential developmental toxicity of AF on zebrafish early development. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Dioxin‐like PCB126 is a persistent organic pollutant that causes a range of syndromes including developmental toxicity. Dioxins have a high affinity for aryl hydrocarbon receptor (AhR) and induce cytochrome P4501A (CYP1A). However, the role of CYP1A activity in developmental toxicity is less clear. To better understand dioxin induced developmental toxicity, we exposed zebrafish (Danio rerio) embryos to PCB126 at concentrations of 0, 16, 32, 64, and 128 μg L?1 from 3‐h post‐fertilization (hpf) to 168 hpf. The embryonic survival rate decreased at 144 and 168 hpf. The fry at 96 hpf displayed gross developmental malformations, including pericardial and yolk sac edema, spinal curvature, abnormal lower jaw growth, and non‐inflated swim bladder. The pericardial and yolk sac edema rate significantly increased and the heart rate declined from 96 hpf compared with the controls. PCB126 did not alter the hatching rate. To elucidate the mechanism of PCB126‐induced developmental toxicity, we conducted ethoxyresorufin‐O‐deethylase (EROD) in vivo assay to determine CYP1A enzyme activity, and real‐time PCR to study the induction of CYP1A mRNA gene expression in embryo/larval zebrafish at 24, 72, 96, and 132 hpf. In vivo EROD activity was induced by PCB126 at 16 μg L?1 concentration as early as 72 hpf but significant increases were observed only in zebrafish exposed to 64 and 128 μg L?1 doses (p < 0.005) at 72, 96, and 132 hpf. Induction of CYP1A mRNA expression was significantly upregulated in zebrafish exposed to 32 and 64 μg L?1 at 24, 72, 96, and 132 hpf. Overall, the severe pericardial and yolk sac edema and reduced heart rate suggest that heart defects are a sensitive endpoint, and the general trend of dose‐dependent increase in EROD activity and induction of CYP1A mRNA gene expression provide evidence that the developmental toxicity of PCB126 to zebrafish embryos is mediated by activation of AhR. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 201–210, 2016.  相似文献   

17.
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that affect embryonic development. The purpose of this study was to examine the effects of embryonic exposure to PCBs on early retinal development in zebrafish, Danio rerio. Zebrafish embryos were immediately exposed to different concentrations (0, 0.125, 0.25, 0.5, 1.0 and 2.0 mg) of PCBs per liter of medium at 28.5 °C. Embryos were assessed at 30, 48, 72 and 96 h post‐fertilization (hpf) for changes in embryonic survival rate, development, larval retinal morphology and ultrastructure of the retina. The results show that PCB exposure decreased the survival rate of embryos in a time‐ and dose‐dependent manner. Embryos exposed to the higher concentrations of PCBs (0.5, 1.0 and 2.0 mg l?1) displayed obvious gross morphological deformities. At 72 hpf, the retinal layer development of zebrafish was delayed at higher PCB concentrations (1.0 mg l?1). At 96 hpf, irregularity of photoreceptor cells arrangement and thickening of photoreceptor and ganglionic layers were observed in PCB‐treated larvae at concentrations of 0.25–1 mg l?1. Ultrastructural examination showed signs of growth inhibition of the photoreceptor outer segment at 0.25–1 mg l?1 PCB exposure at 72 hpf, as well as the appearance of massive vacuoles and holes inside the outer segments in the PCB exposure group at 96 hpf. These results suggest that embryonic exposure to moderate and high levels of PCBs induced developmental deficits in zebrafish retinas, particularly in photoreceptor cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Cadmium-induced ectopic apoptosis in zebrafish embryos   总被引:2,自引:0,他引:2  
In this study, we tested the hypothesis that cadmium-induced developmental toxicity was mediated via ectopic occurrence of apoptosis during embryonic development. We employed confocal microscopy to acquire images of whole-mount staining of apoptotic cells in zebrafish embryo exposed to 100 micro M cadmium from 5 hours post fertilisation (hpf) to 28 hpf. Three-dimensional reconstruction of the images was performed and the spatial and temporal distributions of apoptotic cells in the embryos were compared. In cadmium-treated embryos with varying degrees of gross developmental malformations, significantly higher numbers of apoptotic cells were detected with this method. In order to detect the precise locations of apoptotic cells, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay in sectioned embryos. In the degenerating neural tube of cadmium-treated embryos apoptotic cells were detected, while in the healthy neural tube of the untreated controls no apoptotic cells were found. We then employed flow cytometry to investigate whether cadmium exposure would affect the dynamics of apoptosis or induce any abnormalities in cell-cycle progression. It appeared that cadmium did not induce cell-cycle arrest. The percentages of apoptotic cells did not differ in the two groups at 13, 16 or 19 hpf. At 28 hpf, however, a significantly higher percentage of apoptotic cells were found in the cadmium-treated group. Exposure to cadmium, therefore, induced ectopic apoptosis at 28 hpf without affecting the dynamics of apoptosis at earlier developmental stages.  相似文献   

19.
20.
目的:通过研究瑞舒伐他汀钙对斑马鱼血管发育的影响,探讨瑞舒伐他汀钙抑制血管的作用机制。方法:将瑞舒伐他汀钙处理的斑马鱼胚胎作为实验组,以0.5%二甲亚砜处理的胚胎作为对照组。从受精卵形成后0.5h开始刺激,受精后24h观察药物对斑马鱼血管发育的影响。使用荧光显微镜观察新生血管状态,记录血管缺失数目,分别从受精后0、6、12和24h药物处理后的斑马鱼胚胎中提取总的RNAs,采用实时定量逆转录聚合酶链反应(RT-PCR)检测血管内皮生长因子A(vascular endothelial growth factor A,VEGF-A)的表达变化。结果:瑞舒伐他汀钙可明显抑制斑马鱼血管发育,且在0.01~0.08nmol/L浓度范围内抑制作用与药物浓度成正比。实验组较对照组VEGF-A表达量降低,在药物作用的24h具有显著性差异(P<0.05)。结论:瑞舒伐他汀钙可通过减少VEGF-A的表达抑制斑马鱼血管发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号