首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Glycosaminoglycans (GAGs) are important structural and functional components in native aortic heart valves and in glutaraldehyde (Glut)-fixed bioprosthetic heart valves (BHVs). However, very little is known about the fate of GAGs within the extracellular matrix of BHVs and their contribution to BHV longevity. BHVs used in heart valve replacement surgery have limited durability due to mechanical failure and pathologic calcification. In the present study we bring evidence for the dramatic loss of GAGs from within the BHV cusp structure during storage in saline and both short- and long-term Glut fixation. In order to gain insight into role of GAGs, we compared properties of fresh and Glut-fixed porcine heart valve cusps before and after complete GAG removal. GAG removal resulted in significant morphological and functional tissue alterations, including decreases in cuspal thickness, reduction of water content and diminution of rehydration capacity. By virtue of this diminished hydration, loss of GAGs also greatly increased the "with-curvature" flexural rigidity of cuspal tissue. However, removal of GAGs did not alter calcification potential of BHV cups when implanted in the rat subdermal model. Controlling the extent of pre-implantation GAG degradation in BHVs and development of improved GAG crosslinking techniques are expected to improve the mechanical durability of future cardiovascular bioprostheses.  相似文献   

2.
Wells SM  Sacks MS 《Biomaterials》2002,23(11):2389-2399
Zero transvalvular pressure fixation is thought to improve porcine bioprosthetic heart valve (BHV) durability by preserving the collagen fiber architecture of the native tissue, and thereby native mechanical properties. However, it is not known if the native mechanical properties are stable during long-term valve operation and thus provide additional durability. To address this question, we examined the biaxial mechanical properties of porcine BHV fixed at 0 and 4mmHg transvalvular pressure following 0, 1 x 10(6), 50 x 10(6), and 200 x 10(6) in vitro accelerated test cycles. At 0 cycles, the extensibility and degree of axial cross-coupling of the zero-pressure-fixed cusps were higher than those of the low-pressure-fixed cusps. Furthermore, extensibility of the zero-pressure-fixed tissue decreased between 1 x 10(6) and 50 x 10(6) cycles, approaching that of the low-pressure-fixed tissue, whose extensibility was unchanged over 0-200 x 10(6) cycles. The decrease in extensibility of the zero-pressure-fixed tissue between 1 x 10(6) and 50 x 10(6) cycles may be attributable to the ability of its collagen fibers to undergo larger changes in orientation and crimp with cyclic loading. These observations suggest that the collagen fiber architecture of the 0-mmHg-fixed porcine BHV, although locked in place by chemical fixation, may not be maintained over a sufficient number of cycles to be clinically beneficial. This study further underscores that chemically treated collagen fibers can undergo conformational changes under long-term cyclic loading not associated with damage.  相似文献   

3.
Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mechanical function of cardiac valve cusps caused progressive damage to the molecular structure of type I collagen as assessed by Fourier transform IR spectroscopy (FTIR). The cyclic fatigue caused a progressive loss of helicity of the bioprosthetic cuspal collagen, which was evident from FTIR spectral changes in the amide I carbonyl stretching region. Furthermore, cardiac valve fatigue in these studies also led to loss of glycosaminoglycans (GAGs) from the cuspal extracellular matrix. The GAG levels in glutaraldehyde crosslinked porcine aortic valve cusps were 65.2 +/- 8.66 microg uronic acid/10 mg of dry weight for control and 7.91 +/- 1.1 microg uronic acid/10 mg of dry weight for 10-300 million cycled cusps. Together, these molecular changes contribute to a significant gradual decrease in cuspal bending strength as documented in a biomechanical bending assay measuring three point deformation. We conclude that fatigue-induced damage to type I collagen and loss of GAGs are major contributing factors to material degeneration in bioprosthetic cardiac valve deterioration.  相似文献   

4.
We have recently demonstrated that noncalcific tissue damage can lead to significant collagen degradation in clinically explanted bioprosthetic heart valves (BHVs). In the present study we quantified the early response of glutaraldehyde treated bovine pericardium (GLBP) to cyclic tensile loading to begin to elucidate the mechanisms of noncalcific tissue degeneration in BHV biomaterials. GLBP specimens were cycled at 30 Hz to a maximum uniaxial strain of 16% (corresponding to approximately 1-MPa peak stress), with the loading direction parallel to the preferred collagen fiber (PD) direction. After 30 x 10(6) cycles, specimens were subjected to biaxial mechanical testing, then cycled until 65 x 10(6) cycles. The results indicated a permanent change in the unloaded tissue dimensions of +7.1% strain in the PD direction and -7.7% strain in the cross fiber direction (XD) after 65 x 10(6) cycles and an increase of the collagen crimp period from 40.6 to 45.2 microm by 65 x 10(6) cycles (p = 0.05). Fourier transform IR spectroscopy analysis indicated that cyclic fatigue of GLBP leads to both collagen conformational changes and early denaturation. Furthermore, no significant changes in areal strain were found under 1-MPa equibiaxial stress, indicating that cyclic loading changed the collagen fiber orientation but not the overall tissue compliance. These observations suggest that while deterioration of collagen begins immediately, fiber straightening and reorientation dominates the changes in the mechanical behavior up to 65 x 10(6) cycles. The present study underscores the complexity of the response of biologically derived biomaterials to cyclic mechanical loading. Improved understanding of these phenomena can potentially guide the development of novel chemical treatment methods that seek to improve BHV durability by minimizing these degenerative processes.  相似文献   

5.
Substitute heart valves composed of human or animal tissues have been used since the early 1960s, when aortic valves obtained fresh from human cadavers were transplanted to other individuals as allografts. Today, tissue valves are used in 40% or more of valve replacements worldwide, predominantly as stented porcine aortic valves (PAV) and bovine pericardial valves (BPV) preserved by glutaraldehyde (GLUT) (collectively termed bioprostheses). The principal disadvantage of tissue valves is progressive calcific and noncalcific deterioration, limiting durability. Native heart valves (typified by the aortic valve) are cellular and layered, with regional specializations of the extracellular matrix (ECM). These elements facilitate marked repetitive changes in shape and dimension throughout the cardiac cycle, effective stress transfer to the adjacent aortic wall, and ongoing repair of injury incurred during normal function. Although GLUT bioprostheses mimic natural aortic valve structure (a) their cells are nonviable and thereby incapable of normal turnover or remodeling ECM proteins; (b) their cuspal microstructure is locked into a configuration which is at best characteristic of one phase of the cardiac cycle (usually diastole); and (c) their mechanical properties are markedly different from those of natural aortic valve cusps. Consequently, tissue valves suffer a high rate of progressive and age-dependent structural valve deterioration resulting in stenosis or regurgitation (>50% of PAV overall fail within 10-15 years; the failure rate is nearly 100% in 5 years in those <35 years old but only 10% in 10 years in those >65). Two distinct processes-intrinsic calcification and noncalcific degradation of the ECM-account for structural valve deterioration. Calcification is a direct consequence of the inability of the nonviable cells of the GLUT-preserved tissue to maintain normally low intracellular calcium. Consequently, nucleation of calcium-phosphate crystals occurs at the phospholipid-rich membranes and their remnants. Collagen and elastin also calcify. Tissue valve mineralization has complex host, implant, and mechanical determinants. Noncalcific degradation in the absence of physiological repair mechanisms of the valvular structural matrix is increasingly being appreciated as a critical yet independent mechanism of valve deterioration. These degradation mechanisms are largely rationalized on the basis of the changes to natural valves when they are fabricated into a tissue valve (mentioned above), and the subsequent interactions with the physiologic environment that are induced following implantation. The "Holy Grail" is a nonobstructive, nonthrombogenic tissue valve which will last the lifetime of the patient (and potentially grow in maturing recipients). There is considerable activity in basic research, industrial development, and clinical investigation to improve tissue valves. Particularly exciting in concept, yet early in practice is tissue engineering, a technique in which an anatomically appropriate construct containing cells seeded on a resorbable scaffold is fabricated in vitro, then implanted. Remodeling in vivo, stimulated and guided by appropriate biological signals incorporated into the construct, is intended to recapitulate normal functional architecture.  相似文献   

6.
Wells SM  Sellaro T  Sacks MS 《Biomaterials》2005,26(15):2611-2619
Biologically derived, chemically modified collagenous tissues are being increasingly used to fabricate cardiac valve prostheses and as biomaterials in cardiovascular repair. A stress-free state during chemical modification has been shown to preserve the collagen fiber architecture of the native tissue, potentially preserving native mechanical properties and improving prostheses durability. However, it is not known if the native collagen fiber architecture is stable during long-term in vivo operation. To address this question, we obtained porcine aortic valves chemically treated at (i) 0 mmHg transvalvular pressure (with 40 mmHg aortic pressure) and (ii) 4 mmHg transvalvular pressure, then subjected the valves to 0, 1 x 10(6), 50 x 10(6), and 200 x 10(6) in vitro accelerated wear testing (AWT) cycles. The resulting changes in collagen fiber architecture were quantified using small angle light scattering analysis (SALS). SALS measurements indicated that collagen fibers in the 0 mmHg pressure-fixed leaflets became more aligned between 1 x 10(6) and 50 x 10(6) AWT cycles. In contrast, only minor changes (not statistically significant) in collagen fiber orientation occurred in the 4 mmHg pressure-fixed valvular tissue with cycling. It was also noted that although the 0 mmHg group was fixed without transvalvular pressure, distention of the root induced significant changes in collagen structure of the leaflets. Overall, our observations suggest that the native collagen fiber crimp of the 0 mmHg pressure-fixed leaflets were rapidly lost after only 50 x 10(6) AWT cycles (equivalent to approximately 1.6 patient years) and thus may not be maintained over a sufficient period of time to be clinically beneficial. Further, the collagen structure of the native aortic valve is exquisitely sensitive to dimensional change in the aortic root-independent of the presence of transvalvular pressure. Our findings also suggest that without in vivo remodeling, any collagenous tissue used to fabricate BHV may undergo similar degenerative, irreversible changes in vivo.  相似文献   

7.
Following surgical removal because of primary tissue failure, 30 antibiotic-sterilized human aortic valve allografts and 27 glutaraldehyde-treated porcine aortic valve xenografts were examined for macroscopic and microscopic evidence of dystrophic calcification. These grafts had been mounted on stents and used for from 34 to 166 months to replace diseased mitral valves. After explantation the grafts were carefully examined then prepared for light microscopy, for transmission electron microscopy and for energy dispersive X-ray microanalysis. Gross calcification occurred significantly (p = 0.002) more frequently in xenografts (89%), and was more extensive than in allografts (53%). Calcification usually appeared as nodular excrescences on the cusps, although occasionally it formed plates within them. This reduced tissue pliability and was usually associated with either valvular stenosis or regurgitation. The calcified deposits contained calcium and phosphate in ratios approaching those of hydroxyapatite. In xenograft valves the smallest discrete deposits of calcification were spherical and usually associated with membranous debris of porcine donor fibroblasts, but allografts did not contain donor cell remnants and early calcification was linearly arranged along collagen fibres.  相似文献   

8.
Glutaraldehyde-fixed porcine aortic valve tissues are widely used for heart valve replacement surgery in the form of bioprosthetic heart valves (BHVs). The durability of BHVs in the clinical setting is limited by tissue degeneration, mechanical failure, and calcification. BHVs rely on the putative ability of glutaraldehyde to render biologic tissues metabolically inert and fully resistant to enzymatic attack. In the present study, we detected and partially characterized the activity of collagen and elastin-degrading enzymes in unimplanted, glutaraldehyde-fixed porcine aortic cusp and wall tissues and compared enzyme activities with those extracted from fresh tissues. Active enzymes capable of degrading extracellular matrix were found to be present in soluble form as well as immobilized on glutaraldehyde-crosslinked tissue matrix. Total levels of collagenolytic activities were evaluated to approximately 0.25 microg of degraded collagen/mg of dry tissue/24 h for both glutaraldehyde-fixed wall and cusp tissues. A major finding of this study was the ability of soluble tissue enzymes to partially degrade glutaraldehyde-fixed collagen and particularly large amounts of glutaraldehyde-fixed elastin. These calcium-dependent gelatinases share many biochemical similarities with matrix metalloproteinases. These data strongly indicate that glutaraldehyde-fixed porcine valvular tissues are not metabolically inert and are not entirely resistant to enzymatic attack, thereby rendering BHVs vulnerable to biologic degeneration and subsequent chronic failure.  相似文献   

9.
We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves. Triglycidylamine (TGA) was synthesized via reacting epichlorhydrin and NH(3). TGA was used to crosslink porcine aortic cusps, bovine pericardium, and type I collagen. Control materials were crosslinked with glutaraldehyde (Glut). TGA-pretreated materials had shrink temperatures comparable to Glut fixation. However, TGA crosslinking conferred significantly greater collagenase resistance than Glut pretreatment, and significantly improved biomechanical compliance. Sheep aortic valve interstitial cells grown on TGA-pretreated collagen did not calcify, whereas sheep aortic valve interstitial cells grown on control substrates calcified extensively. Rat subdermal implants (porcine aortic cusps/bovine pericardium) pretreated with TGA demonstrated significantly less calcification than Glut pretreated implants. Investigations of extracellular matrix proteins associated with calcification, matrix metalloproteinases (MMPs) 2 and 9, tenascin-C, and osteopontin, revealed that MMP-9 and tenascin-C demonstrated reduced expression both in vitro and in vivo with TGA crosslinking compared to controls, whereas osteopontin and MMP-2 expression were not affected. TGA pretreatment of heterograft biomaterials results in improved stability compared to Glut, confers biomechanical properties superior to Glut crosslinking, and demonstrates significant calcification resistance.  相似文献   

10.
Onset and progression of experimental bioprosthetic heart valve calcification   总被引:13,自引:0,他引:13  
Calcification, the major cause of bioprosthetic heart valve failures, is a serious clinical problem with uncertain pathogenesis. The objectives of the present study were to define the progressive chemical and morphologic sequence of mineralization in glutaraldehyde-treated porcine aortic valve cusps implanted subcutaneously in rats and to compare the pathology and pathophysiology of calcification in subcutaneous implants with that of orthotopic valve replacements in calves. Cusps were implanted subcutaneously in 3-week-old rats for 24 hours to 18 weeks. Cuspal calcium was 114 +/- 18 micrograms/mg of dry weight (mean +/- SEM) at day 21 and 218 +/- 6 at day 56 of implantation and unchanged thereafter. The earliest mineral deposits, noted at 48 hours, were associated with devitalized porcine connective tissue cells, but by 7 days, mineral deposits also involved collagen bundles. Scanning electron microscopy with energy-dispersive x-ray analysis demonstrated predominant accumulation in the spongiosa with a spongiosa to fibrosa energy-dispersive x-ray analysis count ratio of calcium of 15 at 21 days. In stent-mounted glutaraldehyde-preserved porcine valves implanted in five calves as mitral replacements for 69 to 142 days, cuspal calcium was 86 micrograms/mg (mean) (range 47 to 128). Calf implants also had cell oriented and collagen calcification predominating in the valvar spongiosa. In both rat subcutaneous and calf mitral valve models, early diffuse calcific microcrystals evolved into confluent nodules that disrupted tissue architecture. It is concluded that calcification of glutaraldehyde-preserved porcine aortic valves implanted subcutaneously in rats begins within 48 hours, earliest deposits are localized to residual porcine connective tissue cells, but latter deposits also involve collagen fibrils, mineralization is most prominent in the spongiosa, the pathology of calcification in rat subcutaneous implants and calf mitral replacements is comparable, suggesting a common pathophysiology, and calcific nodule formation most likely initiates clinical features.  相似文献   

11.
Bioprosthetic heart valves (BPHVs) derived from glutaraldehyde-crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, the majority of bioprostheses fail clinically because of calcification and degeneration. We have recently shown that glycosaminoglycan (GAG) loss may be in part responsible for degeneration of glutaraldehyde-crosslinked bioprostheses. In the present studies, we used a mild reaction of periodate-mediated crosslinking to stabilize glycosaminoglycans in the bioprosthetic tissue. We demonstrate the feasibility of periodate reaction by crosslinking major components of extracellular matrix of bioprosthetic heart valve tissue, namely type I collagen and hyaluronic acid (HA). Uronic acid assay of periodate-fixed HA-collagen matrices showed 48% of HA disaccharides were bound to collagen. Furthermore, we show that such reactions are also feasible to fix glycosaminoglycans present in the middle spongiosa layer of bioprosthetic heart valves. The periodate reactions were compatible with conventional glutaraldehyde crosslinking and showed adequate stabilization of extracellular matrix as demonstrated by thermal denaturation temperature and collagenase assays. Moreover, uronic acid assays of periodate-fixed BPHV cusps showed 36% reduction in the amount of unbound GAG disaccharides as compared with glutaraldehyde-crosslinked cusps. We also demonstrate that calcification of BPHV cusps was significantly reduced in the periodate-fixed group as compared with the glutaraldehyde-fixed group in 21-day rat subdermal calcification studies (periodate-fixed tissue Ca 72.01 +/- 5.97 microg/mg, glutaraldehyde-fixed tissue Ca 107.25 +/- 6.56 microg/mg). We conclude that periodate-mediated GAG fixation could reduce structural degeneration of BPHVs and may therefore increase the useful lifetime of these devices.  相似文献   

12.
Studies were done on the structural changes that develop in Ionescu-Shiley valves that are used as replacement heart valves for 4 to 8 years. These changes were compared with those found in similarly used porcine aortic valve (PAV) bioprostheses. A variety of morphologic differences were observed between bovine pericardial valve (BPV) and PAV bioprostheses after orthotopic implantation including: primary tissue failure associated with the use of an alignment suture, thickening of valve leaflet, leaflet tissue delamination, leaflet calcification, and dystrophic alterations of collagen. These findings indicate that valve design criteria directly influence the durability of pericardial valves. However, other factors unique to pericardial tissue also affect the durability and performance of BPVs. These factors include the inability of pericardial tissue to accommodate dynamic stresses; the extensive insudation of plasma proteins and lipids; and the inability to reduce leaflet calcification using agents that effectively mitigate calcification in PAV bioprostheses.  相似文献   

13.
The planar fibrous connective tissues of the body are composed of a dense extracellular network of collagen and elastin fibers embedded in a ground matrix, and thus can be thought of as biocomposites. Thus, the quantification of fiber architecture is an important step in developing an understanding of the mechanics of planar tissues in health and disease. We have used small angle light scattering (SALS) to map the gross fiber orientation of several soft membrane connective tissues. However, the device and analysis methods used in these studies required extensive manual intervention and were unsuitable for largescale fiber architectural mapping studies. We have developed an improved SALS device that allows for rapid data acquisition, automated high spatial resolution specimen positioning, and new analysis methods suitable for large-scale mapping studies. Extensive validation experiments revealed that the SALS device can accurately measure fiber orientation for up to a tissue thickness of at least 500 μm to an angular resolution of∼1o and a spatial resolution of±254 μm. To demonstrate the new device’s capabilities, structural measurements from porcine aortic valve leaflets are presented. Results indicate that the new SALS device provides an accurate method for rapid quantification of the gross fiber structure of planar connective tissues.  相似文献   

14.
Bioprosthetic heart valve (BHV) cusps have a complex architecture consisting of an anisotropic arrangement of collagen, glycosaminoglycans (GAGs) and elastin. Glutaraldehyde (GLUT) is used as a fixative for all clinical BHV implants; however, it only stabilizes the collagen component of the tissue, and other components such as GAGs and elastin are lost from the tissue during processing, storage or after implantation. We have shown previously that the effectiveness of the chemical crosslinking can be increased by incorporating neomycin trisulfate, a hyaluronidase inhibitor, to prevent the enzyme-mediated GAG degradation. In the present study, we optimized carbodiimide-based GAG-targeted chemistry to incorporate neomycin into BHV cusps prior to conventional GLUT crosslinking. This crosslinking leads to enhanced preservation of GAGs during in vitro cyclic fatigue and storage. The neomycin group showed greater GAG retention after both 10 and 50 million accelerated fatigue cycles and after 1 year of storage in GLUT solution. Thus, additional binding of neomycin to the cusps prior to standard GLUT crosslinking could enhance tissue stability and thus heart valve durability.  相似文献   

15.
Bioprosthetic heart valves (BHVs) derived from glutaraldehyde crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, BHVs have limited durability and fail either due to degeneration or calcification. Glycosaminoglycans (GAGs), one of the integral components of heart valve cuspal tissue, are not stabilized by conventional glutaraldehyde crosslinking. Previously we have shown that valvular GAGs could be chemically fixed with GAG-targeted chemistry. However, chemically stabilized GAGs were only partially stable to enzymatic degradation. In the present study an enzyme inhibitor was incorporated in the cusps to effectively prevent enzymatic degradation. Thus, neomycin trisulfate, a known hyaluronidase inhibitor, was incorporated in cusps via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry followed by glutaraldehyde crosslinking (NEG). Controls included cusps crosslinked with either EDC/NHS followed by glutaraldehyde (ENG) or only with glutaraldehyde (GLUT). NEG group showed improved resistance to in vitro enzymatic degradation as compared to GLUT and ENG groups. All groups showed similar collagen stability, measured as a thermal denaturation temperature by differential scanning calorimetry (DSC). The cusps were implanted subdermally in rats to study in vivo degradation of GAGs. NEG group preserved significantly more GAGs than ENG and GLUT. NEG and ENG groups showed reduced calcification than GLUT.  相似文献   

16.
The clinical use of bioprosthetic heart valves (BHV) is limited due to device failure caused by structural degeneration of BHV leaflets. In this study we investigated the hypothesis that oxidative stress contributes to this process. Fifteen clinical BHV that had been removed for device failure were analyzed for oxidized amino acids using mass spectrometry. Significantly increased levels of ortho-tyrosine, meta-tyrosine and dityrosine were present in clinical BHV explants as compared to the non-implanted BHV material glutaraldehyde treated bovine pericardium (BP). BP was exposed in vitro to oxidizing conditions (FeSO4/H2O2) to assess the effects of oxidation on structural degeneration. Exposure to oxidizing conditions resulted in significant collagen deterioration, loss of glutaraldehyde cross-links, and increased susceptibility to collagenase degradation. BP modified through covalent attachment of the oxidant scavenger 3-(4-hydroxy-3,5-di-tert-butylphenyl) propyl amine (DBP) was resistant to all of the monitored parameters of structural damage induced by oxidation. These results indicate that oxidative stress, particularly via hydroxyl radical and tyrosyl radical mediated pathways, may be involved in the structural degeneration of BHV, and that this mechanism may be attenuated through local delivery of antioxidants such as DBP.  相似文献   

17.
Stentless aortic heart valve substitutes, manufactured from biological tissues, are fixed with glutaraldehyde to cross-link collagen, reduce antigenicity, and sterilize the tissue. Despite improved cross linking, reduced antigenicity, and various anticalcification measures, the aortic wall tissue present in these prostheses tends to calcify. The aim of this study was to assess the morphology, collagen cross-link stability, and calcification potential of glutaraldehyde-preserved kangaroo aortic wall tissue as opposed to porcine aortic wall tissue. Porcine and kangaroo aortic wall tissues were fixed in 0.625% buffered glutaraldehyde. Histology and cross-link stability were examined. Calcification potential was determined in the subcutaneous rat model. Kangaroo aortic wall tissue was significantly (p < 0.01) less calcified than porcine aortic wall tissue (26.67 +/- 6.53 versus 41.959 +/- 2.75 microg/mg tissue) at 8 weeks. In conclusion, the histological differences between kangaroo and porcine aortic wall tissue correlate well with the reduced calcification potential of kangaroo aortic wall tissue. The reduced calcification potential could result in improved long-term durability of stentless kangaroo heart valves as bioprostheses.  相似文献   

18.
BACKGROUND: Stentless porcine valves have many documented advantages over stented valves. Since its introduction in 1991, the Toronto stentless porcine valve (T-SPV) has shown excellent hemodynamic performance. METHODS: A total of 332 T-SPVs have been implanted at our institution up to December 2003, 25 of which have been explanted at surgery. Herein, we report a study of 30 explanted T-SPVs seen at our institution over a 5-year period. RESULTS: The mean patient age at explant was 61.2+/-11.8 years with a mean implant duration of 100.7+/-27.8 months (after excluding one valve removed early postoperatively for infective endocarditis). Twenty-seven of 30 valves (90%) showed structural deterioration characterized by tissue degeneration, cusp tears, calcification, and lipid insudation. Eight valves (26.7%) showed evidence of calcification on gross inspection and a total of 23 valves (76.7%) showed at least one microscopic focus of calcification, located primarily in the basal and commissural regions of the cusp. Twenty valves (66.6%) showed cusp tears. Pannus was visible grossly on the surface of 27 of 30 valves (90%), while histologically, at least some degree of pannus was observed on both the inflow and outflow surfaces of all but two valves. Twelve T-SPV (40.0%) showed calcification in the porcine aortic tissue, four of which involved calcification of the porcine muscle shelf in the right coronary cusp. Two T-SPV showed no significant structural deterioration. Their clinical reason for explantation was incompetence or infective endocarditis. CONCLUSION: With a freedom from reoperation of about 87.0% at up to 10 years, the T-SPV shows excellent durability. The majority of explanted valves show structural valve deterioration similar to that seen in other porcine heart valves.  相似文献   

19.
Khan NA  Butany J  Zhou T  Ross HJ  Rao V 《Pathology》2008,40(4):377-384
AIMS: Ventricular assist devices (VADs) are now a mainstay in the management of patients with end-stage heart failure. An important consideration in the long-term durability of these devices is the structural integrity of the prosthetic valves. Herein, we report the morphological findings in inflow and outflow explanted bioprostheses from seven such devices. METHODS: The porcine bioprostheses (n = 7; HeartMate, Novacor) were examined from inflow and outflow valve conduits. Cusp tears were assessed on gross examination. Tissues were then processed for histology and graded for pannus, thrombus, and calcification. Immunohistochemistry was performed using anti-CD68 (macrophages), CD45 (leukocytes) and CD31 (endothelial cells) antibodies to assess inflammation. RESULTS: There was no evidence of infection, host tissue growth, or calcification in either the inflow or the outflow valves in any case. A mild-to-moderate mononuclear cell 'deposit' was present on all porcine bioprostheses, largely on the non-flow surface of the valve cusps. In the case of the longest implant (HeartMate, duration 567 days), a significant mononuclear cell infiltrate was seen on the flow surface, the non-flow surface, as well as the base of the cusp tissue. Variably sized cusp tears were found in all inflow porcine bioprostheses at and beyond 3 months post-implantation, with the longest duration implant showing multiple tears. No tears were identified in the outflow valves. Histology revealed thrombus deposition in all inflow and outflow porcine valves. In addition, inflow valve cusps were characterised by the presence of longitudinally running 'cystic' spaces, which seem to increase in size with increasing implant duration. CONCLUSION: Bioprosthetic heart valves in VADs show significant changes which appear to correlate with duration post-implantation. These changes suggest that haemodynamic forces and the inflammatory reaction may play a significant role in the long-term durability of the porcine bioprostheses in these devices.  相似文献   

20.
BACKGROUND: The Medtronic Freestyle valve is fixed in glutaraldehyde at zero pressure on the cusps and treated with alpha-amino oleic acid. This valve reportedly has excellent clinical and hemodynamic results, but little has been reported about its long-term pathology. METHODS AND RESULTS: Nine Freestyle valves explanted between 2003 and 2005 were reviewed to assess the reasons for bioprosthesis failure (six implanted at our institution). All valves were examined in detail, using histochemistry and immunohistochemistry to identify the cellular response. One Freestyle valve, explanted for mitral valve endocarditis on the fifth postoperative day, was excluded from analysis. Average implant duration was 52.8+/-35.5 months. Four valves were explanted for infective endocarditis, three for aortic insufficiency, two for aortic stenosis with cusp calcification seen in five valves, pannus and thrombus in all valves and a chronic inflammatory reaction involving the xenograft arterial wall seen in eight of nine valves. This was associated with significant damage to the porcine aortic wall in seven cases, and cusp myocardial shelf damage in six cases. CONCLUSIONS: In this series of valves, we found (1) infective endocarditis; (2) pannus, thrombus, and calcification; and (3) unusual and significant inflammatory reaction and aortic tissue damage, which could by itself lead to aortic incompetence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号