首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sera from 40 patients with Guillain-Barré syndrome (GBS), including the subtypes acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor and sensory axonal neuropathy (AMSAN), and Miller Fisher syndrome (MFS) were examined for the presence of anti-ganglioside antibodies using the ganglioside agglutination assay, and the enzyme-linked immunosorbent assay (ELISA). In the ELISA system, sera were tested for IgM and IgG antibodies to GM1, GM2, GD1a, GD1b, GT1b, and GQ1b gangliosides. Antibodies to gangliosides were detected in 21 (53%) of the GBS patients by agglutination assay and in 17 (43%) of the patients by ELISA. Some of the sera reacted with more than one ganglioside. Antibodies were not found in the control sera that were studied. The agglutination assay may be useful for rapid screening of GBS sera for antibodies to multiple gangliosides.  相似文献   

2.
Guillain-Barré syndrome (GBS), characterized by acute progressive limb weakness and areflexia, is the prototype of postinfectious autoimmune diseases. Campylobacter jejuni is the most frequently identified agent of infection in GBS patients, often preceding acute motor axonal neuropathy (AMAN), a variant of GBS. Anti-GM1, anti-GM1b, anti-GD1a, and anti-GalNAc-GD1a IgG antibodies are associated with AMAN. Carbohydrate mimicry [Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-] was seen between the lipo-oligosaccharide of C. jejuni isolated from an AMAN patient and human GM1 ganglioside. Sensitization with the lipo-oligosaccharide of C. jejuni induces AMAN in rabbits as does sensitization with GM1 ganglioside. Paralyzed rabbits have pathological changes in their peripheral nerves identical to changes seen in human GBS. C. jejuni infection may induce anti-ganglioside antibodies by molecular mimicry, eliciting AMAN. This is the first verification of the causative mechanism of molecular mimicry in an autoimmune disease. To express ganglioside mimics, C. jejuni requires specific gene combinations that function in sialic acid biosynthesis or transfer. The knockout mutants of these landmark genes of GBS show reduced reactivity with GBS patients' sera, and fail to induce an anti-ganglioside antibody response in mice. These genes are crucial for the induction of neuropathogenic cross-reactive antibodies. An approach for evaluating intravenous immune globulin, a treatment for GBS, based on our animal model of AMAN is also discussed in this review, and recent advances made in this field are described.  相似文献   

3.
Anti-ganglioside antibody and neuropathy: review of our research   总被引:1,自引:0,他引:1  
Some patients developed Guillain-Barré syndrome (GBS) after the administration of bovine gangliosides. Patients with GBS subsequent to Campylobacter jejuni enteritis frequently have IgG antibody to GM1 ganglioside. Fisher's syndrome (FS), a variant of GBS, is associated with IgG antibody to GQ1b ganglioside. We showed the existence of molecular mimicry between GM1 and lipopolysaccharide (LPS) of C. jejuni isolated from a GBS patient, and that between GQ1b and C. jejuni LPSs from FS patients. Several lines of evidence suggest a pathogenic role for anti-ganglioside antibodies. Some patients developed sensorimotor polyneuropathy after anti-GD2 antibody administration. Anti-GM1 antibody can block motor nerve conduction. The molecular mimicry between infectious agents and gangliosides may function in the production of anti-ganglioside antibodies and the development of GBS and FS. Anti-GQ1b IgG antibody is detected also in Bickerstaff's brainstem encephalitis and acute ophthalmoparesis, which suggests that these conditions are categorized as autoimmune diseases related to FS. Since a tryptophan-immobilized column effectively adsorb anti-GQ1b IgG antibody, immunoadsorption with the column should be considered as an alternative form of plasmapheresis for the anti-GQ1b IgG antibody syndrome.  相似文献   

4.
Immune responses against gangliosides are strongly implicated in the pathogenesis of some variants of Guillain-Barré syndrome (GBS). For example, IgG antibodies against GM1, GD1a, and related gangliosides are frequently present in patients with post-Campylobacter acute motor axonal neuropathy (AMAN) variant of GBS, and immunization of rabbits with GM1 has produced a model of AMAN. However, the role of anti-ganglioside antibodies in GBS continues to be debated because of lack of a passive transfer model. We recently have raised several monoclonal IgG anti-ganglioside antibodies. We passively transfer these antibodies by intraperitoneal hybridoma implantation and by systemic administration of purified anti-ganglioside antibodies in mice. Approximately half the animals implanted with an intraperitoneal clone of anti-ganglioside antibody-secreting hybridoma developed a patchy, predominantly axonal neuropathy affecting a small proportion of nerve fibers. In contrast to hybridoma implantation, passive transfer with systemically administered anti-ganglioside antibodies did not cause nerve fiber degeneration despite high titre circulating antibodies. Blood-nerve barrier studies indicate that animals implanted with hybridoma had leaky blood-nerve barrier compared to mice that received systemically administered anti-ganglioside antibodies. Our findings suggest that in addition to circulating antibodies, factors such as antibody accessibility and nerve fiber resistance to antibody-mediated injury play a role in the development of neuropathy.  相似文献   

5.
To clarify the relations of the axonal form of Guillain-Barré syndrome (GBS) to anti-ganglioside antibodies and Campylobacter jejuni infection, 86 consecutive Japanese GBS patients were studied. Electrodiagnostic criteria showed acute inflammatory demyelinating polyneuropathy in 36% of the patients and acute motor axonal neuropathy (AMAN) in 38%. Frequent anti-ganglioside antibodies were of the IgG class and against GM1 (40%), GD1a (30%), GalNAc-GD1a (17%), and GD1b (21%). Identified infections were C. jejuni (23%), cytomegalovirus (10%), Mycoplasma pneumoniae (6%), and Epstein-Barr virus (3%). There was a strong association between AMAN and IgG antibodies against GM1, GD1a, GalNAc-GD1a, or GD1b. Almost all the patients with at least one of these antibodies had the AMAN pattern or rapid resolution of conduction slowing/block possibly because of early-reversible changes on the axolemma. C. jejuni infection was frequently associated with AMAN or anti-ganglioside antibodies, but more than half of the patients with AMAN or anti-ganglioside antibodies were C. jejuni-negative. These findings suggest that the three phenomena "axonal dysfunctions (AMAN or early-reversible conduction failure)," "IgG antibodies against GM1, GD1a, GalNAc-GD1a, or GD1b," and "C. jejuni infection" are closely associated but that microorganisms other than C. jejuni frequently trigger an anti-ganglioside response and elicit axonal GBS.  相似文献   

6.
This presentation highlights aspects of the immunobiology of the Guillain-Barré syndromes (GBS), the world's leading cause of acute autoimmune neuromuscular paralysis. Understanding the key pathophysiological pathways of GBS and developing rational, specific immunotherapies are essential steps towards improving the clinical outcome of this devastating disorder. Much of the research into GBS over the last decade has focused on the forms mediated by anti-ganglioside antibodies, and we have made substantial progress in our understanding in several related areas. Particular highlights include (a) the emerging correlations between anti-ganglioside antibodies and specific clinical phenotypes, notably between anti-GM1/anti-GD1a antibodies and the acute motor axonal variant and anti-GQ1b/anti-GT1a antibodies and the Miller Fisher syndrome; (b) the identification of molecular mimicry between GBS-associated Campylobacter jejuni oligosaccharides and GM1, GD1a, and GT1a gangliosides as a mechanism for anti-ganglioside antibody induction; (c) the development of rodent models of GBS with sensory ataxic or motor phenotypes induced by immunisation with GD1b or GM1 gangliosides, respectively. Our work has particularly studied the motor nerve terminal as a model site of injury, and through combined active and passive immunisation paradigms, we have developed murine neuropathy phenotypes mediated by anti-ganglioside antibodies. This has been achieved through use of glycosyltransferase and complement regulator knock-out mice, both for cloning anti-ganglioside antibodies and inducing disease. Through such studies, we have proven a neuropathogenic role for murine anti-ganglioside antibodies and human GBS-associated antisera and identified several determinants that influence disease expression including (a) the level of immunological tolerance to microbial glycans that mimic self-gangliosides; (b) the ganglioside density in target tissue; (c) the level of complement activation and the neuroprotective effects of endogenous complement regulators; and (d) the role of calcium influx through complement pores in mediating axonal injury. Such studies provide us with clear information on an antibody-mediated pathogenesis model for GBS and should lead to rational therapeutic testing of agents that are potentially suitable for use in humans.  相似文献   

7.
Guillain-Barré syndrome (GBS) is an acute polyneuropathy consisting of different subtypes. Acute inflammatory demyelinating polyradiculoneuropathy, the classic demyelinating form of GBS, accounts for 90% of all GBS cases in the Western world. Acute motor axonal neuropathy (AMAN) and acute motor and sensory axonal neuropathy (AMSAN) are axonal forms of GBS that are more prevalent in Asia, South and Central America, often preceded by infection by Campylobacter jejuni. AMAN and AMSAN may be mediated by specific anti-ganglioside antibodies that inhibit transient sodium ion (Na+) channels. The efficacy of plasmapheresis and intravenous immunoglobulin has been established in large international randomised trials, with corticosteroids proven ineffective. Although axonal demyelination is an established pathophysiological process in GBS, the rapid improvement of clinical deficits with treatment is consistent with Na+ channel blockade by antibodies or other circulating factors, such as cytokines. This review provides an update on the epidemiology, clinical features, diagnosis, pathogenesis and treatment of GBS.  相似文献   

8.

Background and Purpose

No previous studies have investigated the relationship between various anti-ganglioside antibodies and the clinical characteristics of Guillain-Barré syndrome (GBS) in Korea. The aim of this study was to determine the prevalence and types of anti-ganglioside antibodies in Korean GBS patients, and to identify their clinical significance.

Methods

Serum was collected from patients during the acute phase of GBS at 20 university-based hospitals in Korea. The clinical and laboratory findings were reviewed and compared with the detected types of anti-ganglioside antibody.

Results

Among 119 patients, 60 were positive for immunoglobulin G (IgG) or immunoglobulin M antibodies against any type of ganglioside (50%). The most frequent type was IgG anti-GM1 antibody (47%), followed by IgG anti-GT1a (38%), IgG anti-GD1a (25%), and IgG anti-GQ1b (8%) antibodies. Anti-GM1-antibody positivity was strongly correlated with the presence of preceding gastrointestinal infection, absence of sensory symptoms or signs, and absence of cranial nerve involvement. Patients with anti-GD1a antibody were younger, predominantly male, and had more facial nerve involvement than the antibody-negative group. Anti-GT1a-antibody positivity was more frequently associated with bulbar weakness and was highly associated with ophthalmoplegia when coupled with the coexisting anti-GQ1b antibody. Despite the presence of clinical features of acute motor axonal neuropathy (AMAN), 68% of anti-GM1- or anti-GD1a-antibody-positive cases of GBS were diagnosed with acute inflammatory demyelinating polyradiculoneuropathy (AIDP) by a single electrophysiological study.

Conclusions

Anti-ganglioside antibodies were frequently found in the serum of Korean GBS patients, and each antibody was correlated strongly with the various clinical manifestations. Nevertheless, without an anti-ganglioside antibody assay, in Korea AMAN is frequently misdiagnosed as AIDP by single electrophysiological studies.  相似文献   

9.
Recent neurophysiological and pathological studies have led to a reclassification of the diseases that underlie Guillain-Barré syndrome (GBS) into acute inflammatory demyelinating polyradiculoneuropathy (AIDP), acute motor and sensory axonal neuropathy (AMSAN) and acute motor axonal neuropathy (AMAN). The Fisher syndrome of ophthalmoplegia, ataxia and areflexia is the most striking of several related conditions. Significant antecedent events include Campylobacter jejuni (4–66%), cytomegalovirus (5–15%), Epstein-Barr virus (2–10%), and Mycoplasma pneumoniae (1–5%) infections. These infections are not uniquely associated with any clinical subtype but severe axonal degeneration is more common following C. jejuni and severe sensory impairment following cytomegalovirus. Strong evidence supports an important role for antibodies to gangliosides in pathogenesis. In particular antibodies to ganglioside GM1 are present in 14–50% of patients with GBS, and are more common in cases with severe axonal degeneration associated with any subtype. Antibodies to ganglioside GQ1b are very closely associated with Fisher syndrome, its formes frustes and related syndromes. Ganglioside-like epitopes exist in the bacterial wall of C. jejuni. Infection by this and other organisms triggers an antibody response in patients with GBS but not in those with uncomplicated enteritis. The development of GBS is likely to be a consequence of special properties of the infecting organism, since some strains such as Penner O:19 and O:41 are particularly associated with GBS but not with enteritis. It is also likely to be a consequence of the immunogenetic background of the patient since few patients develop GBS after infection even with one of these strains. Attempts to match the subtypes of GBS to the fine specificity of anti-ganglioside antibodies and to functional effects in experimental models continue but have not yet fully explained the pathogenesis. T cells are also involved in the pathogenesis of most or perhaps all forms of GBS. T cell responses to any of three myelin proteins, P2, PO and PMP22, are sufficient to induce experimental autoimmune neuritis. Activated T cells are present in the circulation in the acute stage, up-regulate matrix metalloproteinases, cross the blood-nerve barrier and encounter their cognate antigens. Identification of the specificity of these T cell responses is still at a preliminary stage. The invasion of intact myelin sheaths by activated macrophages is difficult to explain according to a purely T cell mediated mechanism. The different patterns of GBS are probably due to the diverse interplay between antibodies and T cells of differing specificities.  相似文献   

10.
Previously, we reported that IgA anti-GM1 antibody is more closely associated with preceding Campylobacter jejuni enteritis in Guillain-Barré syndrome (GBS) than are IgG and IgM antibodies. However, the mechanism of the induction of IgA anti-ganglioside antibodies is not clear. In this study, serum IgA antibodies against GM1, GM1b, and GD1a, and GalNAc-GD1a were examined in 152 GBS patients. In GBS, antecedent C. jejuni infection is closely associated with IgA antibodies, other than GM1, against GM1b. The IgA subclass distribution is completely restricted to IgA1, no secretory IgA anti-ganglioside antibody being detected. This result does not support the hypothesis that the serum IgA antibodies present in GBS after C. jejuni enteritis originate at mucosal sites, such as the gut mucosal immune system. Seventeen (85%) of 20 patients with IgA anti-ganglioside antibodies had serological evidence of C. jejuni infection and/or a history of antecedent diarrhea. Moreover, a motor nerve conduction study showed that patients with IgA antibodies frequently had axonal neuropathy, whereas none had demyelinating neuropathy. This may support the previous report that IgA isotype anti-GM1 antibodies are more closely associated with poor outcome than are the IgG or IgM isotypes. The induction mechanism of IgA anti-ganglioside antibodies must be clarified by determining whether concentrations of cytokines, which increase the IgA class switch, are elevated in patients with GBS after C. jejuni enteritis.  相似文献   

11.
Introduction: There is uncertainty as to whether the Guillain‐Barré syndrome (GBS) subtypes, acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy (AMAN), can be diagnosed electrophysiologically. Methods: We prospectively included 58 GBS patients. Electrodiagnostic testing (EDX) was performed at means of 5 and 33 days after disease onset. Two traditional and one recent criteria sets were used to classify studies as demyelinating or axonal. Results were correlated with anti‐ganglioside antibodies and reversible conduction failure (RCF). Results: No classification shifts were observed, but more patients were classified as axonal with recent criteria. RCF and anti‐ganglioside antibodies were present in both subtypes, more frequently in the axonal subtype. Discussion: Serial EDX has no effect on GBS subtype proportions. The absence of exclusive correlation with RCF and anti‐ganglioside antibodies may challenge the concept of demyelinating and axonal GBS subtypes based upon electrophysiological criteria. Frequent RCF indicates that nodal/paranodal alterations may represent the main pathophysiology. Muscle Nerve 58 : 23–28, 2018.  相似文献   

12.
OBJECTIVES: To investigate the pathophysiology of selective absence of F waves and its relation with antiganglioside antibodies in Guillain-Barré syndrome (GBS). Some patients with GBS show the absence of F waves as an isolated conduction abnormality, which has been interpreted as demyelination in the proximal nerve segments. METHODS: In 62 consecutive patients with GBS, sequential nerve conduction and F wave studies were reviewed, and antibodies against ganglioside GM1, GM1b, GD1a, GalNAc-GD1a, GD1b, and GQ1b were measured by an enzyme linked immunosorbent assay. RESULTS: In the first electrophysiological studies, isolated absence of F waves was found in 12 (19%) patients. Sequential studies in 10 of these patients showed two electrophysiological sequel patterns; rapid restoration of F waves (six patients), and persistent absence of F waves with distal motor nerve degeneration (acute motor axonal neuropathy, four patients). None of the 10 patients showed evidence of demyelination in the proximal, intermediate, or distal nerve segments throughout the course. Of the 62 patients, IgG antibodies against GM1, GM1b, GalNAc-GD1a, or GD1b were significantly associated with the electrodiagnosis of acute motor axonal neuropathy, and patients with these antibodies more often had isolated absence of F waves than patients without them (11 of 36 (31%) v one of 26 (4%); p<0.01). Eleven of the 12 patients with isolated absence of F waves had positive serology for one or more antiganglioside antibodies. CONCLUSIONS: In GBS with antiganglioside antibodies, isolated absence of F waves is a frequent conduction abnormality especially in the early phase of the disease, and may be caused by axonal dysfunction, such as physiological conduction block or axonal degeneration at the nerve roots.  相似文献   

13.
Guillain-Barré syndrome (GBS) is typically classified into two major subtypes: acute inflammatory demyelinating neuropathy and acute motor axonal neuropathy. Its most recognizable variant is Fisher syndrome. The last two decades have seen considerable advances in our understanding of GBS. Of note, various autoantibodies against ganglioside antigens have been identified and found to have significant associations with the axonal forms of GBS and Fisher syndrome. In this article, we discuss the different clinical presentations in GBS and the role of antiganglioside antibodies in their underlying pathogenesis. We also discuss the impact that antiganglioside antibodies have had in the development of experimental models and treatment modalities in GBS.  相似文献   

14.
The electrodiagnosis of Guillain-Barré syndrome (GBS) can be broadly divided into acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). Fisher syndrome (FS) is a variant of GBS, although the underlying neuropathy of FS has yet to be established. Serial nerve conduction studies (NCS) can provide further insight into the likely pathophysiology by further subtyping of GBS and FS. We present a patient with an initial diagnosis of AIDP in whom repeated NCS revealed the AMAN variant. This led us to investigate serial NCS in five patients with GBS, FS and FS/GBS overlap presenting over a period of a year. Three patients with AIDP showed a gradual increase in distal motor latencies during the acute phase of illness. NCS of two patients with FS and FS/GBS overlap showed no demyelinating features suggesting underlying axonal neuropathy in this group of patients. The importance of serial NCS in establishing the underlying pattern of neuropathy in GBS and FS is further emphasized in this study. Larger studies incorporating serial NCS are required to confirm the observations seen in our case series especially when pathological studies are often not justified in this group of patients.  相似文献   

15.
Autoantibodies against gangliosides GM1 or GD1a are associated with acute motor axonal neuropathy (AMAN) and acute motor-sensory axonal neuropathy (AMSAN), whereas antibodies to GD1b ganglioside are detected in acute sensory ataxic neuropathy (ASAN). These neuropathies have been proposed to be closely related and comprise a continuous spectrum, although the underlying mechanisms, especially for sensory nerve involvement, are still unclear. Antibodies to GM1 and GD1a have been proposed to disrupt the nodes of Ranvier in motor nerves via complement pathway. We hypothesized that the disruption of nodes of Ranvier is a common mechanism whereby various anti-ganglioside antibodies found in these neuropathies lead to nervous system dysfunction. Here, we show that the IgG monoclonal anti-GD1a/GT1b antibody injected into rat sciatic nerves caused deposition of IgG and complement products on the nodal axolemma and disrupted clusters of nodal and paranodal molecules predominantly in motor nerves, and induced early reversible motor nerve conduction block. Injection of IgG monoclonal anti-GD1b antibody induced nodal disruption predominantly in sensory nerves. In an ASAN rabbit model associated with IgG anti-GD1b antibodies, complement-mediated nodal disruption was observed predominantly in sensory nerves. In an AMAN rabbit model associated with IgG anti-GM1 antibodies, complement attack of nodes was found primarily in motor nerves, but occasionally in sensory nerves as well. Periaxonal macrophages and axonal degeneration were observed in dorsal roots from ASAN rabbits and AMAN rabbits. Thus, nodal disruption may be a common mechanism in immune-mediated neuropathies associated with autoantibodies to gangliosides GM1, GD1a, or GD1b, providing an explanation for the continuous spectrum of AMAN, AMSAN, and ASAN.  相似文献   

16.
IgG anti-ganglioside antibodies were found in two patients with motor neuropathy. The first patient had a chronic axonal neuropathy with persistently elevated anti-GM1 antibodies. The second patient had an acute axonal neuropathy with anti-GM1, GD1b and asialoGM1 antibodies. In both, the IgG subclass study showed that the antibodies belonged to the IgG1 subclass. An enzyme-linked immunosorbent assay (ELISA) for light chains revealed anti-ganglioside antibodies of the lambda type.  相似文献   

17.
A close relationship between acute motor conduction block neuropathy and antibodies against the complex of GM1 and GalNAc‐GD1a has been reported. This study investigates the hypothesis that conduction block at the early phase of axonal Guillain‐Barré syndrome (GBS) is also associated with such ganglioside complexes. Sera were obtained from seven French patients with initial evidence of isolated conduction blocks that resolved or progressed to acute motor axonal neuropathy. Serum IgG to asialo‐GM1 and gangliosides of LM1, GM1, GM1b, GD1a, GalNAc‐GD1a, GD1b, GT1a, GT1b, and GQ1b as well as their complexes were measured. Five of seven patients progressed within the first month of disease to AMAN. One patient had IgG antibodies against the complex of asialo‐GM1 and each of the other ganglioside antigens. Another patient carried IgG antibodies against GM1 complex with GM1b, GD1a, and GT1a as well as asialo‐GM1 complex with GD1a and GT1a. None had IgG antibodies against GM1/GalNAc‐GD1a complex. Six patients had IgG against single antigens GM1, GD1a, GalNAc‐GD1a, GD1b, and asialo‐GM1. In three patients, a reduced reaction against GM1/GalNAc‐GD1a complex was observed. The presence of conduction block in axonal GBS is not always associated with anti‐GM1/GalNAc‐GD1a complex antibodies.  相似文献   

18.
Campylobacter coli was isolated from two Guillain-Barré syndrome (GBS) patients who had anti-GM1 and anti-GD1 IgG antibodies. Although both this bacteria and Campylobacter jejuni are common causes of diarrheal illness, previous studies have focused only on C. jejuni as the causal agent of GBS. To determine whether C. coli also is a causative agent, we examined the hypothesis that production of anti-ganglioside antibodies is induced by ganglioside-mimics on that bacterial lipo-oligosaccharide (LOS), as in C. jejuni-associated GBS. LOSs of both C. coli isolates had very weak reactivities with anti-GM1 and anti-GD1a IgG monoclonal antibodies, whereas those of some GBS-related C. jejuni isolates had strong reactivities. Anti-GM1 and anti-GD1a IgG antibodies from the two patients were not absorbed as much by the LOSs of their isolates as were those of GBS-related C. jejuni strains. These findings do not support the hypothesis of ganglioside mimicry on C. coli isolates' LOSs. We next made a serological assay of recent C. coli infection in 74 patients with GBS, 26 with Fisher syndrome (FS), 49 with other neurological diseases (OND), and 37 normal controls (NC) using the bacterial outer membrane protein as antigen. Eight (11%) GBS and two (8%) FS patients had two or three classes of IgG, IgM, and IgA anti-C. coli antibodies. Anti-C. jejuni IgG and IgA antibody titers were significantly higher than those of anti-C. coli (respectively, p = 0.03 and 0.01). This suggests that anti-C. coli antibodies cross-react with C. jejuni protein. We concluded that a C. coli infection was not the cause of GBS in our patients. Both isolation of a microorganism from, and the positive infectious serology of, GBS patients do not always indicate the causal agent.  相似文献   

19.
Bickerstaff's brainstem encephalitis (BBE), Miller Fisher syndrome (MFS) and Guillain-Barré syndrome (GBS) are thought to be closely related and to form a continuous spectrum. However, chronic polyneuropathy in BBE has not been reported. We report the temporal profile of anti-ganglioside antibody titer in a case of BBE-like brainstem encephalitis complicated with chronic polyneuropathy. A 71-year-old Japanese woman presented with drowsiness and cerebellar ataxia in addition to mild weakness in distal limb muscles. Anti-GalNAc-GD1a IgG and anti-GalNAc-GM1b IgG antibodies were positive in her serum. Brain magnetic resonance imaging revealed high-intensity signals in the midbrain, pons, and middle cerebellar peduncles on T2-weighted images. Central nervous system manifestations improved after immunomodulating therapy that included prednisolone, plasmapheresis and intravenous immunoglobulin. Nevertheless, the distal muscle weakness was exacerbated when the anti-GalNAc-GD1a IgG titer was elevated. Nerve conduction study indicated motor and sensory neuropathy which was developed motor dominant axonal damage. These findings suggest that anti-ganglioside antibodies, including anti-GalNAc-GD1a IgG, may be involved in a common autoimmune mechanism in BBE-like brainstem encephalitis and chronic motor dominant axonal neuropathy. However, the fact that the latter manifestation exacerbated after the improvement of former one possibly indicates different thresholds of neurologic symptoms mediated by anti-ganglioside antibodies in the present patient.  相似文献   

20.
Recent neurophysiological and pathological studies have led to a reclassification of the diseases that underlie Guillain‐Barre syndrome (GBS) into acute inflammatory demyelinating polyradiculoneuropathy (AIDP), acute motor and sensory axonal neuropathy (AMSAN) and acute motor axonal neuropathy (AMAN). The Fisher syndrome of ophthalmoplegia, ataxia and areflexia is the most striking of several related conditions. Significant antecedent events include Campylobacter jejuni (4–66%), cytomegalovirus (5–15%), Epstein‐Barr virus (2–10%), and Mycoplasma pneumoniae (1–5%) infections. These infections are not uniquely associated with any clinical subtype but severe axonal degeneration is more common following C.jejuni and severe sensory impairment following cytomegalovirus. Strong evidence supports an important role for antibodies to gangliosides in pathogenesis. In particular antibodies to ganglioside GM1 are present in 14–50% of patients with GBS, and are more common in cases with severe axonal degeneration associated with any subtype. Antibodies to ganglioside GQ1b are very closely associated with Fisher syndrome, its formes frustes and related syndromes. Ganglioside‐like epitopes exist in the bacterial wall of C.jejuni. Infection by this and other organisms triggers an antibody response in patients with GBS but not in those with uncomplicated enteritis. The development of GBS is likely to be a consequence of special properties of the infecting organism, since some strains such as Penner O:19 and O:41 are particularly associated with GBS but not with enteritis. It is also likely to be a consequence of the immunogenetic background of the patient since few patients develop GBS after infection even with one of these strains. Attempts to match the subtypes of CBS to the fine specificity of anti‐ganglioside antibodies and to functional effects in experimental models continue but have not yet fully explained the pathogenesis. T cells are also involved in the pathogenesis of most or perhaps all forms of GBS. T cell responses to any of three myelin proteins, PZ, PO and PMP22, are sufficient to induce experimental autoimmune neuritis. Activated T cells are present in the circulation in the acute stage, up‐regulate matrix metalloproteinases, cross the blood‐nerve barrier and encounter their cognate antigens. Identification of the specificity of these T cell responses is still at a preliminary stage. The invasion of intact myelin sheaths by activated macrophages is difficult to explain according to a purely T cell mediated mechanism. The different patterns of GBS are probably due to the diverse interplay between antibodies and T cells of differing specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号