首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.  相似文献   

4.
Inducible hematopoietic stem/progenitor cell lines represent a model for studying genes involved in self-renewal and differentiation. Here, gene expression was studied in the inducible human CD34+ acute myelogenous leukemia cell line KG1 using oligonucleotide arrays and suppression subtractive cloning. Using this approach, we identified Dlg7, the homolog of the Drosophila Dlg1 tumor suppressor gene, as downregulated at the early stages of KG1 differentiation. Similarly, Dlg7 was expressed in normal purified umbilical cord blood CD34+CD38- progenitors but not in the more committed CD34+CD38+ population. Dlg7 expression was not detected in differentiated cells obtained from hematopoietic colonies, nor was expression detected in purified T-cells, B-cells, and monocytes. When analyzed in different types of stem cells, Dlg7 expression was detected in purified human bone marrow-derived CD133+ progenitor cells, human mesenchymal stem cells, and mouse embryonic stem (ES) cells. Overexpression of Dlg7 in mouse ES cells increased their growth rate and reduced the number of EBs emerging upon differentiation. In addition, the EBs were significantly smaller, indicating an inhibition in differentiation. This inhibition was further supported by higher expression of Bmp4, Oct4, Rex1, and Nanog in EBs overexpressing Dlg7 and lower expression of Brachyury. Finally, the Dlg7 protein was detected in liver and colon carcinoma tumors but not in normal adjacent tissues, suggesting a role for the gene in carcinogenesis. In conclusion, our results suggest that Dlg7 has a role in stem cell survival, in maintaining stem cell properties, and in carcinogenesis. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

5.
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.  相似文献   

6.
Cell therapy represents the most promising alternative strategy for end-stage liver diseases and hepatic progenitors are the best candidates. We have identified a reservoir of immature hepatic precursors within human cord blood, which can derive engraftable bipotent progenitors. We isolated a stem cell subset CD133+/CD34+/OV6(low) expressing a surface-marker profile consistent with that of fetal liver cells. Upon induction of hepatic commitment by a medium containing cytokines and factors involved in vivo oval-cell activation, a heterogeneous cell population displaying characteristics of functional oval-cell-like bipotent hepatic progenitors was obtained. The cells expressed markers of hepatocytes and cholangiocytes and were highly enriched in OV6, c-Met, c-Kit, and Thy-1. They also displayed liver functional activity as glycogen storage, urea production, albumin secretion, and inducible CyP2B6 activity. When injected into liver-damaged severe-combined immunodeficient mice, induced bipotent hepatic progenitors appropriately engrafted livers of recipient animals, where they formed clusters of human-derived cells expressing human leucocyte antigen-class I, Hep-Par1, and OV6 antigens. Human-specific albumin, alpha-fetoprotein, and cytokeratin 19 were also expressed. In transplanted animals, AST serum levels showed a significative reduction with regard to controls. This human model for in vitro progenitor-cell activation may provide a powerful tool for elucidating the pathways and synergies that regulate this complex process and can represent a valuable source, exploitable for liver cell-based therapies and regenerative medicine.  相似文献   

7.
8.
This study details the profile of 13 cell surface cluster differentiation markers on human reserve stem cells derived from connective tissues. Stem cells were isolated from the connective tissues of dermis and skeletal muscle derived from fetal, mature, and geriatric humans. An insulin/dexamethasone phenotypic bioassay was used to determine the identity of the stem cells from each population. All populations contained lineage-committed myogenic, adipogenic, chondrogenic, and osteogenic progenitor stem cells as well as lineage-uncommitted pluripotent stem cells capable of forming muscle, adipocytes, cartilage, bone, fibroblasts, and endothelial cells. Flow cytometric analysis of adult stem cell populations revealed positive staining for CD34 and CD90 and negative staining for CD3, CD4, CD8, CD11c, CD33, CD36, CD38, CD45, CD117, Glycophorin-A, and HLA DR-II.  相似文献   

9.
Demonstration of the hallmarks of stem cells, self-renewal and multilineage differentiation, is a challenge that has not been met for numerous tissues postulated to possess adult stem cells, including prostate tissue. Using a defined medium, we reproducibly isolated and maintained adult mouse prostatic cells with characteristics of progenitor/stem cells. Clonal populations of cells demonstrated tissue-specific multilineage differentiation by their ability to generate organized prostatic ductal structures in vivo, with luminal and basal cell layers, when grafted under the renal capsules of mice in the presence of fetal rat urogenital mesenchyme. Complete differentiation was demonstrated by the expression and secretion of terminally differentiated prostatic secretory products into the lumens. Self-renewal was demonstrated by serial transplantation of clonal populations that generated fully differentiated ductal structures in vivo. In vitro, undifferentiated cells expressed markers associated with prostate stem cells, including Sca 1 and CD49f, as well as basal cell markers (p63 and cytokeratins 5 and 14) and, at a low level, luminal cell markers (androgen receptor and cytokeratins 8 and 18). When grafted and allowed to differentiate in the presence of fetal urogenital mesenchyme, the cells differentiated into luminal cells and basal cells with more restricted protein expression patterns. These studies are the first to report a reproducible system to assess adult prostatic progenitor/stem cells.  相似文献   

10.
Alginate gel was used to provide encapsulation to support the growth and eventually the differentiation of hepatic progenitors cells derived from human fetal livers. The encapsulated cells aggregated into spheroids within a few days in culture and continued to grow for at least 4 weeks in a serum-free medium. The hepatic progenitor cells in the spheroids undergo differentiation, as indicated by the appearance of functions of mature hepatocytes such as the detoxification of ammonia, albumin secretion, expression of the adult cytochrome P450 isozyme CYP3A4 and enzymatic activity typical of CYP2C9. Along with the expression of mature hepatic markers, these progenitor cells lost features typical of immature liver cells such as epithelial cell adhesion molecule. In addition to the acquisition of mature biochemical functions, the spheroids also developed a bile ducts, suggesting that they had differentiated into tissues resembling those in an intact liver.  相似文献   

11.
Bioreactors containing porcine or adult human hepatocytes have been used to sustain acute liver failure patients until liver transplantation. However, prolonged function of adult hepatocytes has not been achieved due to compromised proliferation and viability of adult cells in vitro. We investigated the use of fetal hepatocytes as an alternative cell source in bioreactors. Mouse fetal liver cells from gestational day 17 possessed intermediate differentiation and function based on their molecular profile. When cultured in a three-dimensional four-compartment hollow fiber-based bioreactor for 3 to 5 weeks these cells formed neo-tissues that were characterized comprehensively. Albumin liberation, testosterone metabolism, and P450 induction were demonstrated. Histology showed predominant ribbon-like three-dimensional structures composed of hepatocytes between hollow fibers. High positivity for proliferating cell nuclear antigen and Ki-67 and low positivity for terminal dUTP nick-end labeling indicated robust cell proliferation and survival. Most cells within these ribbon arrangements were albumin-positive. In addition, cells in peripheral zones were simultaneously positive for alpha-fetoprotein, cytokeratin-19, and c-kit, indicating their progenitor phenotype. Mesenchymal components including endothelial, stellate, and smooth muscle cells were also observed. Thus, fetal liver cells can survive, proliferate, differentiate, and function in a three-dimensional perfusion culture system while maintaining a progenitor pool, reflecting an important advance in hepatic tissue engineering.  相似文献   

12.
Naturally occurring liver disease in dogs resemble human liver disease in great detail; including the activation of liver progenitor cells (LPC) in acute and chronic liver disease. The aim of the present study was to isolate, culture, and characterize progenitor cells derived from healthy mature dog livers. A nonparenchymal cell fraction enriched with small hepatocytes was isolated and cultured in Hepatozyme-serum-free media (SFM) to stimulate the growth of colony-forming small epithelial cells. After 2 weeks of culturing, clonal expansion of keratin 7 (K7) immunopositive small cells with a large nucleus/cytoplasm ratio emerged in the hepatocyte monolayer. These colonies expressed genes of several hepatocyte (CYP1A1, ALB, and KRT18), cholangiocyte/LPC (KRT7 and KRT19), and progenitor cell markers (alpha-fetoprotein, CD44, prominin1, KIT, THY1, and neural cell adhesion molecule 1), indicating their immature and bipotential nature. Gene-expression profiles indicated a more pronounced hepatic differentiation in Hepatozyme-SFM compared to William's Medium E (WME). Furthermore, colony-forming cells differentiated toward intermediate hepatocyte-like cells with a more pronounced membranous K7 immunostaining. In conclusion, colony-forming small epithelial cells in long-term canine liver cell cultures express LPC markers and have differentiating capacities. These cells may therefore be considered as progenitor cells of the liver.  相似文献   

13.
14.
Expansion of mesenchymal stem cells from human pancreatic ductal epithelium   总被引:13,自引:0,他引:13  
Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm. Analysis by flow cytometry demonstrated that pancreatic MSCs express cell surface antigens used to define MSCs isolated from bone marrow such as CD13, CD29, CD44, CD49b, CD54, CD90 and CD105. In addition, utilizing protocols used to differentiate MSCs isolated from other somatic tissues, we successfully differentiated pancreatic MSCs into: (1) osteocytes that stained positive for alkaline phosphatase, collagen, mineralization (calcification) and expressed osteocalcin, (2) adipocytes that contained lipid inclusions and expressed fatty acid binding protein 4 and (3) chondrocytes that expressed aggrecan. We also demonstrated that pancreatic MSCs are multipotent and capable of deriving cells of endodermal origin. Pancreatic MSCs were differentiated into hepatocytes that stained positive for human serum albumin and expressed endoderm and liver-specific genes such as GATA 4 and tyrosine aminotransferase. In addition, preliminary protocols used to differentiate these cells into insulin-producing cells resulted in the expression of genes necessary for islet and beta-cell development such as Pax4 and neurogenin 3. Therefore, multipotent MSCs residing within the adult exocrine pancreas could represent a progenitor cell, which when further manipulated could result in the production of functional islet beta-cells.  相似文献   

15.
Ye Y  Wang B  Jiang X  Hu W  Feng J  Li H  Jin M  Ying Y  Wang W  Mao X  Jin K 《Human pathology》2011,42(8):1132-1141
Animal studies indicate that adult renal stem/progenitor cells can undergo rapid proliferation in response to renal injury, but whether the same is true in humans is largely unknown. To examine the profile of renal stem/progenitor cells responsible for acute tubular necrosis in human kidney, double and triple immunostaining was performed using proliferative marker and stem/progenitor protein markers on sections from 10 kidneys with acute tubular necrosis and 4 normal adult kidneys. The immunopositive cells were recorded using 2-photon confocal laser scanning microscopy. We found that dividing cells were present in the tubules of the cortex and medulla, as well as the glomerulus in normal human kidney. Proliferative cells in the parietal layer of Bowman capsule expressed CD133, and dividing cells in the tubules expressed immature cell protein markers paired box gene 2, vimentin, and nestin. After acute tubular necrosis, Ki67-positive cells in the cortex tubules significantly increased compared with normal adult kidney. These Ki67-positive cells expressed CD133 and paired box gene 2, but not the cell death marker, activated caspase-3. In addition, the number of dividing cells increased significantly in patients with acute tubular necrosis who subsequently recovered, compared with patients with acute tubular necrosis who consequently developed protracted acute tubular necrosis or died. Our data suggest that renal stem/progenitor cells may reside not only in the parietal layer of Bowman capsule but also in the cortex and medulla in normal human kidney, and the proliferative capacity of renal stem/progenitor cells after acute tubular necrosis may be an important determinant of a patient's outcome.  相似文献   

16.
Functional, mature human mast cells have been generated by in vitro differentiation of CD133(+)/CD34(+) progenitor cells isolated from e.g. cord blood, peripheral blood, bone marrow or fetal liver. However, the protocols published so far require long term cultivation, i.e. up to 15 weeks for mast cell differentiation, which makes such approaches not only laborious but also costly. Here, we have developed a protocol for generating functional human mast cells from peripheral blood already within 7 weeks. Human CD133(+) progenitors were isolated from buffy coat preparations of peripheral blood and cultured in the presence of stem cell factor (SCF) and IL-6 for 7 weeks. IL-3 was added to the culture medium during the first 3 weeks, and fetal calf serum (FCS) added during the last week. In vitro differentiated CD133(+) cells exhibited multiple characteristics of mature mast cells. Thus, cells contained tryptase and expressed functional levels of FcepsilonRI. Anti-IgE stimulation induced significant release of histamine and PGD(2) and also of chemokines including MCP-1, IL-8, MIP-1alpha, and MIP-1beta. The fact that our in vitro differentiated mast cells are derived from a generally available source of progenitor cells makes this novel protocol widely applicable to any patient group, irrespective of age. Moreover, this progenitor source is more readily available than e.g. bone marrow or cord blood-derived progenitors. Consequently, our protocol has great potential in studies on mast cell biology and mast cell pathology, and e.g. on evaluation of drug effects.  相似文献   

17.
Transplantation of hepatocytes or hepatocyte-like cells of extrahepatic origin is a promising strategy for treatment of acute and chronic liver failure. We examined possible utility of hepatocyte-like cells induced from bone marrow cells for such a purpose. Clonal cell lines were established from the bone marrow of two different rat strains. One of these cell lines, rBM25/S3 cells, grew rapidly (doubling time, approximately 24 hours) without any appreciable changes in cell properties for at least 300 population doubling levels over a period of 300 days, keeping normal diploid karyotype. The cells expressed CD29, CD44, CD49b, CD90, vimentin, and fibronectin but not CD45, indicating that they are of mesenchymal cell origin. When plated on Matrigel with hepatocyte growth factor and fibroblast growth factor-4, the cells efficiently differentiated into hepatocyte-like cells that expressed albumin, cytochrome P450 (CYP) 1A1, CYP1A2, glucose 6-phosphatase, tryptophane-2,3-dioxygenase, tyrosine aminotransferase, hepatocyte nuclear factor (HNF)1 alpha, and HNF4alpha. Intrasplenic transplantation of the differentiated cells prevented fatal liver failure in 90%-hepatectomized rats. In conclusion, a clonal stem cell line derived from adult rat bone marrow could differentiate into hepatocyte-like cells, and transplantation of the differentiated cells could prevent fatal liver failure in 90%-hepatectomized rats. The present results indicate a promising strategy for treating human fatal liver diseases.  相似文献   

18.
We have previously achieved a high level of long-term liver replacement by transplanting freshly isolated embryonic day (ED) 14 rat fetal liver stem/progenitor cells (FLSPCs). However, for most clinical applications, it will be necessary to use cryopreserved cells that can effectively repopulate the host organ. In the present study, we report the growth and gene expression properties in culture of rat FLSPCs cryopreserved for up to 20 months and the ability of cryopreserved FLSPCs to repopulate the normal adult rat liver. After thawing and placement in culture, cryopreserved FLSPCs exhibited a high proliferation rate: 49.7% Ki-67-positive on day 1 and 34.7% Ki-67-positive on day 5. The majority of cells were also positive for both alpha-fetoprotein and cytokeratin-19 (potentially bipotent) on day 5. More than 80% of cultured cells expressed albumin, the asialoglycoprotein receptor, and UDP-glucuronosyltransferase (unique hepatocyte-specific functions). Expression of glucose-6-phosphatase, carbamyl phosphate synthetase 1, hepatocyte nuclear factor 4alpha, tyrosine aminotransferase, and oncostatin M receptor mRNAs was initially negative, but all were expressed on day 5 in culture. After transplantation into the normal adult rat liver, cryopreserved FLSPCs proliferated continuously, regenerated both hepatocytes and bile ducts, and produced up to 15.1% (mean, 12.0% +/- 2.0%) replacement of total liver mass at 6 months after cell transplantation. These results were obtained in a normal liver background under nonselective conditions. This study is the first to show a high level of long-term liver replacement with cryopreserved fetal liver cells, an essential requirement for future clinical applications.  相似文献   

19.
The aim of this study is to establish a novel mouse model with high achievement and chimerism by in utero transplantation of human hematopoietic stem/progenitor cells and to explore the possibility that human adult hematopoietic stem/progenitor cells can differentiate into hepatocyte-like cells and partially repair the liver damage induced by carbon tetrachloride (CCl(4)). Mononuclear cells (MNCs) were isolated from fresh human umbilical cord blood (hUCB) and CD34(+) cells were enriched from the MNCs by magnetic cell isolation. These cells were injected respectively into the fetal mice at 11-13 days of gestation. At one month after birth, the specific markers of human cells, human alpha-satellite sequence (h17alpha), CD14, CD34, CD45, and GPA were detected by PCR and FACS. At three and six months after birth, the established human-mouse chimeras were administered with CCl(4) by intraperitoneal injection. The biochemical markers (ALT, AST, ALP, albumin) in serum were determined and human hepatocyte-specific proteins, such as human albumin, hepatocyte nuclear factor-4, hepatocyte-specific antigen, tryptophan 2,3-dioxygenase and alpha fetoprotein were analyzed by PCR, RT-PCR, real-time PCR and immunohistochemistry staining, respectively. More than 77% of recipients demonstrated human-mouse chimera. Significantly, hUCB hematopoietic stem/progenitor cells may differentiate into human hepatocyte-like cells with evidence of the expression of human hepatocyte-specific proteins as well as partially repair or protect liver damage induced by CCl(4). The mouse model described in this article provides a useful tool for the studies of regeneration of human hepatocyte-like cells from adult hematopoietic stem/ progenitor cells as well as facilitates the therapeutic potential for liver diseases or damage by in utero transplantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号