首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effective model for studying enteropathogenesis. In this study we investigated the role of RpoS, the stationary phase sigma factor, in virulence in C. rodentium. Sequence analysis showed that the rpoS gene is highly conserved in C. rodentium and E. coli, exhibiting 92% identity. RpoS was critical for survival under heat shock conditions and during exposure to H(2)O(2) and positively regulated the expression of catalase KatE (HPII). The development of the RDAR (red dry and rough) morphotype, an important virulence trait in E. coli, was also mediated by RpoS in C. rodentium. Unlike E. coli, C. rodentium grew well in the mouse colon, and the wild-type strain colonized significantly better than rpoS mutants. However, a mutation in rpoS conferred a competitive growth advantage over the wild type both in vitro in Luria-Bertani medium and in vivo in the mouse colon. Survival analysis showed that the virulence of an rpoS mutant was attenuated. The expression of genes on the LEE pathogenicity island, which are essential for colonization and virulence, was reduced in the rpoS mutant. In conclusion, RpoS is important for the stress response and is required for full virulence in C. rodentium.  相似文献   

2.
3.
Commensals limit disease caused by invading pathogens; however, the mechanisms and genes utilized by beneficial microbes to inhibit pathogenesis are poorly understood. The attaching and effacing mouse pathogen Citrobacter rodentium associates intimately with the intestinal epithelium, and infections result in acute colitis. C. rodentium is used to model the human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. To confirm that Bacillus subtilis, a spore-forming bacterium found in the gut of mammals, could reduce C. rodentium-associated disease, mice received wild-type B. subtilis spores and 24 h later were infected by oral gavage with pathogenic C. rodentium. Disease was assessed by determining the extent of colonic epithelial hyperplasia, goblet cell loss, diarrhea, and pathogen colonization. Mice that received wild-type B. subtilis prior to enteric infection were protected from disease even though C. rodentium colonization was not inhibited. In contrast, espH and hag mutants, defective in exopolysaccharides and flagellum production, respectively, did not protect mice from C. rodentium-associated disease. A motAB mutant also failed to protect mice from disease, suggesting that B. subtilis-mediated protection requires functional flagella. By expanding our current mechanistic knowledge of bacterial protection, we can better utilize beneficial microbes to prevent intestinal disease caused by pathogenic bacteria, ultimately reducing human disease. Our data demonstrate that wild-type B. subtilis reduced disease caused by C. rodentium infection through a mechanism that required espH and functional flagella.  相似文献   

4.
Citrobacter rodentium (formerly Citrobacter freundii biotype 4280 and Citrobacter genomospecies 9) was described on the basis of biochemical characterization and DNA-DNA hybridization data and is the only Citrobacter species known to possess virulence factors homologous to those of the human pathogens enteropathogenic Escherichia coli and enterohemorrhagic E. coli. These virulence factors are encoded on the locus of enterocyte effacement (LEE), a pathogenicity island required for the characteristic attaching and effacing (AE) pathology seen in infection with these three pathogens. C. rodentium, which apparently infects only mice, provides a useful animal model for studying the molecular basis of AE pathology. No work has been done to assess differences in pathogenicity between C. rodentium isolates from diverse sources. Here, we report the examination of 15 C. rodentium isolates using a battery of genetic and biochemical approaches. No differences were observed between the isolates by repetitive-element sequence-based PCR analysis, biochemical analysis, and possession of LEE-specific virulence factors. These data suggest that members of the species are clonal. We further characterized an atypical E. coli strain from Japan called mouse-pathogenic E. coli (MPEC) that, in our hands, caused the same disease as C. rodentium. Applying the same battery of tests, we found that MPEC possesses LEE-encoded virulence factors and is indistinguishable from the previously characterized C. rodentium isolate DBS100. These results demonstrate that MPEC is a misclassified C. rodentium isolate and that members of this species are clonal and represent the only known attaching and effacing bacterial pathogen of mice.  相似文献   

5.
6.
Citrobacter rodentium is a member of a group of pathogens that colonize the lumen of the host gastrointestinal tract via attaching and effacing (A/E) lesion formation. C. rodentium, which causes transmissible colonic hyperplasia in mice, is used as an in vivo model system for the clinically significant A/E pathogens enterohemorrhagic and enteropathogenic Escherichia coli. These bacteria all contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes a type III secretion system that is designed to deliver effector proteins into eukaryotic host cells. These effectors are involved in the subversion of host eukaryotic cell functions to the benefit of the bacterium. In this study we used mutant strains to determine the effects of the C. rodentium LEE-encoded effectors EspF, EspG, EspH, and Map on virulence in the mouse model. In addition, we identified a novel secreted protein, EspI encoded outside the LEE, whose secretion is also dependent on a functional type III secretion system. Mutant strains with each of the effectors investigated were found to be outcompeted by wild-type bacteria in mixed-infection experiments in vivo, although the effects of EspF and EspH were only subtle. In single-infection experiments, we found that EspF, EspG, and EspH are not required for efficient colonization of the mouse colon or for the production of hyperplasia. In contrast, strains producing EspI and Map had significant colonization defects and resulted in dramatically reduced levels of hyperplasia, and they exhibited very different growth dynamics in mice than the wild-type strain exhibited.  相似文献   

7.
8.
9.
10.
Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children from developing countries. Intimate adhesion of the bacteria to intestinal cells occurs via binding of the adhesin intimin to the TIR receptor exposed on cell surfaces. Here, Lactobacillus casei expressing a fragment of β-intimin (L. casei-Int(cv)) was tested as mucosal vaccines in mice against intestinal colonization with the murine pathogen Citrobacter rodentium. Oral or sublingual immunization of C57BL/6 mice with L. casei-Int(cv) induced anti-Int(cv) IgA in feces but no IgG in sera. Conversely, anti-Int(cv) IgG was induced in the sera of mice after sublingual immunization with purified Int(cv). All vaccines were able to decrease C. rodentium recovery from feces. However, this reduction was more evident and sustained over time in mice immunized with L. casei-Int(cv) by the sublingual route. These mice also displayed an increase in interleukin 6 (IL-6) and gamma interferon (IFN-γ) secretion by spleen cells 10 days after infection. Additionally, oral or sublingual immunization of C3H/HePas mice, which are highly susceptible to C. rodentium infection, with L. casei-Int(cv) induced anti-Int(cv) antibodies and significantly increased survival after challenge. Immunohistological analysis of colon sections revealed that C. rodentium was located in deep fractions of the tissue from C3H/HePas mice immunized with L. casei whereas superficial staining was observed in colon sections from mice immunized with L. casei-Int(cv.) The results indicate that vaccines composed of L. casei expressing intimin may represent a promising approach and that the C3H/HePas infection model with C. rodentium can be used to evaluate potential vaccines against EPEC.  相似文献   

11.
Previously, we have identified a large gene (lifA, for lymphocyte inhibitory factor A) in enteropathogenic Escherichia coli (EPEC) encoding a protein termed lymphostatin that suppresses cytokine expression in vitro. This protein also functions as an adhesion factor for enterohemorrhagic E. coli (EHEC) and Shiga toxin-producing E. coli and is alternatively known as efa1 (EHEC factor for adherence 1). The lifA/efa1 gene is also present in Citrobacter rodentium, an enteric pathogen that causes a disease termed transmissible murine colonic hyperplasia (TMCH), which induces colitis and massive crypt cell proliferation, in mice. To determine if lifA/efa1 is required for C. rodentium-induced colonic pathology in vivo, three in-frame mutations were generated, disrupting the glycosyltransferase (GlM12) and protease (PrMC31) motifs and a domain in between that does not encode any known activity (EID3). In contrast to infection with wild-type C. rodentium, that with any of the lifA/efa1 mutant strains did not induce weight loss or TMCH. Enteric infection with motif mutants GlM12 and PrM31 resulted in significantly reduced colonization counts during the entire 20-day course of infection. In contrast, EID3 was indistinguishable from the wild type during the initial colonic colonization, but cleared rapidly after day 8 of the infection. The colonic epithelium of all infected mice displayed increased epithelial regeneration. However, significantly increased regeneration was observed by day 20 only in mice infected with the wild-type in comparison to those infected with lifA/efa1 mutant EID3. In summary, lifA/efa1 is a critical gene outside the locus for enterocyte effacement that regulates bacterial colonization, crypt cell proliferation, and epithelial cell regeneration.  相似文献   

12.
The function of the rorf2 gene located on the locus of enterocyte effacement (LEE) pathogenicity island of enteropathogenic Escherichia coli (EPEC) has not been described. We report that rorf2 encodes a novel protein, named EspG, which is secreted by the type III secretory system and which is translocated into host epithelial cells. EspG is homologous with Shigella flexneri protein VirA, and the cloned espG (rorf2) gene can rescue invasion in a Shigella virA mutant, indicating that these proteins are functionally equivalent in Shigella. An EPEC espG mutant had no apparent defects in in vitro assays of virulence phenotypes, but a rabbit diarrheagenic E. coli strain carrying a mutant espG showed diminished intestinal colonization and yet diarrheal attack rates similar to those of the wild type. A second EspG homolog, Orf3, is encoded on the EspC pathogenicity islet. The cloned orf3 gene could also rescue invasion in a Shigella virA mutant, but an EPEC espG orf3 double mutant was not diminished in any tested in vitro assays for EPEC virulence factors. Our results indicate that EspG plays an accessory but as yet undefined role in EPEC virulence that may involve intestinal colonization.  相似文献   

13.
Campylobacter jejuni is a major cause of bacterial food-borne enteritis worldwide, and invasion into intestinal epithelial cells is an important virulence mechanism. Recently we reported the identification of hyperinvasive C. jejuni strains and created a number of transposon mutants of one of these strains, some of which exhibited reduced invasion into INT-407 and Caco-2 cells. In one such mutant the transposon had inserted into a homologue of cj1136, which encodes a putative galactosyltransferase according to the annotation of the C. jejuni NCTC11168 genome. In the current study, we investigated the role of cj1136 in C. jejuni virulence, lipooligosaccharide (LOS) biosynthesis, and host colonization by targeted mutagenesis and complementation of the mutation. The cj1136 mutant showed a significant reduction in invasion into human intestinal epithelial cells compared to the wild-type strain 01/51. Invasion levels were partially restored on complementing the mutation. The inactivation of cj1136 resulted in the production of truncated LOS, while biosynthesis of a full-length LOS molecule was restored in the complemented strain. The cj1136 mutant showed an increase in sensitivity to the bile salts sodium taurocholate and sodium deoxycholate and significantly increased sensitivity to polymyxin B compared to the parental strain. Importantly, the ability of the mutant to colonize 1-day-old chicks was also significantly impaired. This study confirms that a putative galactosyltransferase encoded by cj1136 is involved in LOS biosynthesis and is important for C. jejuni virulence, as disruption of this gene and the resultant truncation of LOS affect both colonization in vivo and invasiveness in vitro.  相似文献   

14.
Initiation of attaching-effacing lesions, which characterize infections with rabbit enteropathogenic Escherichia coli (REPEC), requires bacteria to adhere to the intestinal epithelium. This adherence is reflected in vitro by the affinity of these E. coli strains for various types of eukaryotic cells. TnphoA mutants of REPEC 83/39 (O15:H-) which had lost the ability to adhere to HEp-2 epithelial cells, guinea pig ileal brush borders, and mouse erythrocytes were generated. DNA sequencing of the region surrounding the inactivating transposon insertions within a 95-kb plasmid, designated pRAP for REPEC adherence plasmid, revealed extensive homology between that region and the structural genes of enterotoxigenic E. coli operons encoding the K88 and CS31A fimbrial adhesins and the genes for the afr2 adhesin from REPEC B10 (O103:H2). Seven genes of the ral operon (for REPEC adherence locus), including three putative minor fimbrial subunit genes (ralC, ralF, and ralH), a major fimbrial subunit gene (ralG), a gene of unknown function (ralI), and genes for two fimbrial subunit chaperones (ralD and ralE), were sequenced. When inoculated perorally into weanling rabbits, a mutant with a TnphoA insertion in the ralE gene showed a 10-fold reduction in colonizing ability, with only 1 of 10 rabbits excreting bacteria compared to all 5 of those infected with the wild-type parent strain (P = 0.002). The severity of the diarrheal illness caused by the mutant strain was also reduced. Western blotting of surface protein extracts of strain 83/39 with hyperimmune anti-83/39 antiserum, adsorbed with the ralE mutant, revealed a 32-kDa protein which was absent from protein extracts of two nonadherent mutants. The adsorbed antiserum also bound to the surface of strain 83/39 but not to nonadherent mutants, as detected by immunogold labeling. These results indicate that the ral operon of REPEC 83/39 contains genes necessary for the biosynthesis of fine fimbriae which are responsible for in vitro adherence of the bacteria and play a role in their colonization of, and hence virulence for, rabbits. The putative major fimbrial subunit is a protein with an observed molecular size of approximately 32 kDa which, when assembled, appears to form a capsule of fimbriae surrounding the bacterium similar to that described for CS31A.  相似文献   

15.
Citrobacter rodentium is the causative agent of transmissible murine colonic hyperplasia and contains a locus of enterocyte effacement (LEE) similar to that found in enteropathogenic Escherichia coli (EPEC). EPEC espB is necessary for intimate attachment and signal transduction between EPEC and cultured cell monolayers. Mice challenged with wild-type C. rodentium develop a mucosal immunoglobulin A response to EspB. In this study, C. rodentium espB has been cloned and its nucleotide sequence has been determined. C. rodentium espB was found to have 90% identity to EPEC espB. A nonpolar insertion mutation in C. rodentium espB was constructed and used to replace the chromosomal wild-type allele. The C. rodentium espB mutant exhibited reduced cell association and had no detectable fluorescent actin staining activity on cultured cell monolayers. The C. rodentium espB mutant also failed to colonize laboratory mice following experimental inoculation. The espB mutation could be complemented with a plasmid-encoded copy of the gene, which restored both cell association and fluorescent actin staining activity, as well as the ability to colonize laboratory mice. These studies indicate that espB is necessary for signal transduction and for colonization of laboratory mice by C. rodentium.  相似文献   

16.
Enterohemorrhagic Escherichia coli (EHEC) infections in humans are an important public health problem and are commonly acquired via contact with ruminant feces. The serogroups that are predominantly associated with human infection in the United States and Europe are O157 and O26. Serotypes O157:H7 and O26:H- differ in their virulence and tissue tropism in calves and therefore may colonize calves by distinct mechanisms. The mechanisms underlying EHEC intestinal colonization and pathogenesis are poorly understood. Signature-tagged mutagenesis was used to identify 59 genes of EHEC O26:H- that are required for the intestinal colonization of calves. Our results indicate important roles for locus of enterocyte effacement (LEE)-encoded type III secreted proteins in intestinal colonization. In addition, colonization is facilitated by cytotoxins, putative type III secreted proteins unlinked to the LEE, a putative fimbrial operon, and numerous genes involved in central metabolism and transport and genes of unknown function. Our data also imply that the elaboration of type I fimbriae by EHEC O26:H- is disadvantageous for persistence within the bovine intestines. These observations have important implications for the design of vaccines to control these important zoonotic pathogens.  相似文献   

17.
18.
The family of attaching and effacing (A/E) bacterial pathogens, which includes diarrheagenic enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), remains a significant threat to human and animal health. These bacteria intimately attach to host intestinal cells, causing the effacement of brush border microvilli. The genes responsible for this phenotype are encoded in a pathogenicity island called the locus of enterocyte effacement (LEE). Citrobacter rodentium is the only known murine A/E pathogen and serves as a small animal model for EPEC and EHEC infections. Here we report the full DNA sequence of C. rodentium LEE and provide a comparative analysis with the published LEEs from EPEC, EHEC, and the rabbit diarrheagenic E. coli strain RDEC-1. Although C. rodentium LEE shows high similarities throughout the entire sequence and shares all 41 open reading frames with the LEE from EPEC, EHEC, and RDEC-1, it is unique in its location of the rorf1 and rorf2/espG genes and the presence of several insertion sequences (IS) and IS remnants. The LEE of EPEC and EHEC is inserted into the selC tRNA gene. In contrast, the Citrobacter LEE is flanked on one side by an operon encoding an ABC transport system, and an IS element and sequences homologous to Shigella plasmid R100 and EHEC pO157 flank the other. The presence of plasmid sequences next to C. rodentium LEE suggests that the prototype LEE resided on a horizontally transferable plasmid. Additional sequence analysis reveals that the 3-kb plasmid in C. rodentium is nearly identical to p9705 in EHEC O157:H7, suggesting that horizontal plasmid transfer among A/E pathogens has occurred. Our results indicate that the LEE has been acquired by C. rodentium and A/E E. coli strains independently during evolution.  相似文献   

19.
The formation of attaching and effacing (A/E) lesions is central to the pathogenesis of enteropathogenic Escherichia coli (EPEC)-mediated disease in humans and Citrobacter rodentium (formerly C. freundii biotype 4280)-mediated transmissible colonic hyperplasia in mice. Closely related outer membrane proteins, known as intimins, are required for formation of the A/E lesion by both EPEC (Int(EPEC)) and C. rodentium (Int(CR)). A secreted protein, EspB (formally EaeB), is also necessary for A/E-lesion formation. Here we report that expression of a cloned Int(EPEC), encoded by plasmid pCVD438, restores murine virulence to an intimin-deficient mutant of C. rodentium DBS255. Replacement of Cys937 with Ala abolished the ability of the cloned EPEC intimin to complement the deletion mutation in DBS255. Ultrastructural examination of tissues from wild-type C. rodentium and DBS255(pCVD438)-infected mice revealed multiple A/E lesion on infected cells and loss of contact between enterocytes and basement membrane. Histological investigation showed that although both wild-type C. rodentium and DBS255(pCVD438) colonized the descending colon and induced colonic hyperplasia in orally infected 21-day-old mice, the latter strain adhered to epithelial cells located deeper within crypts. Nonetheless, infection with the wild-type strain was consistently more virulent, as indicated by a higher mortality rate. All the surviving mice, challenged with either wild-type C. rodentium or DBS255(pCVD438), developed a mucosal immunoglobulin A response to intimin and EspB. These results show that C. rodentium infection provides a relevant, simple, and economic model to investigate the role of EPEC proteins in the formation of A/E lesions in vivo and in intestinal disease.  相似文献   

20.
Uropathogenic Escherichia coli (UPEC) strains are a leading cause of infections in humans, but the mechanisms governing host colonization by this bacterium remain poorly understood. Previous studies have identified numerous gene clusters encoding proteins involved in sugar transport, in pathogen-specific islands. We investigated the role in fitness and virulence of the vpe operon encoding an EII complex of the phosphotransferase (PTS) system, which is found more frequently in human strains from infected urine and blood (45%) than in E. coli isolated from healthy humans (15%). We studied the role of this locus in vivo, using the UPEC E. coli strain AL511, mutants, and complemented derivatives in two experimental mouse models of infection. Mutant strains displayed attenuated virulence in a mouse model of sepsis. A role in kidney colonization was also demonstrated by coinfection experiments in a mouse model of pyelonephritis. Electron microscopy examinations showed that the vpeBC mutant produced much smaller amounts of a capsule-like surface material than the wild type, particularly when growing in human urine. Complementation of the vpeBC mutation led to an increase in the amount of exopolysaccharide, resistance to serum killing, and virulence. It was therefore clear that the loss of vpe genes was responsible for all the observed phenotypes. We also demonstrated the involvement of the vpe locus in gut colonization in the streptomycin-treated mouse model of intestinal colonization. These findings confirm that carbohydrate transport and metabolism underlie the ability of UPEC strains to colonize the host intestine and to infect various host sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号