首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium ion can enter ischemic neurons through both receptor-operated and voltage-sensitive Ca2+ channels. To attenuate this Ca2+ entry and Ca2(+)-induced neuronal injury, we tried a combined treatment with the noncompetitive N-methyl-D-aspartate (NMDA) antagonist, MK-801, and the dihydropyridine calcium antagonist, nimodipine, in a cat middle cerebral artery occlusion (1 hour) and reperfusion (3 hours) model. We measured changes in cytosolic free calcium, nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide redox state, and blood flow in the cat cortex using a newly developed fluorometric technique with indo-1, a fluorescent intracellular Ca2+ indicator. The combined treatment, starting 5 minutes into ischemia, was effective in reducing both Ca2+ entry and histologic damage and in enhancing recovery of the electroencephalogram following reperfusion. MK-801 alone was also effective, but to a lesser extent. These data suggest that the dual blockade of Ca2+ entry using MK-801 and nimodipine may be a useful tool for protection against ischemic brain damage.  相似文献   

2.
To clarify the mechanism of its effect on ischemic stroke, we investigated the effect of nimodipine, a dihydropyridine calcium antagonist, on changes in cytosolic free calcium, cortical blood flow, and histologic changes following focal cerebral ischemia and reperfusion in 14 cats. Using indo-1, a fluorescent intracellular Ca2+ indicator, we simultaneously measured changes in the Ca2+ signal ratio (400:506 nm), reduced nicotinamide adenine dinucleotide fluorescence (464 nm), and reflectance (340 nm) during an ultraviolet excitation (340 nm) directly from the cat cortex in vivo. In six cats treated with vehicle only, the calcium signal ratio increased from 5 minutes after middle cerebral artery occlusion to 30 minutes into reperfusion. The elevation of cytosolic free calcium was significantly attenuated by nimodipine, which was administered by intravenous infusion in eight cats starting 5 minutes after occlusion. Nimodipine had no effect on cortical blood flow during ischemia but induced a hyperperfused state following reperfusion. Nimodipine did not modify changes in the mitochondrial oxidation-reduction state. Nimodipine proved to have beneficial effects on recovery of the electroencephalogram following reperfusion as well as on the extent of focal histologic damage. Our results suggest that nimodipine, when administered during the early stage of focal ischemia, can favorably modify the outcome of stroke by reducing the Ca2+ entry during both the ischemic and reperfusion periods.  相似文献   

3.
M Okada  A Urae  K Iwasaki  K Mine  M Fujiwara 《Brain research》1992,583(1-2):227-236
The effects of non-competitive NMDA antagonists, MK-801 and dextrorphan in relation to the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM K+ in whole brain synaptosomes from young (3 months old) and aged (24 months old) Fisher344 rats were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. In young rats, the rise in [Ca2+]i following depolarization was affected by neither dextrorphan (1, 10, 100 microM) nor MK-801 (0.1, 1, 10 microM), while in aged rats, 1 microM dextrorphan and 0.1 microM MK-801 brought about a significant increase in [Ca2+]i following depolarization. In low Mg2+ medium, 10 microM MK-801 and 100 microM dextrorphan significantly inhibited the rise in [Ca2+]i after stimulation with 15 mM K+ in young rats, while neither dextrorphan nor MK-801 could affect the rise in [Ca2+]i significantly in aged rats. When 100 microM NMDA was applied in a medium containing 1.2 mM Mg2+, the rise in [Ca2+]i following depolarization was slightly inhibited by 1 microM MK-801 in young rats, but it was not inhibited significantly by dextrorphan. In aged rats, both 100 microM dextrorphan and 10 microM MK-801 strongly inhibited the rise in [Ca2+]i following depolarization in the presence of 100 microM NMDA. Instead of NMDA, when 100 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA receptor agonist, was applied, dextrorphan did not inhibit the rise in [Ca2+]i. In low Mg2+ medium, 100 microM NMDA potentiated the inhibitory effect of 10 microM dextrorphan in young rats, while 100 microM dextrorphan or MK-801 did not show any further inhibition by adding 100 microM NMDA. The addition of 100 microM AMPA did not affect the effect of dextrorphan in a low Mg2+ medium in young rats. These results suggest that NMDA antagonist-mediated [Ca2+]i homeostatic system may alter through aging. In addition, the findings that NMDA potentiated the inhibitory effect of NMDA antagonist, which being further potentiated by aging or lowered extrasynaptosomal Mg2+, indicate the possibility that the Mg2+ block to NMDA receptors might be attenuated through aging.  相似文献   

4.
An increase in cytosolic free calcium concentration ([Ca2+]i) may trigger irreversible cell injury following cerebral ischemia. We have measured changes in [Ca2+]i in cat cortex in vivo during ischemia produced by 1 hour of middle cerebral artery occlusion and during 30 minutes of reperfusion. Indo-1, a fluorescent Ca2+ indicator, was loaded into the exposed cortex by superfusion, and changes in the [Ca2+]i signal (400/506 nm ratio) were measured microfluorometrically during ultraviolet excitation (340 nm). The nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD/NADH) redox state and hemodynamic changes were measured simultaneously. The animals showing severe deterioration in their electroencephalograms (EEG) showed a progressive increase in the [Ca2+]i signal during ischemia (baseline: 1.46 +/- 0.05; 60 minutes after occlusion: 2.99 +/- 0.37; n = 7). At 30 minutes following reperfusion, the animals showing little recovery in their EEG exhibited a further increase in [Ca2+]i (4.71 +/- 0.87, n = 3), whereas animals showing significant recovery in their EEG also showed recovery of [Ca2+]i (1.55 +/- 0.09, n = 4). By contrast, the moderate or mild stroke animals with less deterioration in their EEGs showed no increase in [Ca2+]i during either ischemia or reperfusion. These data suggest that the increase in [Ca2+]i might be closely related not only to deterioration of brain function during ischemia but also to poor recovery during the reperfusion period.  相似文献   

5.
Voltage-gated calcium channels (VGCC) and N-methyl-d-aspartate receptors (NMDAR) account for most of the depolarization-induced neuronal calcium entry. The susceptibility of individual routes of calcium entry for nitric oxide (NO) is largely unknown. We loaded cultured rat cortical neurons with fluo-4 acetoxymethylester to study the effect of the NO synthase inhibitor Nomega-nitro-l-arginine and the NO donor S-nitroso-N-acetylpenicillamine on the intracellular calcium concentration ([Ca2+]i). The potassium-induced [Ca2+]i increase was amplified by Nomega-nitro-l-arginine and attenuated by S-nitroso-N-acetylpenicillamine. This modulation was abolished by either the P/Q-type VGCC antagonist omega-agatoxin IVA or by the NMDAR antagonist MK-801, but not by N-type (omega-conotoxin GVIA) or L-type (nimodipine) VGCC blockers. These results suggest that NO can modulate neuronal calcium entry during depolarization by interacting with P/Q-type VGCC and NMDAR.  相似文献   

6.
Changes in cytosolic free calcium [( Ca2+]i) in the cat cortex were measured in vivo by indo-1 fluorometry during cerebral ischemia and reperfusion and were correlated to the histopathological ischemic changes. These changes were most pronounced in stroke cases with an increase in [Ca2+]i throughout the ischemic and reperfusion periods. Cases without a [Ca2+]i increase showed no histopathological change in the cortical gyrus in which [Ca2+]i was measured. The data support the hypothesis that an increase in [Ca2+]i during cerebral ischemia and reperfusion leads to neuronal damage.  相似文献   

7.
Influx of calcium ion (Ca++) into the neurons has recently been implicated in the generation of seizure activity. Utilizing indo-1, a fluorescent Ca++ indicator, changes in cytosolic free calcium ([Ca++]i), NAD/NADH redox state and hemodynamics were simultaneously measured in vivo from the cat cortex during bicuculline-induced seizure activity. A ratio of indo-1-Ca++ fluorescence at 400 and 506 nm during ultraviolet excitation (340 nm) was utilized as a measure of changes in [Ca++]i. Alterations in the NAD/NADH redox state and local cortical blood volume (ICBV) were assessed at 464 nm and 340 nm, respectively. Local cortical blood flow (1CBF) was calculated from 1CBV and mean transit time determined from cortical hemodilution curves. Electroencephalogram (EEG) was monitored from the same cortical region as the optical measurements. The [Ca++]i signal ratio started to increase 19 ± 2 sec prior to the onset of seizure activity on the EEG and remained elevated until the activity was suppressed by an intravenous administration of diazepam (2 mg/kg). The early increase in [Ca++]i is presumably due to a synaptic Ca++ entry associated with facilitated excitatory neurotransmission. The NAD/NADH redox state became oxidized during the seizure activity and started to recover as the EEG activity was suppressed. The 1CBV and lCBF increased by 17 ± 8% and 68 ± 16%, respectively, 10 min into the seizure activity. This study provides direct in vivo evidence suggesting a possible role of calcium entry into the neurons in the epileptogenesis.  相似文献   

8.
A preparation of acutely dissociated brain cells derived from adult (3-month-old) rat has been developed under conditions preserving the metabolic integrity of the cells and the function of N-methyl-D-aspartate (NMDA) receptors. The effects of glutamate and NMDA on [Ca2+]i measured with fluo3 and 45Ca2+ uptake have been studied on preparations derived from hippocampus and cerebral cortex. Glutamate (100 microM) and N-methyl-DL-aspartate (200 microM) increased [Ca2+]i by 26-12 nM and 23-9 nM after 90 s in cerebral cortex and hippocampus, and stimulated 45Ca2+ uptake about 16-10% in the same regions. The increases in [Ca2+]i and 45Ca2+ uptake were inhibited by 40% in the presence of 1 mM MgCl2 and by 90-50% in the presence of MK-801. The results indicate (a) that a large fraction of the [Ca2+]i response to glutamate in freshly dissociated brain cells from the adult rat involves NMDA receptors, (b) when compared with results in newborn rats, there is a substantial blunting of the [Ca2+]i increase in adult age.  相似文献   

9.
NMDA receptor-mediated Ca2+ flux was studied in cultured rat retinal ganglion cells and neocortical neurons. Intracellular free calcium ([Ca2+]i was measured with fura-2 fluorescence imaging. Baseline [Ca2+]i was 59 +/- 5 nM. In low [Mg2+]o, 200 microM NMDA reversibly increased [Ca2+]i to 421 +/- 70 nM. This rise in [Ca2+]i was blocked by the NMDA antagonists APV (200 microM) or [Mg2+]o (1 mM), but only slightly inhibited by the non-NMDA antagonist CNQX (10 microM). Chemical reduction with dithiothreitol (DTT) had no effect on resting [Ca2+]i. However, DTT increased the NMDA-induced rise in [Ca2+]i approximately 1.6-fold; the oxidizing agent dithiobisnitrobenzoic acid (DTNB) reversed this effect. In patch-clamp experiments, DTT increased NMDA-activated whole-cell conductance approximately 1.7-fold in low and high [Ca2+]o. The Ca2+/Na+ permeability ratio of approximately 7 for NMDA channels remained unaltered by chemical reduction. Thus, redox modulation of the NMDA receptor/channel complex results in a dramatic alteration in current magnitude but no change in ionic permeabilities.  相似文献   

10.
Effects of N-methyl-D-aspartate (NMDA) on diazepam binding inhibitor (DBI) and its mRNA expression in mouse cerebral cortical neurons were examined. A significant increase in DBI mRNA expression was observed 1 day after the exposure to 0.1 microM NMDA and the maximal expression occurred 2 days after the exposure, whereas transient exposure to 0.1 microM NMDA for 15 min, 1 and 3 h produced no changes in the expression. Similarly, no changes in the expression were found by the concomitant exposure to NMDA and MK-801, a NMDA receptor antagonist, for 72 h subsequent to the incubation with NMDA alone for 3 h. Such NMDA-induced increases in DBI mRNA expression were dose-dependently inhibited by MK-801. Moreover, neuronal DBI content significantly increased by treatment with NMDA, which was completely abolished by MK-801. These results indicate that continuous activation of NMDA receptors is an essential factor for increasing DBI expression in the neurons.  相似文献   

11.
Secreted phospholipases A2 (sPLA2s) modulate neuronal survival and neurotransmitter release. Here we show that sPLA2 (group III) synergistically increases glutamate-induced cell death and intracellular calcium ([Ca2+]i) in cultured primary cortical and hippocampal neurons. Whereas 1 microM glutamate elicited transient [Ca2+]i increases in all neurons that recovered 66% to baseline, 25 ng/ml sPLA2 pretreatment resulted in sustained [Ca2+]i increases, with only 5% recovery. At 250 nM glutamate, 25% of neurons failed to respond, and the average recovery time was 101 +/- 12 sec; sPLA2 increased recovery time to 158 +/- 6 sec, and only 2% of cells failed to respond. Both the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the calcium-channel blocker cobalt inhibited this effect. Experiments with the glutamate uptake inhibitor L-trans-pyrollidine-2,4-dicarboxylic acid (2.5 microM) indicated that glutamate uptake sites are not a likely modulation point by sPLA2, whereas arachidonic acid (AA) potentiated calcium responses to glutamate. Thus the enhancement of glutamate-induced [Ca2+]i increases by sPLA2 may be due to modulation at NMDA receptors and/or calcium channels by AA. These results indicate that sPLA2 affects neuronal responses to both nontoxic (0.1-10 microM) and toxic (=25 microM) concentrations of glutamate, implicating this enzyme in neuronal functions in pathology.  相似文献   

12.
Astrocyte swelling is observed in different types of brain injury. We studied a potential contribution of swelling to protein tyrosine nitration (PTN) by using cultured rat astrocytes exposed to hypoosmotic (205 mosmol/L) medium. Hypoosmolarity (2 h) increases total PTN by about 2-fold in 2 h. The hypoosmotic PTN is significantly inhibited by the NMDA receptor antagonist MK-801, the nitric oxide synthase (NOS) inhibitor L-NMMA, the extracellular Ca2+ chelator EGTA and the calmodulin antagonist W13, suggesting the involvement of NMDA receptor activation, influx of extracellular Ca2+ and Ca2+/calmodulin-dependent NO synthesis. Further, superoxide dismutase plus catalase and uric acid strongly inhibit hypoosmotic PTN, suggesting the involvement of the toxic metabolite peroxynitrite (ONOO-) as a nitrating agent. Hypoosmotic astrocyte swelling rapidly stimulates generation of reactive oxygen intermediates; this process is prevented by MK-801 and EGTA. In addition, MK-801 inhibits the hypoosmotic elevation of [Ca2+]i. The findings support the view that astrocyte swelling as induced, for example, by toxins relevant for hepatic encephalopathy is sufficient to produce oxidative stress and PTN and thus contributes to altered astroglial and neuronal function.  相似文献   

13.
Changes in intra- and extracellular [Ca2+] and [H+], together with alterations in tissue PO2 and local blood flow, were measured in areas CA1 and CA3 of the hippocampus during recovery (up to 8 h) after an 8-min period of low-flow ischemia. Restoration of blood supply was followed by an immediate rise in flow and tissue PO2 above normal, with large fluctuations in both persisting for up to 4 h. In area CA1, [Ca2+]i decreased rapidly from an ischemic mean value of 30 microM to a control mean level of 73.1 nM in 20-30 min, whereas normalization of [Ca2+]e took approximately 1 h. Recovery of [Ca2+]i was accelerated by preischemic administration of a calcium antagonist, nifedipine, and a free radical scavenger, N-tert-butyl-alpha-phenylnitrone (PBN), but not by MK-801, a blocker of N-methyl-D-aspartate receptors. There was a secondary rise in [Ca2+]i in many cells beginning approximately 2 h after reperfusion. This was attenuated somewhat by PBN but not clearly influenced by either nifedipine or MK-801. Changes of [Ca2+]i in area CA3 were much smaller and slightly slower than in area CA1 and were not affected by the drugs mentioned above. In both areas CA1 and CA3, pHe and pHi fell during ischemia to an average value of 6.2, from which there was a rapid initial recovery in the first 5-10 min when blood flow was restored. Thereafter tissue pH rose slowly and did not reach control levels for approximately 1 h, and in some microareas not at all. It is concluded that (a) effective mechanisms for restoring normal [Ca2+]i remain intact after 8 min of low-flow ischemia; (b) in neurons of area CA1, some insidious change in the homeostasis of calcium triggers a secondary rise in its free cytosolic concentration, which may be causally related to activation of irreversible cell damage; and (c) the changes in [Ca2+]i and [Ca2+]e during and following 8 min of ischemia can be adequately accounted for by movements of a fixed pool of Ca between intra- and extracellular compartments, and possible mechanisms are discussed.  相似文献   

14.
A new approach to assess the mean changes in intracellular free calcium [Ca2+]i directly from the cortex in situ is described along with the [Ca2+]i changes during nitrogen anoxia. Following incision of the dura and part of the pia-arachnoid membrane, quin2 acetoxymethyl ester, 100 microM in artificial CSF, was superfused for 60 min onto the cat cortex. A small cortical area was irradiated with ultraviolet rays (350/30 nm) and the changes in the fluorescence and reflectance were recorded microfluorometrically at 506 and 366 nm, respectively. The net change in the quin2-Ca2+ fluorescence was calculated after correction for the hemodynamic artifact and subtraction of the basal NADH change. The quin2-Ca2+ fluorescence began to increase significantly (48.0 +/- 13.4 units; p less than 0.05) 20 s prior to the isoelectric electrocorticogram (ECoG) and remained elevated during nitrogen anoxia. It decreased steeply 7.3 +/- 1.7 s prior to the recovery of the ECoG activity after the animal was reoxygenated. Thus, the changes in the intracellular free calcium preceded those of the ECoG during a reversible anoxic insult, suggesting that the increase in the [Ca2+]i might be related to the electrical failure during anoxia.  相似文献   

15.
Glutamate (glu) is a major excitatory transmitter and a toxin in the brain. In the present study, the immature rat hippocampal slice was used to determine the morphology, topography, ionic mediation and receptor specificity of glu toxicity. Slices were exposed to glu for 30 min, and the damage was evaluated after 3 h of recovery in regular medium. The effects on glu toxicity of changes of [Ca2+], [Cl-] and [Na+] were determined. The receptor preference of glu was assessed by using the N-methyl-D-aspartate (NMDA) antagonist MK-801 and the kainate (KA)/quisqualate (QA) antagonist DNQX, alone or in combination. Further, to see whether glu produces cytotoxicity via osmolysis, the effects of hyperosmolal sucrose on glu toxicity were studied. Glu toxicity was similar to the previously described NMDA toxicity with regard to cytopathology, but differed in some aspects from that caused by KA and QA. The severity of the lesion was determined by the proximity of neurons to the incubation fluid, probably as a consequence of cellular accumulation of the amino acid. Omission of Ca2+ abolished glu toxicity in all neurons except the granule cells of the outer blade. This population was completely protected when Ca2+ was omitted and [Cl-] was reduced. Elevation of [Ca2+] markedly aggravated the lesion caused by glu. Substitution of isethionate for Cl- worsened the glu-induced damage, whilst the amino acid produced qualitatively different neuropathology when choline substituted for Na+. Apparently glu did not damage hippocampal nerve cells through an osmolytic mechanism as medium supplemented with 100 mM sucrose increased the toxicity of glu. Since the lesion produced by glu was more widespread in the presence of high [Ca2+], the effects of receptor antagonists were studied under this condition. MK-801 inhibited glu toxicity whereas DNQX had no effect. Combination of MK-801 and DNQX did not offer better protection than did MK-801 alone. The results suggest that Ca2+ is the main (but not single) determinant of glu toxicity in the immature hippocampal slice. The ionic requirements of glu neurotoxicity are identical to those of NMDA, but differ from those of KA and QA. The notion that glu is a selective NMDA agonist in the present model was confirmed by the protection of MK-801, and by the lack of an effect of DNQX. This is the first report demonstrating that the toxicity of glu is mediated by NMDA receptors in brain tissue which has developed normally. The findings indicate that specific blockade of NMDA receptors may be the most rational strategy in the prevention of glu-related neuronal death occurring in certain neurological anomalies.  相似文献   

16.
The neurotransmitter glutamate activates the N-methyl-D-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist DL-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

17.
Treatment of single rat hippocampal neurons with 200 pM recombinant HIV-1 envelope glycoprotein, gp120, resulted in large increases in the intracellular free calcium concentration ([Ca2+]i) as measured with indo-1-based microfluorimetry. Three patterns of [Ca2+]i increases were observed: in one pattern the [Ca2+]i rose rapidly and transiently as a single peak, in a second pattern gp120 induced [Ca2+]i oscillations that subsided when the protein was removed, and in a third pattern the oscillations continued long after washout of gp120. Both single peak and oscillatory [Ca2+]i increases were completely blocked by the Ca2+ channel blocker nitrendipine (1 microM). The sustained oscillatory responses were also blocked completely and reversibly by the N-methyl-D-aspartate (NMDA) receptor antagonist CGS19755 (10 microM) and the Na+ channel blocker tetrodotoxin (1 microM). Complete block by antagonists of Ca2+, Na+, and NMDA-gated ion channels suggests that at least two cells are required to maintain the [Ca2+]i oscillations. We hypothesize that gp120 acts as an excitotoxin by increasing synaptic activity in the network of neurons established in primary culture.  相似文献   

18.
We studied the effects of different amino acid receptor antagonists and a calcium (Ca2+) channel blocker on the survival of embryonic tyrosine hydroxylase (TH)-immunopositive nigral neurons grown under serum-free culture conditions. Ventral mesencephalic neurons were cultivated for 2 or 7 days. Following serum withdrawal on day 2, some cultures were treated with different concentrations of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine hydrogen maleate (MK-801), the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid, the competitive kainate/quisqualate receptor antagonist 6,7-dinitroquinoxaline-2, 3-dione, and the Ca2+ channel blocker flunarizine. Treatment with MK-801 or flunarizine increased the survival of TH-positive neurons after serum deprivation. These findings suggest a possible role for excitotoxicity in dopaminergic cell death which can be prevented by blocking the NMDA receptor or by inhibiting Ca2+ entry through voltage-gated channels.  相似文献   

19.
The microdialysis technique was utilized to study the effects of N-methyl-D-aspartate (NMDA) receptor ligands on the in vivo release of endogenous glutamate (Glu) and aspartate (Asp) from the rat striatum. Addition of NMDA (250 and 500 microM) to the dialysis perfusion solution resulted in a striking dose-dependent increase in extracellular concentrations of Glu and Asp in the striatum. The NMDA-induced effects were reduced in a dose-related way by prior perfusion with 75 microM dizocilpine (MK-801), a non-competitive NMDA receptor antagonist. MK-801, at 75 microM, produced no changes on basal levels of Glu and Asp. However, 100 microM MK-801 did increase Glu and Asp extracellular concentrations. Local infusion with 500 microM D-serine, an agonist at the glycine site associated to the NMDA receptor, significantly increased basal level of Glu, but not Asp. Such D-serine-induced effects were reduced by 7-Cl-kynurenic acid (200 microM), a selective blocker of the glycine site present in the NMDA receptor. It is proposed that activation of NMDA receptors by endogenous Glu and Asp enhances the subsequent release of these excitatory amino acids in the striatum. Part of these NMDA receptors might be located presynaptically on cortico-striatal nerve endings. In addition, postsynaptic NMDA receptors present in the striatum may also indirectly modulate the release of Glu and Asp, through trans-synaptic mechanism.  相似文献   

20.
To investigate the role of the NMDA receptor on neuronal migration in the cerebral cortex, we performed a tissue culture study using embryonic rat brain. After we labeled progenitor cells in the ventricular zone of E16 cerebral cortex explants by [3H]thymidine, the explants were cultured for 48 h. Then distribution of labeled cells was evaluated autoradiographically. Blocking NMDA receptors by adding the NMDA receptor antagonist, (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801: 1 or 10 microM) or d(-)-2-amino-5-phosphonopentanoic acid (d-AP5: 100 microM) to the culture medium, caused significantly decreased distribution of labeled cells in the outer intermediate zone (control 14.2+/-5.5%, 1 microM MK-801 5.8+/-7.2%, 10 microM MK-801 3.6+/-1.4%, and d-AP5 8.6+/-4.0%; mean+/-S.D.). This suggests that blocking NMDA receptors inhibits neuronal migration in the cerebral cortex. Furthermore, the influence of decreased intracellular Ca2+ concentration on neuronal migration was examined by adding intracellular Ca2+ chelator, 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra-(acetoxymethyl)-ester (BAPTA-AM: 5 or 25 microM). This also resulted in inhibited neuronal migration. Therefore, it seems that neuronal migration in the cerebral cortex is regulated by intracellular Ca2+ concentration, which the NMDA receptor may influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号