首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.  相似文献   

2.
The origins of autoimmunity are not yet understood despite significant advances in immunology. The trafficking of maternal cells to the offspring represents the very first immunological event in foetal life and is reinforced during lactation. The persistence of maternal cells in offspring's tissues and circulation has been associated with several autoimmune disorders. However a direct causal effect has never been demonstrated. Maternal T cells specifically targeting foetal insulin producing cells have been shown to generate islet inflammation without directly participating in this process. Our objective was to evaluate if alloreactive maternal cells could directly trigger a graft-versus host like reaction or indirectly influence the development of the offspring's regulatory T cells favouring autoimmunity. We adopted a breeding strategy comparing genetically identical offspring from either strongly alloreactive transgenic mothers compared to immunodeficient mothers. We detected maternal alloreactive T cells in the offspring and early signs of inflammation in small intestine of 6 weeks old offspring. Interestingly, CD4+ Foxp3+ regulatory T cell frequency was diminished in mesenteric lymph nodes from eight months old offspring born of alloreactive mothers compared to offspring of immunodeficient mothers. Our study favours a hypothesis where highly alloreactive maternal cell microchimerism indirectly predisposes offspring to autoimmunity.  相似文献   

3.
The cytokine milieu is critical for orchestration of lineage development towards effector T cell (Teff) or regulatory T cell (Treg) subsets implicated in the progression of cancer and autoimmune disease. Importantly, the fitness and survival of the Treg subset is dependent on the cytokines Interleukin-2 (IL-2) and transforming growth factor beta (TGF-β). The production of these cytokines is impaired in autoimmunity increasing the probability of Treg conversion to aggressive effector cells in a proinflammatory microenvironment. Therapy using soluble TGF-β and IL-2 administration is hindered by the cytokines' toxic pleiotropic effects and hence bioavailability to CD4+ T cell targets. Thus, there is a clear need for a strategy that rectifies the cytokine milieu in autoimmunity and inflammation leading to enhanced Treg stability, frequency and number. Here we show that inert biodegradable nanoparticles (NP) loaded with TGF-β and IL-2 and targeted to CD4+ cells can induce CD4+ Tregs in-vitro and expand their number in-vivo. The stability of induced Tregs with cytokine-loaded NP was enhanced leading to retention of their suppressive phenotype even in the presence of proinflammatory cytokines. Our results highlight the importance of a nanocarrier-based approach for stabilizing and expanding Tregs essential for cell-immunotherapy of inflammation and autoimmune disease.  相似文献   

4.
The thymus plays a primary role in early-onset Myasthenia Gravis (MG) mediated by anti-acetylcholine receptor (AChR) antibodies. As we recently showed an inflammatory and anti-viral signature in MG thymuses, we investigated in detail the contribution of interferon (IFN)-I and IFN-III subtypes in thymic changes associated with MG. We showed that IFN-I and IFN-III subtypes, but especially IFN-β, induced specifically α-AChR expression in thymic epithelial cells (TECs). We also demonstrated that IFN-β increased TEC death and the uptake of TEC proteins by dendritic cells.In parallel, we showed that IFN-β increased the expression of the chemokines CXCL13 and CCL21 by TECs and lymphatic endothelial cells, respectively. These two chemokines are involved in germinal center (GC) development and overexpressed in MG thymus with follicular hyperplasia. We also demonstrated that the B-cell activating factor (BAFF), which favors autoreactive B-cells, was overexpressed by TECs in MG thymus and was also induced by IFN-β in TEC cultures.Some of IFN-β effects were down-regulated when cell cultures were treated with glucocorticoids, a treatment widely used in MG patients that decreases the number of thymic GCs.Similar changes were observed in vivo. The injections of Poly(I:C) to C57BL/6 mice triggered a thymic overexpression of IFN-β and IFN-α2 associated with increased expressions of CXCL13, CCL21, BAFF, and favored the recruitment of B cells. These changes were not observed in the thymus of IFN-I receptor KO mice injected with Poly(I:C), even if IFN-β and IFN-α2 were overexpressed.Altogether, these results demonstrate that IFN-β could play a central role in thymic events leading to MG by triggering the overexpression of α-AChR probably leading to thymic DC autosensitization, the abnormal recruitment of peripheral cells and GC formation.  相似文献   

5.
6.
Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19+ B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108loCD4NK1.1 phenotype, whereas the IL-21 secreting subset expressed the Ly108hiCD4+NK1.1 phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production.  相似文献   

7.
At birth, the human immune system already contains substantial levels of polymeric IgM, that include autoantibodies to neo-epitopes on apoptotic cells (ACs) that are proposed to play homeostatic and anti-inflammatory roles. Yet the biologic origins and developmental regulation of these naturally arising antibodies remain poorly understood. Herein, we report that levels of IgM-antibodies to malondialdehyde (MDA) protein adducts, a common type of in vivo generated oxidative stress-related neoepitope, directly correlate with the relative binding of neonatal-IgM to ACs. Levels of IgM to phosphorylcholine (PC), a natural antibody prevalent in adults, were relatively scant in cord blood, while there was significantly greater relative representation of IgM anti-MDA antibodies in newborns compared to adults. To investigate the potential interrelationships between neonatal IgM with pathogenic IgG-autoantibodies, we studied 103 newborns born to autoimmune mothers with IgG anti-Ro (i.e., 70 with neonatal lupus and 33 without neonatal lupus). In these subjects the mean levels of IgM anti-Ro60 were significantly higher than in the newborns from non-autoimmune mothers. In contrast, levels of IgM anti-MDA in IgG anti-Ro exposed neonates were significantly lower than in neonates from non-autoimmune mothers. The presence or absence of neonatal lupus did not appear to influence the total levels of IgM in the anti-Ro exposed newborns. Taken together, our studies provide evidence that the immune development of the natural IgM-repertoire may be affected, and become imprinted by, the transfer of maternal IgG into the fetus.  相似文献   

8.
Until recently, little was known about the importance of CD8+ T effectors in promoting and preventing autoimmune disease development. CD8+ T cells can oppose or promote autoimmune disease through activities as suppressor cells and as cytotoxic effectors. Studies in several distinct autoimmune models and data from patient samples are beginning to establish the importance of CD8+ T cells in these diseases and to define the mechanisms by which these cells influence autoimmunity. CD8+ effectors can promote disease via dysregulated secretion of inflammatory cytokines, skewed differentiation profiles and inappropriate apoptosis induction of target cells, and work to block disease by eliminating self-reactive cells and self-antigen sources, or as regulatory T cells. Defining the often major contribution of CD8+ T cells to autoimmune disease and identifying the mechanisms by which they alter the pathogenesis of disease is a rapidly expanding area of study and will add valuable information to our understanding of the kinetics, pathology and biology of autoimmune disease.  相似文献   

9.
To date, intraperitoneal (i.p.) injection seems to be the most effective vaccination route in aquaculture, as many i.p. administered fish vaccines are capable of conferring strong and long-lasting immune responses. Despite this, how peritoneal leukocytes are regulated upon antigen encounter has only been scarcely studied in fish. Although, in the past, myeloid cells were thought to be the main responders to peritoneal inflammation, a recent study revealed that IgM+ B cells are one of the main cell types in the teleost peritoneal cavity in response to pathogenic bacteria. Thus, in the current work, we have focused on establishing how IgM+ B cells are recruited into the peritoneum in rainbow trout (Oncorhynchus mykiss) comparing different antigens: Escherichia coli as a bacterial model, E. coli-derived lipopolysaccharide (LPS) or viral hemorrhagic septicemia virus (VHSV). In addition to studying their capacity to dominate the peritoneal cavity, we have established how these IgM+ B cells are regulated in response to the different antigens, determining their levels of IgM secretion, surface MHC II expression, cell size and phagocytic abilities. Our results reveal that IgM+ B cells are one of the main cell types amplified in the peritoneum in response to either bacterial or viral antigens and that these immunogenic stimulations provoke a differentiation of some of these cells towards plasmablasts/plasma cells whereas others seem to be implicated in antigen presentation. These findings contribute to a better understanding of the immune processes that regulate peritoneal inflammation in teleost fish.  相似文献   

10.
Antigen-specific interventions are desirable approaches in Type 1 Diabetes (T1D) as they can alter islet-specific autoimmunity without systemic side effects. Glutamic acid decarboxylase of 65 kDa (GAD65) is a major autoantigen in type 1 diabetes (T1D) and GAD-specific autoimmunity is a common feature of T1D in humans but also in mouse models of the disease. In humans, administration of the GAD65 protein in an alum formulation has been shown to reduce C-peptide decline in recently diagnosed patients, however, these observations were not confirmed in subsequent phase II/III clinical trials. As GAD-based immune interventions in different formulations have successfully been employed to prevent the establishment of T1D in mouse models of T1D, we sought to analyze the efficacy of GAD-alum treatment and the effects on the GAD-specific immune response in two different mouse models of T1D. Consistent with the latest clinical trials, mice treated with GAD-alum were not protected from diabetes, although GAD-alum induced a GAD-specific Th2-deviated immune response in transgenic rat insulin promoter-glycoprotein (RIP-GP) mice. These observations underline the importance of a thorough, preclinical evaluation of potential drugs before the initiation of clinical trials.  相似文献   

11.
Tolerogenic dendritic cells (tDCs) have the potential to control the outcome of autoimmunity by modulating the immune response. The aim of this study was to uncover the tolerance efficacy attributed to beta-2-glycoprotein-I (β2GPI) tDCs or β2GPI domain-I (D-I) and domain-V (D-V)-tDCs in mice with antiphospholipid syndrome (APS). tDCs were pulsed with β2GPI or D-I or D-V derivatives. Our results revealed that β2GPI related tDCs phenotype includes CD80high, CD86high CD40high MHC class IIhigh. The miRNA profiling encompass miRNA 23bhigh, miRNA 142-3plow and miRNA 221low. In addition the β2GPI related tDCs showed reduced secretion of IL-1β, IL-12 and IL-23. D-I tDCs treatment was more efficient than β2GPI tDCs in inducing of tolerance in APS mice, manifested by lowered titers of anti- β2GPI antibodies (Abs) and reduced percentage of fetal loss. Tolerance induction was accompanied by poor T cell response to β2GPI, high numbers of CD4 + CD25 + FOXP3 + T-regulatory cells (Treg), reduced levels of IFNγ, IL-17 and increased expression of IL-10 and TGFβ. Tolerance was successfully transferred by Treg cells from the tolerized mice to β2GPI immunized mice. We conclude that predominantly D-I-tDCs and β2GPI tDCs have the potential to attenuate experimental APS by induction of Treg cells, reduction of anti- β2GPI Abs titers and increased expression of anti-inflammatory cytokines. We suggest that β2-GPI-D-I-tDCs may offer a novel approach for developing therapy for APS patients.  相似文献   

12.
Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4+ Effector Memory T cells. In human CD4+ T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4+ T cells, eIF6 levels control interferon-γ (IFN−γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery.  相似文献   

13.
Tumor necrosis factor receptor-associated factor 3 (TRAF3) plays a key antiviral role by promoting type I interferon production. We cloned the pigeon TRAF3 gene (PiTRAF3) according to its predicted mRNA sequence to investigate its function. The 1704-bp full-length open reading frame encodes a 567-amino acid protein. One Ring finger, two TRAF-type Zinc fingers, one Coiled coil, and one MATH domain were inferred. RT-PCR showed that PiTRAF3 was expressed in all tissues, with relatively weak expression in the heart and liver. In HEK293T cells, over-expression of wild-type, Ring, Zinc finger, and Coiled coil PiTRAF3, but not a MATH form, significantly increased IFN-β promoter activity. Zinc finger and Coiled coil domains were essential for NF-κB activation. In chicken HD11 cells, PiTRAF3 increased IFN-β promoter activity and four domains were all contributing. R848 stimulation of pigeon peripheral blood mononuclear cells and splenocytes significantly increased expression of PiTRAF3 and the inflammatory cytokine genes CCL5, IL-8, and IL-10. These data demonstrate TRAF3's innate immune function and improve understanding of its involvement in poultry antiviral defense.  相似文献   

14.
B cell-activating factor of the TNF family (BAFF) is an essential B cell survival factor. However, high levels of BAFF promote systemic lupus erythematosus (SLE) in mice and humans. Belimumab (anti-human BAFF) limits B cell survival and is approved for use in patients with SLE. Surprisingly, the efficacy of rituximab (anti-human CD20) in SLE remains controversial, despite depleting B cells more potently than belimumab. This raises the question of whether B cell depletion is really the mechanism of action of belimumab. In BAFF transgenic mice, SLE development is T cell-independent but relies on innate activation of B cells via TLRs, and TLR expression is modulated by the BAFF receptor TACI. Here, we show that loss of TACI on B cells protected against BAFF-mediated autoimmune manifestations while preserving B cells, suggesting that loss of BAFF signaling through TACI rather than loss of B cells may underpin the effect of belimumab in the clinic. Therefore, B cell-sparing blockade of TACI may offer a more specific and safer therapeutic alternative to broad B cell depletion in SLE.  相似文献   

15.
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFβRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1+) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFβRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFβRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1+ CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1+ CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.  相似文献   

16.
17.
18.
Thymic CD4+ FoxP3+ regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell–cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3+ Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.  相似文献   

19.
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the “closed” porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ−high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.  相似文献   

20.
Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号