首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z Argov  W J Bank  J Maris  P Peterson  B Chance 《Neurology》1987,37(2):257-262
Twelve adults with mitochondrial myopathies were studied by phosphorus magnetic resonance spectroscopy of muscle. All 12 had abnormal 31P-NMR findings; recovery from exercise was abnormal in 11 patients. At rest, the ratio of phosphocreatine to inorganic phosphate was reduced in 10. Exercise transfer characteristics were abnormal in all five patients who could exercise. Exercise-induced intracellular acidosis was subnormal in nine patients. The range of abnormalities indicates biochemical heterogeneity, with two possible groups: primary defects of energy metabolism with marked 31P-NMR abnormalities, and secondary, less specific 31P-NMR abnormalities.  相似文献   

2.
Argov Z  Löfberg M  Arnold DL 《Muscle & nerve》2000,23(9):1316-1334
Phosphorus magnetic resonance spectroscopy (P-MRS) has now been used in the investigation of muscle energy metabolism in health and disease for over 15 years. The present review describes the basics of the metabolic observations made by P-MRS including the assumptions and problems associated with the use of this technique. Extramuscular factors, which may affect the P-MRS results, are detailed. The important P-MRS observations in patients with mitochondrial myopathies, including the monitoring of experimental therapies, are emphasized. The findings in other metabolic myopathies (those associated with glycolytic defects or endocrine disturbances) and in the destructive myopathies (the dystrophies and the inflammatory myopathies) are also described. Observations made in normal and abnormal fatigue, fibromyalgia, and malignant hyperthermia are considered. Finally, a summary of the possible diagnostic use of P-MRS in exercise intolerance is provided.  相似文献   

3.
In spite of several evidences for a mitochondrial impairment in Parkinson's disease (PD), so far it has not been possible to show in vivo mitochondrial dysfunction in the human brain of PD patients. The authors used the high temporal and spatial resolution 31 phosphorus magnetic resonance spectroscopy (31P MRS) technique, which they have previously developed in normal subjects and in patients with mitochondrial diseases to study mitochondrial function by observing high-energy phosphates (HEPs) and intracellular pH (pH) in the visual cortex of 20 patients with PD and 20 normal subjects at rest, during, and after visual activation. In normal subjects, HEPs remained unchanged during activation, but rose significantly (by 16%) during recovery, and pH increased during visual activation with a slow return to rest values. In PD patients, HEPs were within the normal range at rest and did not change during activation, but fell significantly (by 36%) in the recovery period; pH did not reveal a homogeneous pattern with a wide spread of values. Energy unbalance under increased oxidative metabolism requirements, that is, the postactivation phase, discloses a mitochondrial dysfunction that is present in the brain of patients with PD even in the absence of overt clinical manifestations, as in the visual cortex. This is in agreement with our previous findings in patients with mitochondrial disease without clinical central nervous system (CNS) involvement. The heterogeneity of the physicochemical environment (i.e., pH) suggests various degrees of subclinical brain involvement in PD. The combined use of MRS and brain activation is fundamental for the study of brain energetics in patients with PD and may prove an important tool for diagnostic purposes and, possibly, to monitor therapeutic interventions.  相似文献   

4.
The metabolic basis of the encephalopathy associated with acute bacterial meningitis is unknown. The presence of cerebrospinal fluid lactic acidosis and hypoglycorrhachia suggests that intracellular acidosis or cellular energy depletion may play a role. Phosphorus magnetic resonance spectroscopy allows for the noninvasive determination of intracellular pH and relative amounts of phosphate-containing metabolites in humans. In seven normal volunteers, the intracellular pH of a mixed volume of gray and white matter was 7.00 +/- 0.04 (mean +/- SD). The apparent relative intensities of resonances from adenosine triphosphate, phosphocreatine, phosphodiesters and phosphomonoesters, and inorganic phosphate were measured. An encephalopathic patient with pneumococcal meningitis who had severe cerebrospinal fluid lactic acidosis was studied. Brain intracellular pH and relative phosphate metabolite concentrations were normal. Intracellular acidosis and bioenergetic compromise are therefore not causes of encephalopathy in this disease. This also demonstrates that the human brain can maintain tight control of intracellular pH even in the presence of marked extracellular metabolic acidosis.  相似文献   

5.
In vivo phosphorus nuclear magnetic resonance spectroscopy (31P NMR) was used to evaluate the pattern of phosphate compounds in seven newborn babies (mean gestational age, 32 weeks; birth weight, 1,430 gm; age, 37 days) with a history of perinatal asphyxia. Spectra were collected in a 1.9 Tesla superconductive magnet with surface coil techniques. The spectra had characteristic peaks for phosphorylated monoesters (PME), inorganic phosphate (Pi), phosphodiesters (PD), phosphocreatine (PCr), and ATP. In contrast to cortical spectra from mature animals, these newborn infant 31P NMR spectra were dominated by a large PME peak and had small PCr, Pi, and PD peaks. Intracellular pH, as measured from the chemical shift of the Pi peak relative to the PCr peak, was 7.1 +/- 0.1 (SD). We studied one infant postmortem, and a large PME peak was present in his spectrum. The presence of PME 3 hours after death strongly suggests that it is not a sugar phosphate. In NMR spectroscopy, compounds are identified by their chemical shift relative to a known standard (PCr); the chemical shift of the PME peak was 6.5 ppm, suggesting that it is a mixture of phosphoryl ethanolamine and phosphoryl choline. The PCr/Pi ratio (1.3 +/- 0.7) and the PCr/ATP ratio (0.7 +/- 0.4) were lower in these babies than in mature animals (greater than 2 and greater than 1.4, respectively); the PME/PD ratio (1.2 +/- 0.6), however, was much greater in the infants (mature animals, less than 0.2). These findings suggest that there are unique aspects of human newborn cerebral metabolites and bioenergetic reserve.  相似文献   

6.
7.
Localized phosphorus magnetic resonance spectroscopy at 1.5 T was performed in 39 patients with multiple sclerosis and in 15 healthy controls. The multiple sclerosis spectra showed increased creatine phosphate levels. This increase was correlated with the severity of the handicap and was greater in patients with a progressive course of the disease than in patients with relapsing-remitting disease. No clear abnormalities were observed in the spectra of patients with multiple sclerosis regarding the phosphomonoesters, phosphodiesters, inorganic phosphate, and beta-adenosine triphosphate or with respect to pH values. There was an increased creatine phosphate level in the spectra in relation to a low metabolic state of the brain.  相似文献   

8.
Bicuculline-induced status epilepticus was studied in paralyzed rabbits ventilated with an oxygen and nitrous oxide mixture. An Oxford Instruments TMR 32-200 spectrometer was used to record phosphorus 31 nuclear magnetic resonance spectra of the in vivo brain. An array of conventional physiological variables including the electroencephalogram was simultaneously recorded. Several features were consistently observed during status epilepticus: (1) Phosphocreatine levels fell to about two-thirds of their control values and remained at that level despite a gradual decline in seizure activity; (2) intracellular pH declined and then remained constant, whereas seizure discharges declined; (3) adenosine triphosphate levels remained constant at their control values. These new, lower levels of brain phosphocreatine and intracellular pH were largely unaffected by increases in seizure activity brought about by elevation of blood pressure from levels too low to support adequate cerebral perfusion, by waning of anticonvulsant drug effect, or by repeated doses of bicuculline.  相似文献   

9.
Z Argov  W J Bank  J Maris  B Chance 《Neurology》1987,37(11):1720-1724
Five patients with McArdle's syndrome were examined by phosphorus magnetic resonance spectroscopy (31P-NMR). Adenosine triphosphate (ATP) levels at rest were reduced by 22%, but did not fall further during exercise or contracture. The slope of work rate versus inorganic phosphate/phosphocreatine (Pi/PCr) was 42 +/- 8 joules/min/Pi/PCr in three patients without muscle wasting, compared with 13 and 16 in patients with atrophy (normal, 30 to 50 joules/min/Pi/PCr). Recovery from exercise showed similar rates in patients (postischemic exercise 1.03 +/- 0.17, post-aerobic 1.63 +/- 0.17 PCr/Pi units per minute) and controls (1.0 +/- 0.2 and 1.8 +/- 0.2, respectively) independent of intracellular pH. Infusion of glucose improved exercise kinetics by 163 to 190%, but an oral load of protein had no effect. We conclude that (1) muscle mitochondria operate normally in vivo in this glycogenolytic disorder, suggesting a sufficient alternate fuel supply. (2) Blood-borne glucose may serve as one alternate fuel for the "second wind" phenomenon. (3) ATP control mechanisms are altered only at rest. (4) Recovery from exercise is relatively pH-independent.  相似文献   

10.
Abnormal phospholipid metabolisms may play important roles in the pathophysiology of schizophrenia. Phosphorus magnetic resonance spectroscopy (31P-MRS) offers a new method for studying phosphorus-related metabolism in vivo. A decrease in the level of phosphomonoesters (PME) and an increase in the level of phosphodiesters (PDE) has been demonstrated in the prefrontal lobe of neuroleptic-naive schizophrenic patients. Most of the studies in medicated schizophrenic patients have shown decreased PME and/or increased PDE. The decreased PME in the frontal lobe appears to be associated with negative symptoms and poor working memory performance. 1H-decoupled 31P-MRS revealed a reduction in the phosphocholine element of PME and an elevation in the mobile phospholipids of PDE in the prefrontal region of medicated schizophrenic patients. PDE were elevated in the temporal lobes of neuroleptic-naive schizophrenic patients, and this increase was partially normalized by haloperidol administration. Data about the temporal lobes of medicated schizophrenic patients have not been consistent. Except for the reduction in the adenosine triphosphate (ATP) in the basal ganglia and the correlation between the increase in the frontal lobe phosphocreatine (PCr) and negative symptomatology, data related to changes in high-energy phosphates are contradictory. No consensus on the effect of neuroleptics on phosphorus metabolites has been achieved. Methodological problems inherent in 31P-MRS may have contributed to the confusion in understanding available data. Future directions of MRS studies are suggested in the last section of the paper.  相似文献   

11.
The purpose of this study was to assess the effect of physical deconditioning on skeletal muscle's oxidative metabolism as evaluated by phosphorus-31 magnetic resonance spectroscopy ((31)P MRS). Twenty-seven subjects without muscle disease, representing a wide range of fitness levels, were evaluated with (31)P MRS. Spectra were obtained at rest and during recovery from in-magnet exercise. The data show a significant correlation between maximum resting metabolic equivalent (MET) score and the following (31)P MRS recovery indices: adenosine diphosphate and phosphocreatine recovery half-time; initial phosphocreatine resynthesis rate; calculated estimation of mitochondrial capacity; pH at end of exercise; and phosphocreatine depletion. In addition, significant differences between the deconditioned and conditioned group were found for all of the aforementioned recovery indices. At rest, only the inorganic phosphate concentration was significantly different between the two groups. These data indicate that physical activity level should be taken into account when assessing patients' oxidative metabolism with (31)P MRS.  相似文献   

12.
The purpose of this study was to examine the relationship between phosphorus magnetic resonance spectroscopy (31P MRS) parameters and left prefrontal volumes in both patients with schizophrenia and healthy subjects. 31P MRS parameters and magnetic resonance imaging (MRI) volumetric data were collected in the left prefrontal region in 10 patients with schizophrenia and 10 healthy subjects of comparable age, handedness, sex, educational level, and parental educational level. No correlations were found between any MRS parameter and grey matter volumes in the combined subjects. Phosphomonoester (PME) and grey matter volumes, however, were both correlated negatively with age. PMEs were found to be decreased, and calculated intracellular magnesium ([Mg2+]intra) was found to be increased in the patients with schizophrenia compared with healthy subjects after adjusting for left prefrontal grey and white matter, total brain volume, and age. These findings suggest that cortical grey and white manner volumes are not directly related to PME and [Mg2+]intra abnormalities in schizophrenia patients.  相似文献   

13.
OBJECTIVE: The goals of this study were to quantitate the brain concentration of the anorectic drug dexfenfluramine (DF) in human subjects receiving clinical doses of DF and to determine whether human brain DF concentrations approach those reported to cause irreversible neurochemical changes in animals. Each subject's brain DF concentration was measured several times over an extended period of DF treatment to determine whether drug accumulation in the brain would plateau or continue to increase throughout the treatment period. DESIGN: Fluorine magnetic resonance spectroscopy (19F-MRS) was used to directly detect and quantitate brain levels of the fluorinated drug dexfenfluramine and its active metabolite dex-norfenfluramine (dNF). Patients received 15 mg dexfenfluramine BID for 90 days. 19F-MRS measurements were performed at baseline and at three times during the treatment period. PARTICIPANTS: Twelve women (age 38-54 years) who were obese, with body mass indices of 28. 4-37.4, but otherwise healthy. RESULTS: The combined concentration of DF and nDF reached steady-state in the human brain after approximately 10 days of treatment. The steady-state brain concentration averaged approximately 4 microM and did not tend to increase significantly during the 90 day treatment period. CONCLUSIONS: These results demonstrate that fluorinated drugs can be quantified using 19F MRS at concentrations below 10 microM in the human brain. The time-course data suggest that brain DF concentrations parallel DF plasma pharmacokinetics in humans. Measured brain dexfenfluramine/nor-dexfenfluramine concentrations were well below levels previously found to cause irreversible brain alterations in animals.  相似文献   

14.
Magnetic resonance spectroscopy (MRS) can now be performed on routine high-field clinical magnetic resonance imaging systems. Over the last decade it has provided several useful insights into the pathophysiology of mitochondrial disorders. More recently, the feasibility of applications to clinical diagnosis and monitoring have been demonstrated. Exciting new work suggests that carefully supervised physical conditioning in conjunction with sodium dichloroacetate administration can markedly enhance both biochemical measures of aerobic metabolism and functional performance of patients with mitochondrial myopathies.
Sommario La risonanza magnetica spettroscopica (MRS) può oggi essere effettuata di routine in apparecchi clinici di risonanza magnetica. Nell'ultima decade essa ha fornito importanti informazioni nella patofisiologia dei disordini mitocondriali. Più recentemente sono state dimostrate le sue possibilità di applicazione nella diagnosi clinica e nel monitoraggio di pazienti neurologici. Nuovi ed interessanti studi suggeriscono che un allenamento attentamente supervisionato in congiunzione con trattamento con dicloroacetato è capace di migliorare i parametri biochimici e la performance di pazienti con miopatie mitocondriali.
  相似文献   

15.
The development of new diagnostic criteria for Alzheimer's disease (AD) requires new in vivo markers reflecting early pathological changes in the brain of patients. Magnetic resonance (MR) spectroscopy has been shown to provide useful information about the biochemical changes occurring in AD brain in vivo. The development of numerous transgenic mouse models of AD has facilitated the evaluation of early biomarkers, allowing researchers to perform longitudinal studies starting before the onset of the pathology. In addition, the recent development of high-field animal scanners enables the measurement of brain metabolites that cannot be reliably quantified at lower magnetic fields. In this report, we studied a new transgenic mouse model of AD, the 5xFAD model, by in vivo proton and phosphorus MR spectroscopy. This model, which is characterized by an early-onset and a robust amyloid pathology, developed changes in the neurochemical profile, which are typical in the human disease, i.e., an increase in myo-inositol and a decrease in N-acetylaspartate concentrations, as early as in the 40th week of age. In addition, a significant decrease in the γ-aminobutyrate concentration was observed in transgenic mice at this age compared to controls. The pseudo-first-order rate constant of the creatine kinase reaction as well as relative concentrations of phosphorus-containing metabolites were not changed significantly in the 36 and 72-week old transgenic mice. Overall, these results suggest that mitochondrial activity in the 5 × FAD mice is not substantially affected but that the model is relevant for studying early biomarkers of AD.  相似文献   

16.
A decline in brain function is a characteristic feature of healthy aging; however, little is known about the biologic basis of this phenomenon. To determine whether there are alterations in brain mitochondrial metabolism associated with healthy aging, we combined 13C/1H magnetic resonance spectroscopy with infusions of [1-13C]glucose and [2-13C]acetate to quantitatively characterize rates of neuronal and astroglial tricarboxylic acid cycles, as well as neuroglial glutamate–glutamine cycling, in healthy elderly and young volunteers. Compared with young subjects, neuronal mitochondrial metabolism and glutamate–glutamine cycle flux was ∼30% lower in elderly subjects. The reduction in individual subjects correlated strongly with reductions in N-acetylaspartate and glutamate concentrations consistent with chronic reductions in brain mitochondrial function. In elderly subjects infused with [2-13C]acetate labeling of glutamine, C4 and C3 differed from that of the young subjects, indicating age-related changes in glial mitochondrial metabolism. Taken together, these studies show that healthy aging is associated with reduced neuronal mitochondrial metabolism and altered glial mitochondrial metabolism, which may in part be responsible for declines in brain function.  相似文献   

17.
Duchenne muscular dystrophy (DMD) is an X-linked disease characterized by progressive muscle weakness and degeneration. Dystrophin is the product of the missing gene in this disorder. However, the cause of the dystrophic process is not understood. Transient muscle injury is normally seen after muscle exercise, and may be a necessary process in muscle growth and preservation. We, therefore, chose to evaluate the role of exercise in Duchenne dystrophy by studying the canine X-linked animal model (CXMD). These dogs also lack dystrophin and have clinical signs similar to humans. Exercise was initiated by electrical stimulation, and muscle metabolism was monitored with phosphorus magnetic resonance spectroscopy (P-MRS). Dogs with CXMD had abnormal muscle pathology and markedly elevated serum CK. The inorganic phosphate (Pi) to phosphocreatine (PCr) ratio was increased in CXMD dogs at rest compared with normal dogs (Pi/(Pi + PCr) = 0.166 +/- 0.054 for CXMD and 0.073 +/- 0.017 for normals, mean +/- SE). No changes in resting ATP, pH, phosphomonoesters (PME), and phosphodiesters (PDE) were seen. The mean Pi/(Pi + PCr) and pH values during stimulation were normal in the CXMD dogs. Two to three days after electrical stimulation, resting Pi/(Pi + PCr) ratios were significantly increased in the CXMD dogs (0.127 +/- 0.029 compared with 0.172 +/- 0.054, mean +/- SD). Normal dogs showed no increase in Pi/(Pi + PCr) following stimulation. There was a 50-fold greater increase in serum CK in CXMD compared with normal dogs following exercise. These results indicate greater muscle injury in CXMD muscle, and suggest that in the absence of dystrophin, exercise-induced muscle injury may play a role in the dystrophic process.  相似文献   

18.
In vivo proton magnetic resonance spectroscopy (1H MRS) has been utilized by neuroimaging laboratories in recent years to reliably measure compounds such as N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and to a lesser extent glutamate and glutamine in the human brain. To date, the most consistently replicated findings in schizophrenia are reduced NAA measures in the hippocampal regions. Since NAA is thought to be a neuronal/axonal marker and a measure of neuronal/axonal integrity, hippocampal NAA reductions have been interpreted as strong evidence for neuronal/axonal loss or dysfunction in this brain region. The evidence for neuronal loss or dysfunction based on NAA is less consistent for the frontal cortex and white matter, temporal cortex, basal ganglia, cingulate region, and thalamus in schizophrenia. Furthermore, there are no consistently replicated findings for choline or creatine alterations in any of the brain regions examined in schizophrenia. Finally, significant technical difficulties make reliable measurement of glutamine and glutamate problematic at the present time.  相似文献   

19.
We have investigated the sensitivity and specificity of a rapid phosphorus magnetic resonance spectroscopy (MRS) protocol for detecting metabolic abnormalities in vivo in skeletal muscle of patients with mitochondrial disease. We examined 17 patients with mitochondrial myopathies. Sixteen had only mild or minimal myopathic signs and symptoms. Phosphorus magnetic resonance spectra from the resting gastrocnemius muscles showed an abnormal intracellular energy state (marked by an increased intracellular inorganic phosphate concentration) in 14/17. In 3/17, this was associated with a decreased phosphocreatine concentration. We also studied 20 patients with other diseases of muscle (inflammatory myopathies, metabolic myopathies, muscular dystrophies, and myasthenia gravis) that can present with similar clinical features. Spectra showed increased intracellular inorganic phosphate concentrations in 6/20. All of these muscle diseases were associated with evidence of muscle fiber necrosis. Abnormalities in the muscle energy state in these cases may be due to secondary mitochondrial dysfunction. Except for cases of polymyositis and dermatomyositis, these 6 other myopathies could be readily distinguished from the mitochondrial myopathies on the basis of the clinical examination and blood tests. We conclude that phosphorus MRS of resting muscle is practical in a clinical setting and has a useful sensitivity and specificity for mitochondrial myopathies when used in conjunction with standard noninvasive tests.  相似文献   

20.
This study used high-field magnetic resonance spectroscopy to examine the correlation of 1H and 31P metabolite levels in patients with schizophrenia and normal controls. 1H and 31P in vivo spectra were acquired successively from the left anterior cingulate and left thalamus of nine chronic schizophrenic patients and eight comparable healthy controls. A significant positive correlation between glutamine (Gln) and phosphoethanolamine (PEtn) was found in the left anterior cingulate of patients. In the left thalamus of patients, a significant negative correlation between N-acetylaspartate (NAA) and glycerophosphocholine (GroPCho) was found. No significant correlations were found in controls. The correlation between glutamine and phosphoethanolamine may reflect a link between neurotransmission alterations and membrane phospholipid metabolism alterations. The negative correlation between N-acetylaspartate and glycerophosphocholine may reflect the presence of neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号