首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is known to be involved in the modulation of neuroendocrine function. To clarify the role of different isoforms of NO synthase (NOS) in the neuroendocrine response to immune challenge, the expressions of neuronal NOS (nNOS) and inducible NOS (iNOS) genes in the hypothalamus following lipopolysaccharide (LPS) injection were examined using in situ hybridization. NOS activity was also determined by NADPH-diaphorase (NADPH-d) histochemistry. LPS (25 mg/kg) or sterile saline was injected intraperitoneally to male Wistar rats and the rats sacrificed 30 min, or 1, 2, 3, 5, 12 or 24 h after injection. nNOS mRNA expression in the paraventricular nucleus (PVN) was significantly increased 2 h after LPS injection. iNOS mRNA, which was not detected until 2 h after LPS injection, was significantly increased in the PVN 3 h after LPS injection. Both RNA expressions had returned to basal levels by 12 h after LPS injection. The number of NADPH-d positive cells was significantly increased 5 h after LPS injection. iNOS expression was more robust in parvocellular PVN, while nNOS was distributed mainly in the magnocellular PVN. Double in situ hybridization histochemistry revealed that some of the iNOS- (48.4%) or nNOS-positive cells (34. 3%) in the parvocellular PVN expressed CRF mRNA. The results demonstrate that LPS-induced sepsis causes significant increases in nNOS and iNOS gene expression with different time-courses and distributions, and that iNOS mRNA was more frequently co-localized with CRF-producing parvocellular neurons in the PVN. Thus, NO produced by iNOS and nNOS may play an important role in the neuroendocrine response to an immune challenge. Distinct differences in the distribution and time-course changes of iNOS and nNOS suggest different roles for the hypothalamic-pituitary-adrenal axis and/or neurohypophyseal system.  相似文献   

2.
CART mRNA and peptides are highly expressed in the anatomical structures composing the hypothalamo-pituitary-adrenal (HPA) axis and sympatho-adrenal system. Anatomical and functional studies suggest that CART peptides may have a role in the regulation of the neuroendocrine and autonomic responses during stress. Our previous study showed that CART peptides increased significantly in the male hypothalamus and amygdala 10 min after the forced swim stress. The present study aimed to examine the effect of forced swim stress on CART peptide expression in selected brain regions, including those where CART peptide expression has not been reported before (frontal cortex, pons, medulla oblongata), as well as in endocrine glands related to stress in male Sprague Dawley rats. A total of 16 (n = 8) animals were used, including control groups. Rats were subjected to forced swim on two consecutive days, and sacrificed on the second day, 2 h after the termination of the stress procedure. Frontal cortex, pons, medulla oblongata, hypothalamus, pituitary and adrenal glands were dissected and homogenized. CART peptide expression in these tissues was measured by Western Blotting and six different CART peptide fragments were identified. Our results showed that forced swim stress elicited region-specific changes in CART peptide expression. CART was upregulated in the frontal cortex, hypothalamus, medulla oblongata and adrenal gland while there was no change in the pons and pituitary. Enhanced CART peptide fragments in these brain regions and adrenal glands may have a role in the regulation of the HPA and sympatho-adrenal axis activity during stress response.  相似文献   

3.
Seo DO  Lee S  Rivier CL 《Brain research》2004,998(1):1-12
We sought to identify the brain circuitry that underlies the stimulatory role of nitric oxide (NO) role on the hypothalamic-pituitary-adrenal (HPA) axis. Specifically, we determined whether electrofootshocks (60 min) or the intravenous administration of lipopolysaccharide (LPS, 100 microg/kg)-activated neurocircuitries that express either neuronal NO synthase (nNOS), a constitutive enzyme responsible for NO formation, or L-citrulline, an amino acid that is produced in equimolar amounts with NO. Shocks significantly increased the number of cells showing Fos immunoreactivity (ir) in the paraventricular nucleus (PVN) of the hypothalamus, the lateral hypothalamus (LH), amygdaloid complex (AD) and thalamus (TH), and to a lesser extent, in the hippocampus (HP), caudate putamen (CP) and frontal cortex (FC). However, shocks did not alter the number of nNOS-positive cells nor increased citrulline signals in these brain regions. LPS significantly upregulated the number of cells with fos-like ir in the PVN, LH, AD, TH, HP, CP and FC, but only increased the number of cells positive for citrulline in the PVN, 87% of which co-expressed Fos. Thus, while shocks did not alter nNOS gene expression or citrulline levels in the brain regions studied, LPS significantly increased the number of PVN cells expressing citrulline without concomitant changes in other brain areas. Endotoxemia also upregulated significantly more PVN cells that co-expressed Fos and nNOS, compared to shocks. As NO stimulates the PVN circuitries that participate in shocks- and LPS-induced ACTH release, the lack of changes in nNOS or citrulline levels due to shocks suggests that, in this model, constitutively formed NO may modulate HPA axis activity in the absence of changes in its synthesis.  相似文献   

4.
The influence of chronic stress on the status of the hypothalamo-pituitary-adrenal (HPA) axis of sham-operated and adrenalectomised rats was assessed. Animals underwent bilateral adrenalectomy (ADX) and 3 days later they were either left undisturbed or subjected daily to immobilization for 2 h each morning for 14 days (chronic IMO). In situ hybridization histochemistry revealed that ADX increased corticotropin-releasing factor (CRF) mRNA levels in the paraventricular nucleus of the hypothalamus (PVN) and proopiomelanocortin (POMC) mRNA levels in the anterior pituitary, in both control and chronically stressed rats as measured on the day following the last exposure to stress. Chronic IMO increased CRF mRNA levels in the PVN and POMC mRNA levels in the anterior pituitary of sham-operated rats, as measured on the day following the last exposure to stress. Chronic IMO potentiated the increase in CRF mRNA in the PVN following ADX and resulted in further increases in CRF mRNA above levels seen in adrenal-intact animals. Finally, chronic stress, while not altering basal ACTH levels of ADX rats, reduced the ACTH response of these animals to a novel stressor (tail-shock for 30 min). These results suggest that chronic stress exerts a stimulatory influence at the hypothalamic level that is partially restrained by daily stress-induced glucocorticoid release. Despite the potentiation by chronic stress of CRF mRNA content in the PVN of ADX rats, a blunted circulating ACTH response to an acute short-term stressor was apparent in ADX-chronically stressed rats, suggesting that chronic stress might also alter POMC processing and/or ACTH secretory patterns in the anterior pituitary in ADX animals.  相似文献   

5.
Levels of nitric oxide synthase (NOS) and NADPH-diaphorase in adrenal glands of streptozotocin-diabetic rats of 8 and 12 weeks' duration compared with control rats were assessed with histochemical and biochemical techniques. Adrenal glands from streptozotocin-diabetic rats of 8 weeks' duration treated with ganglioside were examined also. In the adrenal medulla of 8-weeks- and 12-weeks-diabetic rats, NOS-immunoreactive nerve fibres were increased and decreased, respectively; additional NOS-immunoreactive and NADPH-diaphorase stained cells, which appeared to be cortical cells, were located in medulla and cortex compared with controls. Increased intensity in NADPH-diaphorase staining of the cortical cells of diabetic rats was observed also. Ganglioside treatment of the 8-weeks-diabetic rats prevented the diabetic-induced increase in NOS-immunoreactive nerve fibres. Also, it reduced most of the increase in the NOS-immunoreactive and NADPH-diaphorase stained cells and the intensity of NADPH-diaphorase staining of cortical cells. With biochemical assay, a significant increase in NOS activity was found in the adrenal glands from 8-weeks-diabetic rats, and this increase was reduced by ganglioside treatment in four out of six diabetic rats.In summary, streptozotocin-induced diabetes causes an initial increase in the levels of NOS and NADPH-diaphorase in the adrenal gland of rat, which was prevented by ganglioside treatment.  相似文献   

6.
The presence of nitric oxide (NO) synthase (NOS) in hypothalamic structures which control the activity of the pituitary-adrenocortical axis suggests that NO might be involved in the central regulation of ACTH secretion. We have studied the involvement of NO in the activity of the hypopothalamic-pituitary-adrenocortical (HPA) axis in intact and adrenalectomized rats. The acute effects (4 h) of two NOS inhibitors (HP-228 and NMMA), injected into the left lateral cerebral ventricle of freely moving male rats, on hypothalamic CRH and pituitary proopiomelacortin (POMC) mRNA levels as well as ACTH plasma levels were evaluated. In intact rats, HP-228, but not NMMA, induced an increase in CRH mRNA levels, while in adrenalectomized animals, both NOS inhibitors were effective in increasing CRH mRNA. In intact and adrenalectomized rats, both NOS inhibitors induced an increase in anterior pituitary POMC mRNA levels. Plasma ACTH levels were significantly elevated from 30 min to 2 h following the administration of either HP-228 or NMMA. In adrenalectomized animals, both NOS inhibitors produced a much striking increase of plasma ACTH levels which were still significantly increased at the longest time-interval studied. These results suggest that the central NO system exerts a tonic negative influence on the activity of the HPA axis in the presence or absence of circulating glucocorticoids.  相似文献   

7.
8.
We investigated nitric oxide (NO)-producing neurons in the amygdala which project to the hypothalamic paraventricular nucleus (PVN) of the rat using retrograde tracing and NADPH-diaphorase histochemistry. Numerous NADPH-diaphorase positive neurons with moderate staining were observed mainly in the medial amygdaloid nucleus. We confirmed that these NADPH-diaphorase positive neurons are identical to NO synthase (NOS)-immunoreactive neurons by double staining with NADPH-diaphorase histochemistry and NOS immunocytochemistry. Most neurons containing cholera toxin B subunit (CTb) – which was retrogradely transported from the PVN – were observed in the medial amygdaloid nucleus. In other amygdaloid nuclei, they were observed much less in the central nucleus, basomedial and anterior cortical nucleus. Double labeled neurons by NADPH-diaphorase and CTb were also identified mostly in the medial nucleus. Approximately 40% of the neurons projecting to the PVN were nitrergic neurons and 16% of NADPH-diaphorase positive neurons in the medial nucleus were revealed to project to the PVN. These results suggest that NO-producing neurons in the medial amygdala directly innervate PVN neurons and regulate neuroendocrine systems such as vasopressin and corticotropin releasing factor release.  相似文献   

9.
In situ hybridization histochemistry was used to localize and quantify the effects of acute and repeated immobilization stress on mRNA levels of tyrosine hydroxylase (TH) in catecholaminergic neurons in the locus ceruleus and substantia nigra and on mRNA levels of relevant markers of the hypothalamic-pituitary-adrenal axis, namely corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN), proopiomelanocortin in the pituitary, and mineralocorticoid receptors (MR, type I) and glucocorticoid receptors (GR, type II) in the hippocampus, PVN and pituitary. Control, acutely stressed (1 × lMO, sacrificed immediately after 2 h of immobilization), and repeatedly stressed (6 × IMO plus delay, sacrificed 24 h after 6 daily 2-h immobilizations and 6 × lMO plus challenge, sacrificed immediately after the seventh daily 2-h immobilization) male Sprague-Dawley rats were examined. TH mRNA expression was increased in the locus ceruleus in the acutely stressed and repeatedly stressed animals. The increase in TH mRNA levels was greatest in the repeatedly stressed (6 × IMO plus challenge) group. TH mRNA levels were not altered in the substantia nigra. CRH mRNA levels in the PVN were significantly increased in the three stressed groups and the increase was greatest in the 6 × IMO plus challenge group. CRH mRNA levels were increased in the central nucleus of the amygdala only after acute stress. Proopiomelanocortin mRNA levels were elevated in the anterior pituitary during acute and repeated stress, but the magnitude of the effect was largest after acute stress. The changes in the hypothalamic-pituitary-adrenal axis were accompanied by an acute stress-induced increase in MR mRNA levels in the hippocampus, MR and GR mRNA levels in the PVN and GR mRNA levels in the pituitary. MR mRNA levels continued to be elevated in the PVN in the 6 × IMO plus challenge animals. Plasma corticosterone levels were elevated in the acute and repeated stress conditions. The results show that repeated immobilization stress produces a rapid and persistent increase in mRNA expression of TH in the locus ceruleus, CRH in the PVN, and proopiomelanocortin in the anterior pituitary. The TH-containing neurons in the locus ceruleus and the CRH-containing neurons in the PVN appear to preserve the capability to respond to repeated stimulation (6 × IMO plus challenge) indicating altered feedback mechanisms under repeated stress conditions. GR and MR mRNA levels are differentially regulated in the hippocampus, PVN and pituitary by acute and repeated stress. It is of interest that the central nervous system systems which are activated during repeated stress, namely the locus ceruleus-norepinephrine system and hypothalamic-pituitary-adrenal axis, are dysregulated in melancholic depression. Further studies of the central nervous system effects of prolonged exposure to stress may help elucidate the mechanisms underlying dysregulation of the locus ceruleus-norepinephrine system and hypothalamic-pituitary-adrenal axis in depression and other stress-related psychiatric diseases.  相似文献   

10.
Endogenous glucocorticoid negative-feedback influence on the hypothalamic-pituitary-adrenal (HPA) axis depends on glucocorticoid actions exerted on multiple glucocorticoid-sensitive tissues and differential glucocorticoid effects that are expressed within several distinct temporal domains. The relative contribution and underlying molecular mechanisms of action for the effects of location and timing of glucocorticoid exposure on HPA axis activity remain to be determined. In the present study, we examined the effects of acute exposure to corticosterone (CORT) at the level of the paraventricular nucleus (PVN) on the HPA axis response to a subsequent stressor in a short-term (1 h) timeframe. Intra-PVN CORT microinjection 1 h before restraint suppressed the adrenocorticotrophic hormone (ACTH) response and blunted restraint-induced corticotrophin-releasing hormone (CRH) heterogeneous nuclear (hn)RNA expression in the PVN and pro-opiomelanocortin hnRNA expression in the anterior pituitary (AP); however, it had no effect on restraint-induced plasma prolactin levels and c-fos mRNA expression (PVN and AP). This pattern of results suggests that CORT acts locally at the level of the PVN within a short-term timeframe to suppress stress-induced excitation-exocytosis coupling within CRH neurones and CRH gene induction without altering the stress-associated trans-synaptic input and intracellular signal transduction that converges on PVN c-fos gene induction. The present study is the first to demonstrate that an acute infusion of CORT into the PVN is sufficient to suppress the ACTH response to stress initiated 1 h after CORT infusion.  相似文献   

11.
12.
大鼠急性局灶性脑缺血再灌注脑组织NO含量和NOS活性的变化   总被引:15,自引:0,他引:15  
目的探讨一氧化氮(NO)和神经元型NO合酶(nNOS)是否参与急性局灶性脑缺血再灌注的发病机理。方法采用栓红法建立大鼠大脑中动脉阻塞(MCAO)模型,观察脑组织NO含量和一氧化氮合酶(NOS)活性的变化及nNOS抑制剂7-硝基吲唑(7-NI)对再灌注期两者的影响。结果缺血30分种NO含量和NOS活性显著升高,缺血3小进两者下降;再灌注30分种NOT和NOS再次升高,而再灌注3小时两者又下降。7-N  相似文献   

13.
We injected nitric oxide (NO)-releasing compounds and NO synthase (NOS) inhibitors into the brains of conscious, freely moving rats and measured the effects on mean arterial blood pressure (MAP) and heart rate, as well as on the expression of c-fos mRNA, neuronal NOS (nNOS) mRNA and NADPH-diaphorase, an indicator of NOS activity. When administered i.c.v., the NO donor, NOC-18, caused a significant fall in MAP and heart rate, whereas the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), induced a significant rise in MAP. The same dose of NOC-18 or L-NAME when administered i.v. did not affect MAP and heart rate. Centrally administered NOC-18 induced c-fos mRNA expression in several regions of the brain involved in the baroreceptor response, including the nucleus of the solitary tract, the area postrema and the rostral ventrolateral medulla, as well as areas involved in the integration of autonomic, neuroendocrine and behavioural responses, including the medial preoptic area, the organum vasculosum lamina terminalis, the bed nucleus of stria terminalis, the paraventricular nucleus (PVN), the supraoptic nucleus (SON), the central nucleus of amygdala (CeA) and the locus coeruleus. Most of the areas that expressed c-fos also contained nNOS mRNA and/or NADPH-d-positive neurones and fibres. i.c.v. injection of L-NAME induced c-fos mRNA expression in PVN, SON, locus coeruleus and NTS, suggesting a tonic inhibition of neuronal activity by NO or stimulation of neuronal activity by endogenous NO. i.v. injection of NOC-18 or L-NAME did not induce any significant c-fos mRNA expression in rat brain. These results demonstrate that NO acts directly in the brain to reduce the systemic blood pressure, and that the endogenous NO pathway may play a role in cardiovascular and autonomic regulation by modulating neuronal activities in discrete regions of the brain.  相似文献   

14.
The expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) in rats with lithium (Li)-induced polyuria was examined by using in situ hybridization histochemistry. The state of the thyroid axis in these rats was also examined by in situ hybridization histochemistry for thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) mRNAs and radioimmunoassay for circulating thyroid hormones. Adult male Wistar rats consuming a diet that contained LiCl (60 mmol/kg) for 4 weeks developed remarkable polyuria. The urine in the Li-treated rats was hypotonic and had a large volume and low ionic concentration. The nNOS mRNA in the PVN and SON was significantly increased in the Li-treated rats in comparison with that in control. The increased levels of the nNOS mRNA in the PVN and SON were confirmed by NADPH-diaphorase histochemical staining. There were no differences of TRH mRNA in the PVN, TSH mRNA in the anterior pituitary and plasma concentrations of free T3 and free T4 between Li-treated rats and control rats. These results suggest that Li-induced diabetes insipidus may activate nNOS in the PVN and SON without change of the thyroid axis.  相似文献   

15.
Modulatory effect of

We investigated whether NG-nitro-

-arginine methyl ester (

-NAME), a specific inhibitor of nitric oxide synthase (NOS), can modify the stress-induced adrenocorticotropic hormone (ACTH) and corticosterone responses, because we found that immobilization-induced stress increases NOS mRNA and protein levels and enzyme activity in the adrenal cortex. The physiological significance of these phenomena, however, remains unknown. Plasma ACTH and corticosterone levels were determined by radioimmunoassay (RIA) of systemic blood samples and NOS enzyme activity was measured as the rate of [3H]arginine conversion to [3H]citrulline in the presence of tissue homogenate of adrenal cortex separated from the adrenal gland. The NOS enzyme activity in the adrenal cortex of rats pre-injected with saline at 2 h after the 2-h immobilization was significantly higher (P<0.01) than that in the non-stressed controls. Pre-injection of

-NAME (100 mg/kg, s.c.) almost completely abolished the activity. This dose of

-NAME maintained a significantly elevated plasma corticosterone level (P<0.05, compared with basal level) even 2 h after the 2-h stress, whereas the plasma corticosterone level in rats pre-injected with saline returned to the basal level at the same time point. Plasma ACTH level in

-NAME-pre-treated rats was higher than that in those pre-treated with saline 2 h after the stress, but the difference was not significant. This dose of

-NAME did not influence plasma ACTH or corticosterone levels under resting conditions without stress. These findings suggest that the stress-induced increase in NO synthesis in the adrenal cortex can modify the stress-induced corticosterone response to facilitate the recovery from the elevated corticosterone secretion by stress in the adrenal cortex to the resting basal level.  相似文献   

16.
The inhibitors of nitric oxide synthase (NOS) have been shown to possess antidepressant- and anxiolytic-properties in animal model. In order to examine the involvement of nitric oxide (NO) on stress-induced neurobehavioral changes and the concomitant alterations of neuroendocrinological factors, we studied the effects of the nonselective NOS inhibitor, N(ω)-Nitro l-arginine methyl ester hydrochloride (l-NAME) and the specific neuronal NOS inhibitor, 7-nitroindazole (7-NI) on restraint stress-induced anxiety in the elevated plus maze (EPM) test and biochemical analysis. Restraint stress significantly reduced the latency time in open arm and the percentage of open arm entries of the plus maze. Pretreatment with l-NAME (10mg/kg) or 7-NI (10mg/kg) significantly attenuated stress-induced anxiety response. In addition, administration of l-NAME (10mg/kg) reversed stress-induced increase in corticosterone and NO metabolites (NO(x)) in plasma. The administration of 7-NI, but notl-NAME, reversed stress-induced NO(x) in paraventricular nucleus of the hypothalamus (PVN) and locus coeruleus (LC), accompanying with decrease of NADPH-d reactivity in the PVN and lateral dorsal tegmental nucleus (LTDg). These results showed that l-NAME influences HPA axis activity such as corticosterone levels and NO(x) in plasma, whereas 7-NI produced anxiolytic-like effects through the direct reduction in NO(x) in the brain. The results of this study demonstrated that NOS inhibitors have differential effect on stress responses and inhibition of NO could be responsible for the beneficial effect on regulation of stress.  相似文献   

17.
Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic–pituitary–adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary. In genetic mouse models, we evaluate circadian regulation of the HPA axis, stress-stimulated neuroendocrine response and behavioral activity, as well as the integrated response of organism metabolism. Our analysis provides information on contributions of region-specific GR-mediated negative feedback to provide insight in understanding HPA axis dysregulation and the pathogenesis of psychiatric and metabolic disorders.  相似文献   

18.
Nitric oxide (NO) is produced by the enzyme NO synthase (NOS) and may be involved in the regulation of nutrient and endocrine homeostasis via actions on neurones of the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. The effects of water deprivation or food deprivation for 4 days on the abundance of messenger RNA encoding NOS in these nuclei in rats were examined using in situ hybridization. Water deprivation markedly increased the abundance of NOS mRNA in both the SON and PVN (225±11% of control, P<0.05 and 261±34% of control, P<0.01 respectively). NOS mRNA abundance also appeared to be increased in magnocellular accessory nuclei. Food deprivation decreased NOS mRNA abundance in the SON and PVN (42±6% and 52±7% of control respectively, both P<0.05), while withdrawal of both food and water produced no significant net changes in the abundance of NOS mRNA. Treatment-induced alterations in NOS mRNA abundance were reflected by changes in NOS activity, as assessed by NADPH-diaphorase histochemistry, and NADPH-diaphorase staining was observed in neurones both positive and negative for oxytocin-like immunoreactivity. These findings suggest that NOS mRNA abundance, NOS enzymatic activity and presumably NO production are modulated in an activity-dependent manner in hypothalamic (magnocellular and parvocellular) neurones by alterations in fluid and nutrient homeostasis, and support data from other studies suggesting a role for NO in the central regulation of water and food intake in the rat.  相似文献   

19.
20.
Deng X  Cadet JL 《Brain research》1999,851(1-2):254-257
The accumulated evidence suggests that the overproduction of nitric oxide (NO) is involved in methamphetamine (METH)-induced neurotoxicity. Using NADPH-diaphorase histochemistry, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) antibody immunohistochemistry, the possible overexpression of nNOS and iNOS was investigated in the brains of mice treated with METH. The number of positive cells or the density of positive fibers was assessed at 1 h, 24 h and 1 week after METH injections. There were no clear positive iNOS cells and fibers demonstrated in the brains of mice after METH treatment. In contrast, METH caused marked increases in nNOS in the striatum and hippocampus at 1 and 24 h post-treatment. The nNOS expression normalized by 1 week. There were no statistical changes in nNOS expression in the frontal cortex, the cerebellar cortex, nor in the substantia nigra. These results provide further support for the idea that NO is involved in the neurotoxic effects of METH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号