首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A longstanding paradox in the activation of cytotoxic T lymphocytes (CTL) arises from the observation that CTL recognize and rapidly destroy target cells with exquisite sensitivity despite the fact that cytokine production requires sustained signaling at the immunological synapse. Here we solve this paradox by showing that CTL establish sustained synapses with targets offering strong antigenic stimuli and that these synapses persist after target cell death. Simultaneously, CTL polarize lytic granules toward different cells without discrimination regarding antigenic potential. Our results show that spatiotemporal uncoupling of immunological synapse and lytic granule secretion allows multiple killing and sustained signaling by individual CTL. This unique mechanism of responding to multiple contacts provides remarkable efficiency to CTL function.  相似文献   

2.

Background

T-cell activation relies on the assembly of the immunological synapse, a structure tightly regulated by the actin cytoskeleton. The precise role of the Wiskott-Aldrich syndrome protein, an actin cytoskeleton regulator, in linking immunological synapse structure to downstream signaling remains to be clarified.

Design and Methods

To address this point, CD4+ T cells from patients with Wiskott-Aldrich syndrome were stimulated with antigen-presenting cells. The structure and dynamics of the immunological synapse were studied by confocal and video-microscopy.

Results

Upon stimulation by antigen-presenting cells, Wiskott-Aldrich syndrome protein-deficient T cells displayed reduced cytokine production and proliferation. Although Wiskott-Aldrich syndrome T cells formed conjugates with antigen-presenting cells at normal frequency and exhibited normal T-cell receptor down-regulation, they emitted actin-rich protrusions away from the immunological synapse area and their microtubule organizing center failed to polarize fully towards the center of the immunological synapse. In parallel, abnormally dispersed phosphotyrosine staining revealed unfocused synaptic signaling in Wiskott-Aldrich syndrome T cells. Time-lapse microscopy confirmed the anomalous morphology of Wiskott-Aldrich syndrome T-cell immunological synapses and showed erratic calcium mobilization at the single-cell level.

Conclusions

Taken together, our data show that the Wiskott-Aldrich syndrome protein is required for the assembly of focused immunological synapse structures allowing optimal signal integration and sustained calcium signaling.  相似文献   

3.
T cells are activated by recognition of foreign peptides displayed on the surface of antigen presenting cells (APCs), an event that triggers assembly of a complex microscale structure at the T cell-APC interface known as the immunological synapse (IS). It remains unresolved whether the unique physical structure of the synapse itself impacts the functional response of T cells, independent of the quantity and quality of ligands encountered by the T cell. As a first step toward addressing this question, we created multicomponent protein surfaces presenting lithographically defined patterns of tethered T cell receptor (TCR) ligands (anti-CD3 "activation sites") surrounded by a field of tethered intercellular adhesion molecule-1 (ICAM-1), as a model substrate on which T cells could be seeded to mimic T cell-APC interactions. CD4(+) T cells seeded on these surfaces polarized and migrated; on contact with activation sites, T cells assembled an IS with a structure modulated by the physical pattern of ligand encountered. On surfaces patterned with focal spots of TCR ligand, T cells stably interacted with activation sites, proliferated, and secreted cytokines. In contrast, T cells interacting with activation sites patterned to preclude centralized clustering of TCR ligand failed to form stable contacts with activation sites, exhibited aberrant PKC- clustering in a fraction of cells, and had significantly reduced production of IFN-gamma. These results suggest that focal clustering of TCR ligand characteristic of the "mature" IS may be required under some conditions for full T cell activation.  相似文献   

4.
Cytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction. Here, we found that a kinesin-1-dependent process is required for terminal transport and secretion of polarized lytic granule to the immune synapse. We show that synaptotagmin-like protein 3 (Slp3) is an effector of Rab27a in cytotoxic T lymphocytes and interacts with kinesin-1 through the tetratricopeptide repeat of the kinesin-1 light chain. Inhibition of the Rab27a/Slp3/kinesin-1 transport complex impairs lytic granule secretion. Our data provide further molecular insights into the key functional and regulatory mechanisms underlying the terminal transport of cytotoxic granules and the latter's secretion at the immune synapse.  相似文献   

5.
Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immunological synapse. The microtubule motor protein cytoplasmic dynein clusters into a ring at the synapse, colocalizing with the ADAP ring. ADAP coprecipitates with dynein from activated Jurkat cells, and loss of ADAP prevents MTOC translocation and the specific recruitment of dynein to the synapse. These results suggest a mechanism that links signaling through the T cell receptor to translocation of the MTOC, in which the minus end-directed motor cytoplasmic dynein, localized at the synapse through an interaction with ADAP, reels in the MTOC, allowing for directed secretion along the polarized microtubule cytoskeleton.  相似文献   

6.
The formation of supramolecular activation clusters within the immunological synapse, crucial for sustained signaling and T lymphocyte activation, requires costimulation-dependent reorganization of the actin cytoskeleton. Here we have identified the actin-remodeling protein cofilin as a key player in this process. Cell-permeable peptides that block costimulation-induced cofilin/F-actin interactions in untransformed human T lymphocytes impair receptor capping and immunological synapse formation at the interface between T cells and antigen-presenting cells. As a consequence, T cell activation, as measured by cytokine production and proliferation, is inhibited.  相似文献   

7.
One very striking feature of T-cell recognition is the formation of an immunological synapse between a T cell and a cell that it is recognizing. Formation of this complex structure correlates with cytotoxicity in the case of killer (largely CD8(+)) T-cell activity, or robust cytokine release and proliferation in the case of the much longer lived synapses formed by helper (CD4(+)) T cells. Here we have used electron microscopy and 3D tomography to characterize the synapses of antigen-specific CD4(+) T cells recognizing B cells and dendritic cells at different time points. We show that there are at least four distinct stages in synapse formation, proceeding over several hours, including an initial stage involving invasive T-cell pseudopodia that penetrate deeply into the antigen-presenting cell, almost to the nuclear envelope. This must involve considerable force and may serve to widen the search for potential ligands on the surface of the cell being recognized. We also show that centrioles and the Golgi complex are always located immediately beneath the synapse and that centrioles are significantly shifted toward the late contact zone with either B lymphocytes or bone marrow-derived dendritic cells such as antigen-presenting cells, and that there are dynamic, stage-dependent changes in the organization of microtubules beneath the synapse. These data reinforce and extend previous data on cytotoxic T cells that one of the principal functions of the immunological synapse is to facilitate cytokine secretion into the synaptic cleft, as well as provide important insights into the overall dynamics of this phenomenon.  相似文献   

8.
In eukaryotic cells the phospholipid phosphatidylserine (PS) is restricted to the inner plasma-membrane leaflet. This lipid asymmetry, which is maintained by the concerted action of phospholipid transport proteins, is mainly lost during apoptosis. Here, we demonstrate that primary human CD8+ cytotoxic T lymphocytes (CTLs) expose PS on T-cell receptor (TCR)-mediated antigen (Ag) recognition. In contrast to PS externalization on apoptotic cells, activation-induced PS exposure is less pronounced and reversible. Fluorescence microscopic analysis revealed that PS is distributed nonhomogenously over the plasma membrane and concentrated in membrane lipid raft domains at the immunologic synapse. By studying the activity of PS transport proteins using a fluorescence-labeled PS analogue, we found that activation of CTLs inhibited the flippase-mediated inward-directed PS transport without affecting the outward transport. Shielding of exposed PS by annexin V protein during Ag recognition diminished cytokine secretion, activation, and cell-to-cell clustering of Ag-specific CTLs. In summary, our data demonstrate for the first time that externalized PS on Ag-stimulated CTLs is linked to T-cell activation and probably involved in cell-to-cell contact formation at the immunologic synapse.  相似文献   

9.
AIM: To investigate the in-vitro activation of cytotoxic T lymphocytes (CTLs) by fusion of mouse hepatocellular carcinoma (HCC) ceils and lymphotactin gene-modified dendritic cells (DCs).
METHODS: Lymphotactin gene modified DCs (DCLptn) were prepared by lymphotactin recombinant adenovirus transduction of mature DCs which differentiated from mouse bone marrow cells by stimulation with granulocyte/macrophage colony-stimulating factor (GM- CSF), interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-α). DCLptn and H22 fusion was prepared using 50% PEG. Lymphotactin gene and protein expression levels were measured by RT-PCR and ELISA, respectively. Lymphotactin chemotactic responses were examined by in-vitro chemotaxis assay. In-vitro activation of CTl_s by DCLptn/H22 fusion was measured by detecting CD25 expression and cytokine production after autologous T cell stimulation. Cytotoxic function of activated T lymphocytes stimulated with DCLptn/H22 cells was determined by LDH cytotoxicity assay. RESULTS: Lymphotactin gene could be efficiently transduced to DCs by adenovirus vector and showed an effective biological activity. After fusion, the hybrid DCLptn/H22 cells acquired the phenotypes of both DCLptn and H22 cells. In T cell proliferation assay, flow cytometry showed a very high CD25 expression, and cytokine release assay showed a significantly higher concentration of IFN-α, and IL-2 in DCLptn/H22 group than in DCLptn, DCLptn+H22, DC/H22 or H22 groups. Cytotoxicity assay revealed that T cells derived from DCLptn/H22 group had much higher anti-tumor activity than those derived from DCLptn, H22, DCLptn + H22, DC/H22 groups. CONCLUSION: Lymphotactin gene-modified dendritoma induces T-cell proliferation and strong CTL reaction against allogenic HCC cells. Immunization-engineered fusion hybrid vaccine is an attractive strategy in prevention and treatment of HCC metastases.  相似文献   

10.
Relapse of B-lineage acute lymphoblastic leukemia (B-ALL) after allogeneic hematopoietic stem cell transplantation (HSCT) commonly results from the failure of a graft-versus-leukemia (GVL) effect to eradicate minimal residual disease. Augmenting the GVL effect by the adoptive transfer of donor-derived B-ALL-specific T-cell clones is a conceptually attractive strategy to decrease relapse rates without exacerbating graft-versus-host disease (GVHD). Toward this end, we investigated whether a genetic engineering approach could render CD8(+) cytotoxic T lymphocytes (CTLs) specific for tumor cells that express the B-cell lineage cell surface molecule CD19. This was accomplished by the genetic modification of CTLs to express a chimeric immunoreceptor composed of a CD19-specific single-chain immunoglobulin extracellular targeting domain fused to a CD3-zeta intracellular signaling domain. CD19-redirected CTL clones display potent CD19-specific lytic activity and chimeric immunoreceptor-regulated cytokine production and proliferation. Because B-ALL cells can evade T-cell/natural killer- cell recognition by down-regulation of cell surface accessory molecules that participate in the formation of a functional immunologic synapse, we compared the CD19-specific effector function of genetically modified CD8(+) CTLs toward CD19(+) cells with disparate levels of intercellular adhesion molecule 1 (ICAM-1), leukocyte function-associated antigen 1 (LFA-1), and LFA-3. We observed that recognition of B-lineage tumor lines by CD19-specific CTLs was not impaired by low levels of ICAM-1, LFA-1, and LFA-3 cell surface expression, a functional attribute that is likely a consequence of our high-affinity CD19-specific chimeric immunoreceptor. Furthermore, the CD19-specific CTLs could lyse primary B-ALL blasts. These preclinical observations form the basis for implementing clinical trials using donor-derived CD19-specific T-cell clones to treat or prevent relapse of B-ALL after allogeneic HSCT.  相似文献   

11.
Although both naive and effector T lymphocytes interact with antigen-expressing cells, the functional outcome of these interactions is distinct. Naive CD8(+) T cells are activated to proliferate and differentiate into effector cytolytic T lymphocytes (CTL), whereas CTL interact with specific targets, such as tumor cells, to induce apoptotic death. We recently observed that several molecules linked to actin cytoskeleton dynamics were up-regulated in effector vs. naive CD8(+) T cells, leading us to investigate whether T cell differentiation is accompanied by changes in actin-dependent processes. We observed that both naive and effector CD8(+) T cells underwent T cell receptor capping and formed stable conjugates with antigen-specific antigen-presenting cells. However, the characteristics of the immunological synapse were distinct. Whereas accumulation of signaling molecules at the T cell/antigen-presenting cell contact site was detectable in both naive and effector CD8(+) T cells, only effector cells developed a central supramolecular activation cluster as defined by punctate focusing of PKC theta, phospho-PKC theta, and phospho-ZAP70. Extended kinetics, CD28 costimulation, and high-affinity antigenic peptide did not promote PKC theta focusing in naive cells. Nonetheless, naive CD8(+) T cells polarized the microtubule organizing center, produced IL-2, proliferated, and differentiated into effector cells. Our results suggest that the formation of a central supramolecular activation cluster is not required for activation of naive CD8(+) T cells and support the notion that one role of an organized immune synapse is directed delivery of effector function.  相似文献   

12.
Natural killer (NK) cells play important roles in host immunity by killing virus-infected and tumor cells. Killing of the target cell is achieved by formation of an immune synapse and localized secretion of lytic granules containing perforin and granzymes. Here, we demonstrate that Wiskott-Aldrich syndrome protein (WASp)-interacting protein (WIP), important in generation of a large complex of proteins involved in actin cytoskeleton rearrangements, is indispensable for NK cell cytotoxicity. WIP knockdown completely inhibited cytotoxicity, whereas overexpression of WIP enhanced NK cell cytolytic ability. WIP was found to colocalize with lytic granules. WIP segregated to the lysosomal fraction, where granzyme B activity was also found, and the interaction between WIP and granules was independent of WASp. Importantly, WIP knockdown inhibited polarization of lytic granules to the immune synapse, but not conjugate formation. These results indicate that WIP is involved in lytic granule transport and is essential for regulation of NK cell cytotoxic function.  相似文献   

13.
Spatial organization of signaling complexes is a defining characteristic of the immunological synapse (IS), but its impact on cell communication is unclear. In T cell–APC pairs, more IL-2 is produced when CD28 clusters are segregated from central supramolecular activation cluster (cSMAC)-localized CD3 and into the IS periphery. However, it is not clear in these cellular experiments whether the increased IL-2 is driven by the pattern itself or by upstream events that precipitate the patterns. In this article, we recapitulate key features of physiological synapses using planar costimulation arrays containing antibodies against CD3 and CD28, surrounded by ICAM-1, created by combining multiple rounds of microcontact printing on a single surface. Naïve T cells traverse these arrays, stopping at features of anti-CD3 antibodies and forming a stable synapse. We directly demonstrate that presenting anti-CD28 in the cell periphery, surrounding an anti-CD3 feature, enhances IL-2 secretion by naïve CD4+ T cells compared with having these signals combined in the center of the IS. This increased cytokine production correlates with NF-κB translocation and requires PKB/Akt signaling. The ability to arbitrarily and independently control the locations of anti-CD3 and anti-CD28 offered the opportunity to examine patterns not precisely attainable in cell–cell interfaces. With these patterns, we show that the peripheral presentation of CD28 has a larger impact on IL-2 secretion than CD3 colocalization/segregation.  相似文献   

14.
Mature T cell activation and selection of immature T cells (thymocytes) are both initiated by binding of T cell receptor (TCR) molecules on the surface of T cells to MHC peptide (MHCp) molecules on the surface of antigen-presenting cells. Recent experiments have shown that the spatial pattern of receptors and ligands in the intercellular junction (synapse) is different during thymocyte selection compared with mature T cell activation. Using a statistical mechanical model, we show that lower TCR expression in thymocytes contributes to effecting these differences. An analogy with the phase behavior of simple fluids helps clarify how, for low TCR expression, thermal fluctuations lead to the dynamic synapse patterns observed for thymocytes. We suggest that a different synapse pattern resulting from lower TCR expression, which could mediate differential signaling, may be the reason why TCR expression level is low in thymocytes.  相似文献   

15.
Multiple stimulation protocols have been found to be effective in changing synaptic efficacy by inducing long-term potentiation or depression. In many of those protocols, increases in postsynaptic calcium concentration have been shown to play a crucial role. However, it is still unclear whether and how the dynamics of the postsynaptic calcium alone determine the outcome of synaptic plasticity. Here, we propose a calcium-based model of a synapse in which potentiation and depression are activated above calcium thresholds. We show that this model gives rise to a large diversity of spike timing-dependent plasticity curves, most of which have been observed experimentally in different systems. It accounts quantitatively for plasticity outcomes evoked by protocols involving patterns with variable spike timing and firing rate in hippocampus and neocortex. Furthermore, it allows us to predict that differences in plasticity outcomes in different studies are due to differences in parameters defining the calcium dynamics. The model provides a mechanistic understanding of how various stimulation protocols provoke specific synaptic changes through the dynamics of calcium concentration and thresholds implementing in simplified fashion protein signaling cascades, leading to long-term potentiation and long-term depression. The combination of biophysical realism and analytical tractability makes it the ideal candidate to study plasticity at the synapse, neuron, and network levels.  相似文献   

16.
The adaptor protein SAP regulates signaling through signaling lymphocytic activation molecule (SLAM)-family receptors expressed on T and natural killer (NK) cells. In patients affected by X-linked lymphoproliferative (XLP) disease, mutations in the SH2D1A gene result in defective lytic activity. However, the mechanism by which SAP controls cytotoxic activity remains unclear. T-cell-receptor (TCR) activation of CD8(+) cytotoxic T cells (CTLs) results in down-regulation of SAP, suggesting that this protein is involved in early activation events. Here, we show that SAP-deficient CTLs from patients with XLP and hemophagocytic lymphohistiocytosis (HLH) display a specific lytic defect against autologous and allogeneic Epstein-Barr virus (EBV)-positive B cells. This defect is associated with the defective polarization of 2B4, perforin, and lipid rafts at the contact area of CTLs with EBV-positive targets. Blockade of 2B4 in normal CTLs reproduces the defects in lysis and polarization observed in SAP-deficient CTLs. Expression and regulation of the SLAM-family receptors SLAM, CD84, and 2B4, as well as the lytic effectors perforin and granzyme-B are normal in SAP-deficient CTLs. In addition, TCR stimulation leads to normal proliferation and production of interleukin 2 (IL-2), IL-4, and interferon-gamma (IFN-gamma). These results demonstrate that the SAP/2B4 pathway plays a key role in CTL lytic activity against EBV-positive targets by promoting the polarization of the lytic machinery.  相似文献   

17.
Lymphocytes mediate cytotoxicity by polarized release of the contents of cytotoxic granules toward their target cells. Here, we have studied the role of the calcium release-activated calcium channel ORAI1 in human lymphocyte cytotoxicity. Natural killer (NK) cells obtained from an ORAI1-deficient patient displayed defective store-operated Ca(2+) entry (SOCE) and severely defective cytotoxic granule exocytosis leading to impaired target cell lysis. Similar findings were obtained using NK cells from a stromal interaction molecule 1-deficient patient. The defect occurred at a late stage of the signaling process, because activation of leukocyte functional antigen (LFA)-1 and cytotoxic granule polarization were not impaired. Moreover, pharmacological inhibition of SOCE interfered with degranulation and target cell lysis by freshly isolated NK cells and CD8(+) effector T cells from healthy donors. In addition to effects on lymphocyte cytotoxicity, synthesis of the chemokine macrophage inflammatory protein-1β and the cytokines TNF-α and IFN-γ on target cell recognition was impaired in ORAI1-deficient NK cells, as previously described for T cells. By contrast, NK cell cytokine production induced by combinations of IL-12, IL-15, and IL-18 was not impaired by ORAI1 deficiency. Taken together, these results identify a critical role for ORAI1-mediated Ca(2+) influx in granule exocytosis for lymphocyte cytotoxicity as well as for cytokine production induced by target cell recognition.  相似文献   

18.
The nucleotide NAADP was recently discovered as a second messenger involved in the initiation and propagation of Ca2+ signaling in lymphoma T cells, but its impact on primary T cell function is still unknown. An optimized, synthetic, small molecule inhibitor of NAADP action, termed BZ194, was designed and synthesized. BZ194 neither interfered with Ca2+ mobilization by d-myo-inositol 1,4,5-trisphosphate or cyclic ADP-ribose nor with capacitative Ca2+ entry. BZ194 specifically and effectively blocked NAADP-stimulated [3H]ryanodine binding to the purified type 1 ryanodine receptor. Further, in intact T cells, Ca2+ mobilization evoked by NAADP or by formation of the immunological synapse between primary effector T cells and astrocytes was inhibited by BZ194. Downstream events of Ca2+ mobilization, such as nuclear translocation of “nuclear factor of activated T cells” (NFAT), T cell receptor-driven interleukin-2 production, and proliferation in antigen-experienced CD4+ effector T cells, were attenuated by the NAADP antagonist. Taken together, specific inhibition of the NAADP signaling pathway constitutes a way to specifically and effectively modulate T-cell activation and has potential in the therapy of autoimmune diseases.  相似文献   

19.
For efficient development of an immune response, T lymphocytes require long-lasting calcium influx through calcium release-activated calcium (CRAC) channels and the formation of a stable immunological synapse (IS) with the antigen-presenting cell (APC). Recent RNAi screens have identified Stim and Orai in Drosophila cells, and their corresponding mammalian homologs STIM1 and Orai1 in T cells, as essential for CRAC channel activation. Here, we show that STIM1 and Orai1 are recruited to the immunological synapse between primary human T cells and autologous dendritic cells. Both STIM1 and Orai1 accumulated in the area of contact between either resting or super-antigen (SEB)-pretreated T cells and SEB-pulsed dendritic cells, where they were colocalized with T cell receptor (TCR) and costimulatory molecules. In addition, imaging of intracellular calcium signaling in T cells loaded with EGTA revealed significantly higher Ca2+ concentration near the interface, indicating Ca2+ influx localized at the T cell/dendritic cell contact area. Expression of a dominant-negative Orai1 mutant blocked T cell Ca2+ signaling but did not interfere with the initial accumulation of STIM1, Orai1, and CD3 in the contact zone. In activated T cell blasts, mRNA expression for endogenous STIM1 and all three human homologs of Orai was up-regulated, accompanied by a marked increase in Ca2+ influx through CRAC channels. These results imply a positive feedback loop in which an initial TCR signal favors up-regulation of STIM1 and Orai proteins that would augment Ca2+ signaling during subsequent antigen encounter.  相似文献   

20.
Synaptic pattern formation during cellular recognition   总被引:9,自引:0,他引:9  
Cell-cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82-86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221-227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062-15067] vividly demonstrate a complex evolution of cell shape and spatial receptor-ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23-29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266-2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221-227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号