首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
BACKGROUND: Transcranial magnetic stimulation (TMS) provides a method to examine cortico-cortical motor excitability and hemispheric asymmetry in unmedicated and medicated schizophrenia patients. METHODS: Fourteen right-handed schizophrenia patients (seven on conventional neuroleptics and seven medication-free) were compared with seven right-handed, age- and gender-matched normal control subjects. Motor threshold for induction of motor-evoked potentials (MEPs) and bihemispheric intracortical inhibition and facilitation were measured with single-pulse and paired-pulse TMS. RESULTS: Medicated patients showed an approximately 5% higher motor thresholds in both hemispheres than unmedicated patients and control subjects. Normal control subjects had a nearly 10% higher threshold for the left than the right hemisphere, whereas the opposite was true for the patient groups (5-10% higher threshold on the right than the left). Medicated patients showed significantly decreased intracortical inhibition relative to unmedicated patients and control subjects. This difference was more pronounced for the right than for the left hemisphere. CONCLUSIONS: Treatment with conventional neuroleptics is associated with increased motor threshold and decreased intracortical inhibition, whereas unmedicated patients did not differ from normal control subjects on these measures; however, schizophrenia may be characterized by a reversed pattern of interhemispheric corticospinal excitability.  相似文献   

3.
4.
In order to clarify the feature of attention disorders in schizophrenia, two tasks (X and AX) of the Continuous Performance Test (CPT) were given to 36 schizophrenic patients and 25 healthy controls. The schizophrenic patients performed considerably less well than normal controls. Performances were expressed in indices such as omission and commission errors, reaction time and discriminability. Among errors, omission in both the X and AX tasks was found to be an index that varied in reaction time, indicating difficulty in sustaining attention. Omission was found to act as a state-dependent index of schizophrenia in relation to inattentiveness in clinical settings and emotional disturbance in interpersonal situations. Commission, in contrast, differed between the two tasks, acting as an index of disinhibition of reaction in the X task, and of disturbance of the capacity and allocation of attention in the AX task. Commission was also thought to be an index related to thought disorder during episodes of acute schizophrenia, that is, it reflects an essential pathology in schizophrenia.  相似文献   

5.
Increased cortical kynurenate content in schizophrenia.   总被引:13,自引:0,他引:13  
BACKGROUND: Metabolites of the kynurenine pathway of tryptophan degradation may play a role in the pathogenesis of several human brain diseases. One of the key metabolites in this pathway, kynurenine, is either transaminated to form the glutamate receptor antagonist, kynurenate, or hydroxylated to 3-hydroxykynurenine, which in turn is further degraded to the excitotoxic N-methyl-D-aspartate receptor agonist quinolinate. Because a hypoglutamatergic tone may be involved in the pathophysiology of schizophrenia, it is conceivable that alterations in kynurenine pathway metabolism may play a role in the disease. METHODS: The tissue levels of kynurenine, kynurenate, and 3-hydroxykynurenine were measured in brain tissue specimens obtained from the Maryland Brain Collection. All three metabolites were determined in the same samples from three cortical brain regions (Brodmann areas 9, 10, and 19), obtained from 30 schizophrenic and 31 matched control subjects. RESULTS: Kynurenate levels were significantly increased in schizophrenic cases in Brodmann area 9 (2.9 +/- 2.2 vs. 1.9 +/- 1.3 pmol/mg protein, p <.05), but not in Brodmann areas 10 and 19. Kynurenine levels were elevated in schizophrenic cases in Brodmann areas 9 (35.2 +/- 28.0 vs. 22.4 +/- 14.3 pmol/mg protein; p <.05) and 19 (40.3 +/- 23.4 vs. 30.9 +/- 10.8; p <.05). No significant differences in 3-hydroxykynurenine content were observed between the two groups. In both groups, significant (p <.05) correlations were found in all three brain areas between kynurenine and kynurenate, but not between kynurenine and 3-hydroxykynurenine (p >.05). In rats, chronic (6-months) treatment with haloperidol did not cause an increase in kynurenate levels in the frontal cortex, indicating that the elevation observed in schizophrenia is not due to antipsychotic medication. CONCLUSIONS: The data demonstrate an impairment of brain kynurenine pathway metabolism in schizophrenia, resulting in elevated kynurenate levels and suggesting a possible concomitant reduction in glutamate receptor function.  相似文献   

6.
7.
8.
9.
Attention dysfunction in chronic schizophrenia   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
12.
Dysfunction of the dorsolateral prefrontal cortex appears to be a central feature of the pathophysiology of schizophrenia, and this dysfunction may be related to alterations in gamma aminobutyric acid (GABA) neurotransmission. Determining the causes and consequences of altered GABA neurotransmission in schizophrenia, and the relationship of these changes to other abnormalities in prefrontal cortical circuitry, requires an understanding of which of the multiple subpopulations of cortical GABA neurons are affected. The chandelier class of GABA neurons, especially those located in the middle layers of the prefrontal cortex (PFC), have been hypothesized to be preferentially involved in schizophrenia because they 1) receive direct synaptic input from dopamine axons, 2) exert powerful inhibitory control over the excitatory output of layer 3 pyramidal neurons, and 3) undergo substantial developmental changes during late adolescence, the typical age of onset of schizophrenia. Consistent with this hypothesis, the axon terminals of chandelier neurons, as revealed by immunoreactivity for the GABA membrane transporter, are reduced substantially in the middle layers of the PFC in schizophrenic subjects. This alteration appears to be selective for the chandelier class of GABA neurons and for the disease process of schizophrenia. These findings provide insight into the pathophysiologic mechanisms underlying prefrontal cortical dysfunction in schizophrenia, and they reveal new targets for therapeutic intervention in this illness.  相似文献   

13.
Although the effects of aging on the neural correlates of schizophrenia have been researched for many years, no clear conclusion has been reached. While some studies have demonstrated progressive age-related gray matter reductions in schizophrenia, other studies have not found evidence of progression. Moreover, it remains unclear whether the influence of aging on global or regional cortical thickness differs between schizophrenia patients and healthy controls. This study aimed to confirm previous reports of reduced cortical thickness in schizophrenia, and to investigate the effects of age on global and regional cortical thickness. Eighty-three patients with schizophrenia (six first-episode patients and 77 chronic patients; age range=18-55 years) and 90 age-, gender- and education-matched healthy controls (age range=19-56 years) underwent structural magnetic resonance imaging (MRI) using a 3-Tesla scanner. Surface-based analysis was applied to assess cortical thickness in the whole brain. The patient group exhibited both global and regional cortical thinning in regions including the prefrontal and temporal cortices. The correlation between age and cortical thickness showed a similar pattern in patients and controls, both globally and regionally. These results suggest that the reduction of cortical thickness in schizophrenia might not be progressive over the course of the illness, indicating that pathological processes occur in a relatively limited period of time around the onset of illness.  相似文献   

14.
15.
16.
《Brain stimulation》2020,13(5):1298-1304
BackgroundNeural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands.HypothesisIn this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia.MethodsWe measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS).ResultsDuring force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition.ConclusionThe findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia.  相似文献   

17.
18.
19.
The purpose of this study was to compare slow cortical electrical activity between healthy and schizophrenic individuals using 123-channel EEG and current density reconstruction (CDR). Twenty-nine healthy subjects and 14 drug-free patients performed three visual paired-associate tasks (verbal, pictorial and spatial). We modeled the generators of the slow potentials (SPs) at their peak amplitude by Lp-norm minimization using individual MRIs to model the volume conductor and source. Activity in each architectonic area of Brodmann was scored with respect to individual maximum current by a percentile method. Resulting scores by cortical area were analyzed by multivariate analysis of variance (MANOVA) with planned comparisons, to search for differences among levels. Results showed a multifocal pattern of current density foci comprising the SP generators, including frontal and posterior cortices in all subjects. A few cortical areas, not exclusively frontal, were observed to significantly differ between groups. Moreover, changes in patients' frontal activity were not exclusively to lower scores or 'hipofrontality': overall effects (all tasks collapsed) included increased electrical activity in right area 10, left 38 and 47 bilaterally, and decreased activity in right area 6 and left areas 39, 21 and 19. A few additional areas showed significantly altered activity only in particular tasks. We conclude that the present method, by preserving individual anatomical and functional information, indicates bidirectional patterns of altered electrical activity in specific cortical association areas in schizophrenia, which are not compatible with the exclusive 'hipofrontality' hypothesis. Our results agree with the hypothesis of schizophrenia as a syndrome resulting from abnormalities in multiple encephalic foci.  相似文献   

20.
Disturbances in cortico-cortical and cortico-subcortical circuits in schizophrenia have been described by previous neuroimaging and electrophysiological studies. Transcranial magnetic stimulation (TMS) provides a neurophysiological technique for the measurement of cortical excitability, especially of the motoneural system. Previous studies using paired-pulse TMS to investigate short-interval cortical inhibition (SICI) and intracortical facilitation (ICF), mainly involving chronic schizophrenia patients, have been inconsistent and only one study in first-episode patients has been conducted so far. We assessed SICI (interstimulus interval, ISI, 3 milliseconds, ms) and ICF (ISI 7 ms) in 29 first-episode schizophrenia patients (FE-SZ) with limited exposure to antipsychotic treatment against measures of 28 healthy controls (HC). Amplitudes of motor evoked potentials (MEPs) were measured from the left and right first dorsal interosseus muscle (FDI). The conditioning stimulus was set at 80% intensity of resting motor threshold (RMT) and the test stimulus (TS) was set at an intensity that produced an MEP amplitude of about 1 mV. For SICI conditions, FE-SZ demonstrated significantly higher MEP amplitudes from left motor cortex (right FDI) compared to HC, and for MEPs from right motor cortex (left FDI) a similar trend was observable (FE-SZ 41% vs. HC 21% of TS, p=0.017 for left motor cortex, and FE-SZ 59% vs. HC 31% of TS, p=0.059 for right motor cortex; Mann-Whitney U-test). No significant difference in MEPs could be detected for ICF on either hemisphere. In addition, there was no difference in left and right RMT comparing patients and control subjects. Our result of a reduced SICI in a large sample of well characterized first-episode schizophrenia patients suggests that a GABAergic deficit may be involved in schizophrenic pathophysiology, already early in the disease course, supporting the intracortical dysconnectivity hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号