首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
《Annales d'endocrinologie》2017,78(2):112-113
Fetal growth is a complex process. Its restriction is associated with morbidity and long-term metabolic consequences. Imprinted genes have a critical role in mammalian fetal growth. Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS) are two imprinting disorders with opposite fetal growth disturbance. SRS is leading to severe fetal and postnatal growth retardation with severe feeding difficulties during early childhood and long-term metabolic consequences and BWS is an overgrowth syndrome with an enhanced risk of tumors during childhood. Epigenetic (abnormal methylation at the imprinting center regions) or genetic (mutations, duplications, uniparental disomy [UPD]) including defects of imprinted genes on chromosome 11 (BWS and SRS), 7 (SRS) and more recently 14 (SRS) have been identified in these two syndromes. In humans, the 11p15 region contains genes important for the regulation of fetal and postnatal growth. This region includes two imprinted domains: the IGF2/H19 domain regulated by imprinting center region 1 (ICR1 or H19/IGF2:IG-DMR) and the CDKN1C/KCNQ1OT1 domain regulated by ICR2 (or KCNQ1OT1: TSS DMR).  相似文献   

3.
In both human and mouse, the Igf2 gene, localized on chromosomes 11 and 7, respectively, is expressed from the paternally inherited chromosome in the majority of tissues. Insulin-like growth factor-II (IGF-II) plays an important role in embryonic growth, and aberrant IGF2 expression has been documented in several human pathologies, such as Beckwith-Wiedemann syndrome (BWS), and a wide variety of tumors. Human and mouse genetic data strongly implicate another gene, CDKN1C (p57(kip2)), located in the same imprinted gene cluster on human chromosome II, in BWS. p57(KIP2) is a cyclin-dependent kinase inhibitor and is required for normal mouse embryonic development. Mutations in CDKN1C (p57(kip2)) have been identified in a small proportion of patients with BWS, and removal of the gene from mice by targeted mutagenesis produces a phenotype with elements in common with this overgrowth syndrome. Patients with BWS with biallelic expression of IGF2 or with a CDKN1C (p57(kip2)) mutation, as well as overlapping phenotypes observed in two types of mutant mice, the p57(kip2) knockout and IGF-II-overexpressing mice, strongly suggest that the genes may act in a common pathway of growth control in situations where Igf2 expression is abnormal. Herein, we show that p57(kip2) expression is reduced on IGF-II treatment of primary embryo fibroblasts in a dose-dependent manner. In addition, p57(kip2) expression is down-regulated in mice with high serum levels of IGF-II. These data suggest that the effects of increased IGF-II in BWS may, in part, be mediated through a decrease in p57(kip2) gene expression.  相似文献   

4.
We have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19/insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor. Maternal inheritance of the deletion is associated with IGF2 loss of imprinting and up-regulation of IGF2 mRNA. However, in at least one affected family member a second genetic lesion (a duplication of maternal 11p15) was identified and accompanied by a further increase in IGF2 mRNA levels 35-fold higher than control values. Our results suggest that the combined effects of the H19/IGF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS.  相似文献   

5.
Context The MEN1 syndrome is associated with parathyroid, pancreatic and pituitary tumours and is caused by mutations in the MEN1 gene. In general, there is no genotype–phenotype correlation. Objectives To characterize a large family with MEN1 with aggressive tumour behaviour: malignant pancreatic endocrine tumours were present in five affected subjects and were the presenting features in three subjects. Design The coding region of MEN1 was sequenced. Gene copy number analysis was performed by multiplex ligation‐dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). Loss of heterozygosity (LOH) in tumour tissue was studied by microsatellite analysis. Insulin‐like growth factor II (IGF‐II) and CDKN1C/p57KIP2 expression were investigated by immunohistochemistry. Results Mutation screening by conventional PCR sequence analysis of patients’ peripheral blood DNA did not reveal any mutation in the MEN1 or CDKN1B gene. Gene copy number analysis by MLPA and aCGH demonstrated a novel monoallelic deletion of 5 kb genomic DNA involving the MEN1 promoter and exons 1 and 2. LOH analysis indicated somatic deletion of maternal chromosome 11, including MEN1 locus (11q13) and 11p15 imprinting control regions (ICR). Methylation analysis of ICR demonstrated ICR1 hypermethylation and ICR2 hypomethylation in the tumour specimens. ICR1 and ICR2 control the expression of IGF‐2 and CDKN1C/p57KIP2, respectively. Immunohistochemistry showed that expression of paternally expressed IGF‐2 was up‐regulated and the maternally expressed CDKN1C/p57KIP2 was lost in the pancreatic endocrine tumours. Conclusions Gene copy number analysis by MLPA should be considered in patients with negative conventional mutation screening. Although large MEN1 deletion causes MEN1, disruption of imprinted CDKN1C/p57KIP2 and IGF‐2 gene expression may contribute to tumour progression and aggressive phenotype.  相似文献   

6.
Epigenetic mechanisms play a key role in regulating gene expression. One hallmark of these modifications is DNA methylation at cytosine residues of CpG dinucleotides in gene promoters, transposons and imprinting control regions. Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression depending on their parental origin. There are two critical time periods in epigenetic reprogramming: gametogenesis and early preimplantation development. Major reprogramming takes place in primordial germ cells in which parental imprints are erased and totipotency is restored [1]. Imprint marks are then and re-established during spermatogenesis or oogenesis, depending on sex [1], [2] and [3]. Upon fertilization, genome-wide demethylation occurs followed by a wave of de novo methylation, both of which are resisted by imprinted loci [4]. Epigenetic patterns are usually faithfully maintained during development. However, this maintenance sometimes fails, resulting in the disturbance of epigenetic patterns and human disorders. For example, two fetal growth disorders, the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes with opposite phenotypes, are caused by abnormal DNA methylation at the 11p15 imprinted locus [5], [6] and [7]: respectively loss of methylation at the Imprinting Region Center (ICR2) or gain of methylation at ICR1 in BWS and loss of methylation at ICR1 in SRS. Early embryogenesis is a critical time for epigenetic regulation, and this process is sensitive to environmental factors. The use of assisted reproductive technology (ART) has been shown to induce epigenetic alterations and to affect fetal growth and development [8], [9], [10] and [11]. In humans, several imprinting disorders, including BWS, occur at significantly higher frequencies in children conceived with the use of ART than in children conceived spontaneously [12] and [13]. The cause of these epigenetic imprinting disorders (following ART, unfertility causes, hormonal hyperstimulation, in vitro fertilization-IVF, Intracytoplasmic sperm injection-ICSI, micro-manipulation of gametes, exposure to culture medium, in vitro ovocyte maturation, time of transfer) remains unclear. However, recent data have shown that in patients with BWS or SRS, including those born following the use of ART, the DNA methylation defect involves imprinted loci other than 11p15 [14] and [15] (11p15 region: CTCF binding sites at ICR1, H19 and IGF2 DMRs, KCNQ1OT1 [ICR2], SNRPN [chromosome 15 q11-13], PEG/MEST1 [chromosome 7q31], IGF type2 receptor and ZAC1 [chromosome 6q26 et 6q24 respectively], DLK1/GTL2-IG-DMR [chromosome 14q32] and GNAS locus [chromosome 20q13.3]). This suggests that unfaithful maintenance of DNA methylation marks following fertilization involves the dysregulation of a trans-acting regulatory factor that could be altered by ART.  相似文献   

7.
Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors.  相似文献   

8.
It has been previously shown that adrenocortical tumors (ACT) in adults exhibit structural abnormalities in tumor DNA in approximately 30% of cases. These abnormalities involve chromosome 11p15 and include loss of heterozygosity, paternal isodisomy, and overexpression of the gene for insulin-like growth factor II (IGF2), correlating with DNA demethylation at this locus. It has been hypothesized that these events occur late in the tumorigenic process in adults and seem to correlate with a worse prognosis. We present 4 pediatric cases of ACT diagnosed at 2.5 yr, 10 months, 12 yr, and 2.2 yr. All 4 patients presented with virilization, and 1 patient also showed signs and symptoms of glucocorticoid excess. The youngest patient's maternal aunt had surgical excision of a more than 15-cm ACT 18 yr previously, but the aunt is doing well at age 23 yr. They all had surgical removal of their tumors. The 2.5-yr-old child also received chemotherapy and radiotherapy because of capsular rupture and, after 3 local recurrences, died 3.3 yr after initial presentation. We investigated all 4 tumors for chromosome 11 structural abnormalities (11p15.5 to 11q23), IGF2 and H19 expression by competitive RT-PCR analysis, and IGF2 methylation patterns by Southern analysis. All 4 tumors (100%) showed a combination of structural abnormalities at the 11p15 locus with mosaic loss of heterozygosity involving 11p. All tumors also had significantly increased IGF2 messenger ribonucleic acid levels relative to normal adrenal (up to 36-fold) and significant IGF2 demethylation (mean, 87%). H19 messenger ribonucleic acid levels were undetectable in 3 of 4 tumors, explained in part by mosaic loss of the actively expressed maternal allele for this imprinted gene. By immunohistochemistry we were able to confirm increased IGF-II peptide levels within the tumor tissue in 10 pediatric patients, including the 4 patients described above. Concomitantly, we also observed nuclear accumulation of p53, suggesting somatic mutations. For the 10-month-old patient, sequencing revealed a p53 germline mutation. We therefore conclude that in pediatric ACT, structural abnormalities of tumor DNA and IGF2 overexpression as well as p53 mutations are very common and are therefore less useful for prognosis than in adults. Our findings support the theory that pediatric ACT, whose IGF2 expression and steroidogenesis evoke the phenotype of the fetal adrenal cortex, may arise because of defective apoptosis.  相似文献   

9.
Maternal loss of heterozygosity (LOH) of the 11p15 region and overexpression of the insulin-like growth factor (IGF)-II gene are associated with the malignant phenotype in sporadic adrenocortical tumors. In the imprinted 11p15 region, the p57KIP2 gene is maternally expressed and encodes a cyclin-dependent kinase (CDK) inhibitor involved in G1/S phase of the cell cycle. We hypothesized that maternal LOH in malignant adrenocortical tumors could be responsible for loss of p57KIP2 gene expression and, thus, could favor progression through the cell cycle. We investigated 3 normal adrenals, 31 adrenocortical tumors [11 tumors with normal expression of the IGF-II gene (mainly benign) and 20 with IGF-II gene overexpression (mainly malignant)], and the human adrenocortical tumor cell line NCI H295R for expression of the p57KIP2 gene, G1 cyclins (cyclin D2 and E) and G1 CDK (CDK2, CDK3 and CDK4) protein contents and for kinase activity of G1 cyclin-CDK complexes. The expression of p57KIP2, G1 cyclins, and G1 CDKs in benign tumors was similar to that in normal adrenal tissues, as were kinase activities of G1 cyclin-CDK complexes. By contrast, abrogation of the p57KIP2 gene expression and increased expression of G1 cyclins (cyclin E) and G1 CDKs (CDK2 and CDK4) were associated with high activity of G1 cyclin-CDK complexes in malignant tumors and in the H295R cell line. These data suggest that the p57KIP2 gene might act as a tumor suppressor gene in adrenocortical tumors. Maternal LOH with duplication of the paternal allele or pathological functional imprinting of the 11p15 region are responsible for loss of expression of the p57KIP2 gene and increased expression of the IGF-II gene. Consequently, both events favor cell proliferation in malignant adrenocortical tumors.  相似文献   

10.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) result from the loss of function of imprinted genes in human chromosome 15q11-q13. The central part of mouse chromosome 7 is homologous to human 15q11-q13, with conservation of both gene order and imprinted features. We report here the characterization of a transgene insertion (Epstein-Barr virus Latent Membrane Protein 2A, LMP2A) into mouse chromosome 7C, which has resulted in mouse models for PWS and AS dependent on the sex of the transmitting parent. Epigenotype (allelic expression and DNA methylation) and fluorescence in situ hybridization analyses indicate that the transgene-induced mutation has generated a complete deletion of the PWS/AS-homologous region but has not deleted flanking loci. Because the intact chromosome 7, opposite the deleted homolog, maintains the correct imprint in somatic cells of PWS and AS mice and establishes the correct imprint in male and female germ cells of AS mice, homologous association and replication asynchrony are not part of the imprinting mechanism. This heritable-deletion mouse model will be particularly useful for the identification of the etiological genes and mechanisms, phenotypic basis, and investigation of therapeutic approaches for PWS.  相似文献   

11.
12.
BACKGROUND: AND OBJECTIVE: Non-islet-cell tumour hypoglycaemia (NICTH) is a rare disorder and has been explained by oversecretion of non mature IGF-II and dysregulation of the IGFs sytem. The mechanisms responsible for tumoural IGF-II overexpression in NICTH have been rarely studied. We report an extensive study of IGF-II and IGFBPs as well as chromosome 11p15 gene expression regulation in a case of a pleural fibrosarcoma in a 63-year-old patient presenting with NICTH. METHODS AND RESULTS: Abnormal high molecular weight precusor forms of IGF-II were present in the patient's serum and were associated with dramatic alterations in the circulating levels of IGF-I, IGF-II and their binding proteins, as well as an inhibition of the somatotroph axis. These alterations returned to normal following complete surgical removal of the tumour. No structural change in chromosome 11p15 region was apparent in the tumour. However, dysregulation of this imprinted region was demonstrated, leading to the loss of imprinting of the IGF-II gene associated with high IGF-II expression, and by contrast decreased level of expression of H19 and p57KIP2 genes. Recurrence of the tumour four years latter was not associated with hypoglycaemia or changes in the levels of circulating IGFs or IGFBPs, despite IGF-II overexpression by the tumour. This suggests that a large tumour volume is required to reach high enough levels to cause changes in the levels of circulating IGFs and IGFBPs, and to cause hypoglycaemia. CONCLUSION: These results suggest that a dysregulation of gene expression and imprinting of chromosome 11p15 region is associated with tumour growth and IGF-II overexpression in non-islet-cell tumour hypoglycaemia.  相似文献   

13.
Hatta  Y; Hirama  T; Miller  CW; Yamada  Y; Tomonaga  M; Koeffler  HP 《Blood》1995,85(10):2699-2704
Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type I (HTLV-I). Twenty to 40 years often elapse from viral infection to overt ATL, suggesting that other genetic events must occur to produce frank leukemia. The p15 (MTS2) and p16 (CDKN2/MTS1) genes located on chromosome 9p have been implicated as candidate tumor-suppressor genes in several types of tumors. We examined for alterations of these genes in ATL using Southern blot and polymerase chain reaction-single-strand conformation polymorphism analyses. Both p15 and p16 genes were homozygously deleted in 4 of 23 acute/lymphomatous ATL (17%). An additional 3 (13%) and 4 (17%) acute/lymphomatous samples had hemizygous deletions in at least one exon of p15 and p16, respectively. One of 14 chronic ATL samples had a homozygously deleted p16 gene and another had a hemizygous deletion of p16. Neither homozygous nor hemizygous deletions of the p15 gene were found in chronic ATL. In total, 10 of 37 (27%) ATL samples had loss of the p15 and/or p16 genes. No point mutations of the p15 and p16 genes were found. The ATL patient with a homozygously deleted p16 in the chronic phase rapidly progressed to acute ATL and died within 6 months of the initial diagnosis. One instructive patient had no detectable deletion of the p15 and p16 genes during the chronic phase of ATL but had a homozygous deletions of both genes when she progressed to acute ATL. Our results suggest an association of p15/p16 deletions with development of acute ATL.  相似文献   

14.
15.
16.
17.
18.
Deletions and rearrangement of CDKN2 in lymphoid malignancy   总被引:6,自引:2,他引:6  
Recurrent abnormalities of the short arm of chromosome 9, including translocations and interstitial deletions, have been reported in both leukemia and lymphoma. The pathologic consequences of these abnormalities remain unknown. The cyclin-dependent kinase 4 inhibitor (CDKN2) gene, which maps to 9p21, has been implicated by the finding of a high frequency of biallelic deletions in leukemic cell lines. We have determined the incidence of structural abnormalities affecting CDKN2 by DNA blot in a panel of 231 cases of leukemia and lymphoma and 66 cell lines derived from patients with lymphoid malignancies with defined cytogenetic abnormalities. Structural alterations of CDKN2 were seen in 20 (8.3%) of all fresh cases and 10 (15.1%) of all cell lines. Biallelic CDKN2 deletions were seen in 11 of 53 (21%) cases of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). There was no association with any particular cytogenetic abnormality. Biallelic deletions were also found in high-grade and transformed non-Hodgkin's lymphoma (NHL) of both B- and T-cell lineages. In two cases of transformed NHL, analysis of sequential samples showed loss of CDKN2 with transformation. Neither deletions nor rearrangements of the CDKN2 gene were seen in any of the 119 leukemias of mature B or T cells analyzed. Biallelic deletions of CDKN2 were observed in 6 of 13 NHL cell lines. Three of the 6 cases had undergone transformation from low- to high-grade disease: in 2 of these cases it was possible to show that the CDKN2 deletions were present in fresh material from the patient and were therefore not an artifact of in vitro culture. Rearrangements of CDKN2 were seen in 2 cases (4%) of BCP-ALL, in 1 case of B-NHL, and in 1 Burkitt's lymphoma cell line and suggest the presence of a "hot spot" for recombination in the vicinity of the CDKN2 gene. These data indicate that the loss of CDKN2 expression may be involved in the pathogenesis of a subset of BCP-ALL, some high-grade NHL, and in the transformation of NHL from low- to high-grade disease. CDKN2 deletions and rearrangements occurred in the absence of detectable cytogenetic changes of chromosome 9p in 25 of 30 (83%) cases. Finally, of 10 cases of BCP-ALL that produced overt, transplantable leukemia in mice with severe combined immunodeficiency (SCID), seven showed biallelic CDKN2 deletions. In contrast, none of 11 cases that failed to engraft showed biallelic CDKN2 deletions. BCP-ALL cases that lack CDKN2 expression may have a particular propensity to grow in SCID mice.  相似文献   

19.
20.
Imprinting is an epigenetic modification leading to monoallelic expression of some genes, and disrupted imprinting is believed to be a barrier to human stem cell transplantation, based on studies that suggest that epigenetic marks are unstable in mouse embryonic germ (EG) and embryonic stem (ES) cells. However, stem cell imprinting has not previously been examined directly in humans. We found that three imprinted genes, TSSC5, H19, and SNRPN, show monoallelic expression in in vitro differentiated human EG-derived cells, and a fourth gene, IGF2, shows partially relaxed imprinting at a ratio from 4:1 to 5:1, comparable to that found in normal somatic cells. In addition, we found normal methylation of an imprinting control region (ICR) that regulates H19 and IGF2 imprinting, suggesting that imprinting may not be a significant epigenetic barrier to human EG cell transplantation. Finally, we were able to construct an in vitro mouse model of genomic imprinting, by generating EG cells from 8.5-day embryos of an interspecific cross, in which undifferentiated cells show biallelic expression and acquire preferential parental allele expression after differentiation. This model should allow experimental manipulation of epigenetic modifications of cultured EG cells that may not be possible in human stem cell studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号