首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunotherapeutic monoclonal antibodies (mAbs) can be defined as those that exert their functions by tampering with immune system cell molecules, causing an enhancement of antitumor immune responses. Some of these antibodies are agonistic ligands for surface receptors involved in the activation of lymphocytes and/or antigen-presenting cells, whereas others are antagonists of mechanisms that normally limit the intensity of immune reactions. Several mAbs of this category have been described to display in vivo antitumor activity in mouse models. Only anti-CTLA-4 (CD152) mAb has entered clinical trials, but the preclinical effects described for anti-CD40, anti-CD137 (4-1BB), anti-CD102 (intercellular adhesion molecule-2), and regulatory T cell-depleting mAbs should lead to their prompt clinical development. Their use in combination with immunizations against tumor antigens has been reported to be endowed with synergistic properties. This new group of antitumor agents holds promise for at least additive effects with conventional therapies of cancer and deserves intensive translational research.  相似文献   

2.
Choi BK  Kim YH  Kang WJ  Lee SK  Kim KH  Shin SM  Yokoyama WM  Kim TY  Kwon BS 《Cancer research》2007,67(18):8891-8899
Anti-4-1BB-mediated anticancer effects were potentiated by depletion of CD4+ cells in B16F10 melanoma-bearing C57BL/6 mice. Anti-4-1BB induced the expansion and differentiation of polyclonal tumor-specific CD8+ T cells into IFN-gamma-producing CD11c+CD8+ T cells. The CD4+ cell depletion was responsible for facilitating immune cell infiltration into tumor tissues and removing some regulatory barriers such as T regulatory and indoleamine-2,3-dioxygenase (IDO)+ dendritic cells. Both monoclonal antibodies (mAb) contributed to the efficient induction of MHC class I molecules on the tumor cells in vivo. The effectors that mediated the anti-4-1BB effect were NKG2D+KLRG1+CD11c+CD8+ T cells that accumulated preferentially in the tumor tissues. Blocking NKG2D reduced the therapeutic effect by 20% to 26%, which may indicate that NKG2D contributes partially to tumor killing by the differentiated CD8+ T cells. Our results indicate that the combination of the two mAbs, agonistic anti-4-1BB and depleting anti-CD4, results in enhanced production of efficient tumor-killing CTLs, facilitation of their infiltration, and production of a susceptible tumor microenvironment.  相似文献   

3.
May KF  Chen L  Zheng P  Liu Y 《Cancer research》2002,62(12):3459-3465
Anti-4-1BB monoclonal antibody (mAb) has been shown to induce antitumor immunity by a CD4/CD8-dependent mechanism, but its direct effect on tumor-specific CD8+ T cells in tumor rejection is unclear. Here we used transgenic CD8+ T cells against the unmutated tumor rejection antigen P1A to analyze whether this mAb can promote CD8+ T-cell function against large tumors in the absence of CD4+ T-helper cells. RAG-2(-/-) mice were challenged with P1A-expressing plasmacytoma J558. Once tumor size reached a diameter of 0.85-1.75 cm, mice were treated with P1A-specific CD8+ CTL (P1CTL) in conjunction with anti-4-1BB mAb or control IgG. All of the mice showed a partial regression of tumor, but mice treated with anti-4-1BB mAb exhibited markedly enhanced tumor rejection, delayed tumor progression, and prolonged survival. Correspondingly, we observed a substantial increase in the number of P1CTL in anti-4-1BB mAb-treated mice. Surprisingly, anti-4-1BB mAb did not accelerate division of the tumor-specific CD8+ T cells, and the increase in tumor-specific T-cell number was due to reduced activation-induced cell death. These results indicate that anti-4-1BB mAb can promote CD8+ T cell-mediated protection against large tumors in the absence of CD4+ T-cell help by promoting P1CTL survival without increasing initial clonal expansion.  相似文献   

4.
To improve the potential treatment strategies of incurable renal cell carcinoma (RCC), which is highly resistant to chemotherapy and radiotherapy, the present study established a combination therapy with immunostimulatory factor (ISTF) and anti-4-1BB monoclonal antibodies (mAbs) to augment the antitumor response in a murine RCC model. ISTF isolated from Actinobacillus actinomycetemcomitans stimulates macrophages, dendritic cells and B cells to produce IL-6, TNF-α, nitric oxide and major histocompatibility complex class II expression. 4-1BB (CD137) is expressed in activated immune cells, including activated T cells, and is a promising target for cancer immunotherapy. The administration of anti-4-1BB mAbs promoted antitumor immunity via enhancing CD11c+CD8+ T cells. The CD11c+CD8+ T cells were characterized by high killing activity and IFN-γ-producing ability, representing a phenotype of active effector cytotoxic T lymphocytes. The present study showed that combination therapy with ISTF and anti-4-1BB mAbs promoted partial tumor regression with established RCC, but monotherapy with ISTF or anti-4-1BB mAbs did not. These effects were speculated to be caused by the increase in CD11c+CD8+ T cells in the spleen and tumor, and IFN-γ production. These insights into the effector mechanisms of the combination of ISTF and anti-4-1BB mAbs may be useful for targeting incurable RCC.  相似文献   

5.
In weakly and poorly immunogenic tumor models, we examined the effects of stimulating CD137 (4-1BB) in vivo by administering anti-CD137 monoclonal antibody after tumor lysate-pulsed dendritic cell (TP-DC) vaccination. TP-DC subcutaneous vaccination induced a transient up-regulation of CD137 on T cells and natural killer (NK) cells within vaccine-primed lymph nodes (VPLNs). In established pulmonary and subcutaneous tumor models, anti-CD137 synergistically enhanced tumor regression after TP-DC vaccination. In the subcutaneous tumor model, the combined therapy resulted in improved survival. Combined therapy also resulted in improved local control of subcutaneous tumor after surgical resection. Anti-CD137 polarized the cytokine release of VPLNs and spleen cells in response to tumor antigen toward a type 1 (interferon-gamma) versus a type 2 (interleukin-4) profile. Cell depletion and the use of knockout animals identified that CD8(+), CD4(+), and NK cells were involved in the tumor rejection response and that CD8(+) cells had the major effector role. Anti-CD137 administration resulted in increased proliferation of adoptively transferred OT-1 CD8(+) T cells in the VPLNs of mice inoculated with B16-OVA TP-DCs. Polarization toward type 1 (interferon-gamma) versus type 2 (interleukin-4) was also observed with the OT-1 cells from VPLNs and spleen cells after anti-CD137 injections. This polarization effect was abrogated by the in vivo depletion of NK cells. These findings indicate that the adjuvant effect of anti-CD137 given in conjunction with TP-DC vaccination is associated with the polarization of T effector cells toward a type 1 response to tumor antigen and is mediated via NK cells.  相似文献   

6.
The involvement of two phenotypically different regulatory T cells in different stages of tumor growth was investigated. Treatment of BALB/c mice with anti-CD25 monoclonal antibody (mAb) (PC61), but not anti-CD4 mAb (GK1.5) before RL male 1 or Meth A inoculation caused tumor rejection. On the other hand, treatment of BALB/c mice with anti-CD4 mAb (GK1.5) but not anti-CD25 mAb (PC61) on day 6 after inoculation of the same tumors caused rejection. The findings suggest that CD4+CD25+ T cells downregulated the rejection response in the early stage of tumor growth. On the other hand, putative CD4+CD25- T cells downregulated the tumor rejection response in the late stage. Both CD4+CD25+ and putative CD4+CD25- T cells appeared to inhibit the efficient generation of cytotoxic T lymphocytes (CTL). The present study also demonstrated that the treatment of BALB/c mice with anti-CD25 mAb (PC61) at 4 or 6 weeks after 3-methylcholanthrene (3-MC) inoculation retarded tumor occurrence and prolonged survival.  相似文献   

7.
Kim YH  Choi BK  Kim KH  Kang SW  Kwon BS 《Cancer research》2008,68(18):7264-7269
Anti-4-1BB and cisplatin showed synergistic anticancer effects in the CT-26 colon carcinoma model, producing complete regression in >60% of mice with either preventive or therapeutic treatment. The tumor-free mice formed long-lasting CD8(+) T cell-dependent tumor-specific memory. Anti-4-1BB induced rapid repopulation of T and B cells from cisplatin-mediated lymphopenia and differentiation and expansion of IFN-gamma(+)CD11c(+)CD8(+) T cells. Cisplatin facilitated expansion of na?ve, effector, and memory CD8(+) T cells; combination therapy produced almost twice as many lymphoid cells as anti-4-1BB alone. Cisplatin increased 4-1BB on antigen-primed T cells and induced 4-1BB de novo on kidney tubular epithelium. Cross-linking of 4-1BB protected the T cells and kidney epithelium from cisplatin-mediated apoptosis by increasing expression of antiapoptotic molecules. Thus, cisplatin-induced 4-1BB provided a mechanism for amelioration of the lymphopenia and nephrotoxicity inherent in cisplatin treatment. We concluded that chemoimmunotherapy with anti-4-1BB and cisplatin is synergistic in tumor killing and prevention of organ-specific toxicity.  相似文献   

8.
Renal cell carcinoma (RCC), one of the most incurable malignancies, is highly resistant to chemotherapy and radiotherapy. Cytokine immunotherapy has been the standard approach, but the overall response rate is still very low. Administration of agonistic anti-4-1BB monoclonal antibody (mAb) has been shown to induce regression of several animal tumors but its effect on RCC is unknown. We show here that monotherapy with either anti-4-1BB mAb or the cytotoxic drug, 5-fluorouracil (5-FU), has little effect on established RCC, Renca tumors, but combination therapy with anti-4-1BB mAb and 5-FU eradicates the tumors in more than 70 % of mice. The regressing tumor tissues from mice receiving the combination therapy contained more apoptotic tumor cells and tumor infiltrating lymphocytes than tumor tissues from mice receiving 5-FU or anti-4-1BB mAb monotherapy. The number of lymphocytes in the spleens and tumor- draining lymph nodes (TDLNs) of the combination therapy mice was greatly increased compared to that of control or 5-FU monotherapy mice. Mice that had recovered due to the combination therapy rapidly rejected rechallenge with the tumor, pointing to the establishment of long-lasting tumor-specific memory. Our results indicate that targeting tumors with 5-FU, and immune cells with 4-1BB stimulation, could be a useful strategy for treating incurable RCC.  相似文献   

9.
PURPOSE: High-dose recombinant human interleukin-2 (IL-2) therapy is of clinical benefit in a subset of patients with advanced melanoma and renal cell cancer. Although IL-2 is well known as a T-cell growth factor, its potential in vivo effects on human immunoregulatory cell subsets are largely unexplored. EXPERIMENTAL DESIGN: Here, we studied the effects of high-dose IL-2 therapy on circulating dendritic cell subsets (DC), CD1d-reactive invariant natural killer T cells (iNKT), and CD4(+)CD25(+) regulatory-type T cells. RESULTS: The frequency of both circulating myeloid DC1 and plasmacytoid DC decreased during high-dose IL-2 treatment. Of these, only a significant fraction of myeloid DC expressed CD1d. Although the proportion of Th1-type CD4(-) iNKT increased, similarly to DC subsets, the total frequency of iNKT decreased during high-dose IL-2 treatment. In contrast, the frequency of CD4(+)CD25(+) T cells, including CD4(+)Foxp3(+) T cells, which have been reported to suppress antitumor immune responses, increased during high-dose IL-2 therapy. However, there was little, if any, change of expression of GITR, CD30, or CTLA-4 on CD4(+)CD25(+) T cells in response to IL-2. Functionally, patient CD25(+) T cells at their peak level (immediately after the first cycle of high-dose IL-2) were less suppressive than healthy donor CD25(+) T cells and mostly failed to Th2 polarize iNKT. CONCLUSIONS: Our data show that there are reciprocal quantitative and qualitative alterations of immunoregulatory cell subsets with opposing functions during treatment with high-dose IL-2, some of which may compromise the establishment of effective antitumor immune responses.  相似文献   

10.
NKT cells, a novel murine lymphoid lineage bearing an invariant T cell receptor encoded by V alpha 14 and J alpha 281 gene segments, recognize a specific ligand glycolipid, alpha-galactosylceramide (alpha-GalCer) in a CD1d-dependent manner. Recent research has revealed that activated V alpha 14 NKT cells have dramatic antitumor effects against a wide variety of tumor cell lines in vivo and in vitro. Here, we demonstrate strong in vivo antitumor effects brought about by treatment with alpha-GalCer-pulsed dendritic cells in comparison with in vitro-activated V alpha 14 NKT cells. Furthermore, we show a significant expansion of endogenous V alpha 14 NKT cells in the lung following the administration of alpha-GalCer-pulsed dendritic cells. The feasibility of immunotherapy with alpha-GalCer-pulsed dendritic cells is discussed.  相似文献   

11.
Li Q  Pan PY  Gu P  Xu D  Chen SH 《Cancer research》2004,64(3):1130-1139
One of the mechanisms by which tumor cells evade the immune system is the lack of proper antigen-presenting cells. Improvement in host immunity against tumor cells can be achieved by promoting the differentiation of dendritic cells (DCs) from immature myeloid cells (Gr-1(+)Ly-6C(+)F4/80(+)) that accumulate in the bone marrow and lymphoid organs of mice with large tumor burdens. The enriched immature myeloid cells inhibit T-cell proliferation and tumor-specific T-cell response, which can be reversed by the differentiation of immature myeloid cells or depletion of F4/80(+) cells. Sorted Gr-1(+)/F4/80(+) immature myeloid cells differentiated into CD11c(+) cells that express CD80 and I-A/I-E (MHC class II) in the presence of recombinant murine granulocyte macrophage colony-stimulating factor (GM-CSF). Furthermore, intratumoral gene delivery of GM-CSF not only promoted the differentiation of carboxyfluoroscein succinimidyl ester-labeled immature myeloid cells into CD11c(+) cells with the characteristics of mature DCs (CD80(+), I-A/I-E(+)) but also enhanced innate natural killer and adaptive cytolytic T-cell activities in mice treated with interleukin (IL)-12 and anti-4-1BB combination therapy. More importantly, intratumoral delivery of GM-CSF and IL-12 genes in combination with 4-1BB costimulation greatly improved the long-term survival rate of mice bearing large tumors and eradicated the untreated existing hepatic tumor. The results suggest that inducing the maturation of immature myeloid cells, thus preventing their inhibitory activity and enhancing their antigen-presenting capability, by GM-CSF gene therapy is a critically important step in the development of effective antitumor responses in hosts with advanced tumors.  相似文献   

12.
The involvement of two phenotypically different regulatory T cells in different stages of tumor growth was investigated. Treatment of BALB/c mice with anti-CD25 monoclonal antibody (mAb) (PC61), but not anti-CD4 mAb (GK1.5) before RL male 1 or Meth A inoculation caused tumor rejection. On the other hand, treatment of BALB/c mice with anti-CD4 mAb (GK1.5) but not anti-CD25 mAb (PC61) on day 6 after inoculation of the same tumors caused rejection. The findings suggest that CD4+CD25+ T cells downregulated the rejection response in the early stage of tumor growth. On the other hand, putative CD4+CD25 T cells downregulated the tumor rejection response in the late stage. Both CD4+CD25+ and putative CD4+CD25-T cells appeared to inhibit the efficient generation of cytotoxic T lymphocytes (CTL). The present study also demonstrated that the treatment of BALB/c mice with anti-CD25 mAb (PC61) at 4 or 6 weeks after 3–methylcholanthrene (3–MC) inoculation retarded tumor occurrence and prolonged survival.  相似文献   

13.
Monoclonal antibody (mAb) therapy against tumor antigens expressed on the tumor surface is associated with clinical benefit. However, many tumor antigens are intracellular molecules that generally would not be considered suitable targets for mAb therapy. In this study, we provide evidence challenging this view through an investigation of the efficacy of mAb directed against NY-ESO-1, a widely expressed immunogen in human tumors that is expressed intracellularly rather than on the surface of cells. On their own, NY-ESO-1 mAb could neither augment antigen-specific CD8(+) T-cell induction nor cause tumor eradication. To facilitate mAb access to intracellular target molecules, we combined anti-NY-ESO-1 mAb with anticancer drugs to accentuate the release of intracellular NY-ESO-1 from dying tumor cells. Strikingly, combination therapy induced a strong antitumor effect that was accompanied by the development of NY-ESO-1-specific effector/memory CD8(+) T cells that were not elicited by single treatments alone. The combinatorial effect was also associated with upregulation of maturation markers on dendritic cells, consistent with the organization of an effective antitumor T-cell response. Administration of Fc-depleted F(ab) mAb or combination treatment in Fcγ receptor-deficient host mice abolished the therapeutic effect. Together, our findings show that intracellular tumor antigens can be captured by mAbs and engaged in an efficient induction of CD8(+) T-cell responses, greatly expanding the possible use of mAb for passive cancer immunotherapy.  相似文献   

14.
Using murine tumor-draining lymph node (TDLN) cells, we investigated the polarization effect of 4-1BB (CD137) during CD28 costimulation in generating antitumor T cells. Costimulation of TDLN cells through the newly induced 4-1BB molecules, CD3, and CD28 using monoclonal antibodies significantly enhanced cell proliferation. The greater cell yield with 4-1BB signaling appeared to be related to the inhibition of activation-induced cell death. Activation of TDLN cells through 4-1BB in addition to CD3/CD28 signaling shifted T-cell responses toward a type 1 cytokine pattern because 4-1BB ligation plus CD3/CD28 stimulation significantly augmented type 1 cytokine (e.g., IFN-gamma) and granulocyte macrophage colony-stimulating factor secretion. By contrast, type 2 cytokine (e.g., interleukin 10) secretion by the activated TDLN cells was significantly reduced. The in vivo antitumor reactivity of TDLN cells activated through 4-1BB in conjunction with CD3/CD28 pathways was examined using an adoptive immunotherapy model. The number of pulmonary metastases was significantly reduced and survival was prolonged after the transfer of anti-CD3/anti-CD28/anti-4-1BB-activated TDLN cells compared with an equivalent number of cells activated without anti-4-1BB. The antitumor effect through 4-1BB involvement during CD28 costimulation was dependent on IFN-gamma production and abrogated after IFN-gamma neutralization. By contrast, interleukin 10 neutralization resulted in significantly enhanced tumor regression. These results indicate that costimulation of TDLN cells through newly induced 4-1BB and CD3/CD28 signaling can significantly increase antitumor reactivity by shifting T-cell responses toward a type 1 cytokine pattern while concomitantly decreasing type 2 responses.  相似文献   

15.
One new approach to cancer therapy is based on the adoptive transfer of tumor-specific cytotoxic T cells and anti-CD25 antibodies. In the present study, CD8+ and IFN-gamma secreting T lymphocytes (CTLs) were enriched as tumor-specific cytotoxic T cells from spleen lymphocytes of mice bearing the Renca tumor (a murine renal carcinoma line originating from a BALB/c mouse) after stimulation with tumor cells. An anti-CD25 IL-2Ralpha(anti-CD25) mAb from hybridoma PC61 was used for depletion for CD4(+)CD25(+) regulatory T (Treg) cells. Treatment-efficacy for tumor-bearing mice was compared using 4 systems: 1, whole spleen lymphocytes stimulated with tumor cells in vitro from tumor-bearing mice; 2, CTLs; 3, anti-CD25 mAbs; 4, CTLs and anti-CD25 mAbs. At the 50th day after tumor inoculation, in the group which received anti-CD25 mAb for depletion of T cells and inoculation of CTLs, tumors had disappeared and no re-growth was observed. In contrast, all mice of the non-treated and other three groups, treated with whole spleen cells alone, CTLs alone and anti-CD25 mAb alone, had died. These results showed that a combination of Treg cell-depletion using anti-CD25 mAbs and CTL administration is a feasible approach for treatment of cancers which warrants further exploration in the clinical setting.  相似文献   

16.
CD1d-restricted natural killer T (NKT) cells play important regulatory roles in various immune responses. NKT cell-derived T helper (Th) 1 cytokines are important in the induction of antitumor immune responses in mice. Because the CD1d-restricted Valpha24(+) Vbeta11(+) NKT cell population in cancer patients is decreased both in size and in its capacity to secrete IFN-gamma, therapeutic strategies based on reconstitution of type 1 polarized Valpha24(+) Vbeta11(+) NKT cells merit additional investigation. Here, we report the simultaneous strong expansion and type 1 polarization of human invariant Valpha24(+) Vbeta11(+) NKT cells using alpha-galactosylceramide-loaded type 1 dendritic cells and interleukin 15. Type 1 polarized Valpha24(+) Vbeta11(+) NKT cells produced high levels of IFN-gamma, tumor necrosis factor alpha, and granulocyte macrophage colony-stimulating factor, and induced strong cytotoxicity in Jurkat cells in an alpha-galactosylceramide-dependent manner. Importantly, the cytokine profile of Valpha24(+) Vbeta11(+) NKT cells that were initially expanded under Th2 polarizing conditions could be reversed to a Th1 cytokine profile, indicating the plasticity of the cytokine profile of the human adult Valpha24(+) Vbeta11(+) NKT cell population.  相似文献   

17.
Combination antibody-based cancer immunotherapy   总被引:1,自引:0,他引:1  
Takeda K  Okumura K  Smyth MJ 《Cancer science》2007,98(9):1297-1302
It is now commonly recognized that tumor-targeting monoclonal antibodies (mAb) demonstrate significant therapeutic effects in cancer patients. Multiple effector mechanisms are involved in the primary response; however, the induction of tumor-specific immunity has sometimes been a desired outcome and in some cases has contributed to the success of mAb-based therapy. Initiating the antitumor immune response by creating a tumor antigen supply from dying (apoptotic) tumor cells is a goal of tumor-targeting mAb therapy, and ideally a sufficiently immunogenic tumor cell death might provide a platform on which combination immunotherapies can be based. In this review, the authors discuss the possible utility and pitfalls of using such a therapy, which combines tumor cell death with immune activation therapy. The ideas are largely based on the observation that three-mAb (anti-DR5 mAb, anti-CD40 mAb, and anti-CD137 mAb [trimAb]) therapy has been shown to be very effective in a number of mouse experimental tumor models. The authors believe that this rational activation and inhibition of key points in the immune response can be an effective strategy to apply in human cancer patients.  相似文献   

18.
PURPOSE: We developed an effective immunotherapy, which could induce antitumor immune responses against shared and unique tumor antigens expressed in autologous tumors. EXPERIMENTAL DESIGN: Intratumoral administration of dendritic cells is one of the individualized immunotherapies; however, the antitumor activity is relatively weak. In this study, we attempted to enhance the antitumor efficacy of the i.t. dendritic cell administration by combining dendritic cells stimulated with Bacillus Calmette-Guerin cell wall skeleton (BCG-CWS) additionally with cryoablative pretreatment of tumors and analyzed the therapeutic mechanisms. RESULTS: These two modifications (cryoablation of tumors and BCG-CWS stimulation of dendritic cells) significantly increases the antitumor effect on both the treated tumor and the untreated tumor, which was distant at the opposite side, in a bilateral s.c. murine CT26 colon cancer model. Further analysis of the augmented antitumor effects revealed that the cryoablative pretreatment enhances the uptake of tumor antigens by the introduced dendritic cells, resulting in the induction of tumor-specific CD8(+) T cells responsible for the in vivo tumor regression of both treated and remote untreated tumors. This novel combination i.t. dendritic cell immunotherapy was effective against well-established large tumors. The antitumor efficacy was further enhanced by depletion of CD4(+)CD25(+)FoxP3(+) regulatory T cells. CONCLUSIONS: This novel dendritic cell immunotherapy with i.t. administration of BCG-CWS-treated dendritic cells following tumor cryoablation could be used for the therapy of cancer patients with multiple metastases.  相似文献   

19.
4-1BB is an inducible receptor-like protein expressed rapidly by both CD4 and CD8 T-cells after activation. 4-1BB cross-linking, either by binding to 4-1BBL or by antibody ligation, delivers a costimulatory signal to enhance T-cell activation and proliferation. Previous studies have demonstrated that the administration of 4-1BB monoclonal antibodies (mAbs) induces antitumor immune responses. In the current study using several murine tumors, we examined the systemic effects of 4-1BB mAb on the growth of s.c., intracranial (i.c.), and pulmonary metastases. In addition, the effects of 4-1BB mAb on the generation of antitumor effector T cells were examined. Treatment of 3-day i.c. MCA 205 sarcoma and GL261 glioma with the antibody resulted in prolongation of survival and cure of disease in some mice, whereas only minimal therapeutic effects were observed in established s.c. and pulmonary tumors. No antitumor effects against the poorly immunogenic B16/D5 melanoma were observed. Interestingly, successful treatment of i.c. tumors induced concomitant regression of s.c. tumors. Experiments using severe combined immunodeficient mice and mice depleted of either CD4 or CD8 T cells demonstrated T-cell dependence of the antitumor effects. For generation of effector T cells in the tumor-draining lymph nodes (LNs), administration of 4-1BB mAb had adverse effects, despite the apparent hypertrophy of the LNs. During in vitro activation of tumor-draining LN T cells with anti-CD3 and interleukin 2, the 4-1BB mAb augmented proliferation, resulting in an increase in CD8 T cells. However, they were less therapeutic than not treated LN cells. In adoptive immunotherapy, the coadministration of 4-1BB mAb enhanced the therapeutic efficacy. These results thus demonstrate the limits and potential advantages of 4-1BB antibody interactions with antitumor T cells in vivo and in vitro and suggest that therapeutic interactions of the antibody may be used in a variety of immunotherapeutic approaches.  相似文献   

20.
NKT cells, a novel murine lymphoid lineage bearing an invariant T cell receptor encoded by Vα14 and Jα281 gene segments, recognize a specific ligand glycolipid, α-galactosylceramide (α-GalCer) in a CDld-dependent manner. Recent research has revealed that activated Vα14 NKT cells have dramatic antitumor effects against a wide variety of tumor cell lines in vivo and in vitro. Here, we demonstrate strong in vivo antitumor effects brought about by treatment with α-GalCer-pulsed dendritic cells in comparison with in vitro -activated Vα14 NKT cells. Furthermore, we show a significant expansion of endogenous Vα14 NKT cells in the lung following the administration of α-GalCer-pulsed dendritic cells. The feasibility of immunotherapy with α-GalCer-pulsed dendritic cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号