首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical properties of brain somatostatin receptors   总被引:7,自引:0,他引:7  
The physical properties of brain and pituitary somatostatin receptors were characterized using photocrosslinking techniques. Somatostatin receptors in rat corpus striatum and anterior pituitary membranes were covalently bound to the non-reducible somatostatin analog, [125I]CGP 23996, using the crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate and ultraviolet light. In striatal membranes, a protein of 60,000 mol. wt was labeled by [125I]CGP 23996. The binding was potently inhibited by somatostatin analogs but not by other biologically active peptides. The labeling of the 60,000 mol. wt protein by [125I]CGP 23996 was diminished by guanine triphosphate gamma thiol, which is consistent with the labeling of a somatostatin receptor coupled to guanine triphosphate binding proteins. The migration of the [125I]CGP 23996 labeled 60,000 mol. wt protein in native sodium dodecyl sulfate-gels was not affected by the reducing agent dithiothreitol, indicating that there is a general lack of disulfide bridges in the striatal somatostatin receptor. The striatal somatostatin receptor was solubilized with the detergent 3-[(3-cholamidopropyl)-dimethylaminoio]-1-propanesulfonate and specifically bound to the lectin wheat germ agglutinin, suggesting that the striatal somatostatin receptor is a glycoprotein. [125I]CGP 23996 also labeled a 60,000 mol. wt protein in anterior pituitary membranes. The characteristics of [125I]CGP 23996 binding to anterior pituitary membranes were consistent with the labeling of a somatostatin receptor. Interestingly, a comparison of the [125I]CGP 23996 labeled material from striatal and anterior pituitary membranes by two-dimensional polyacrylamide gel electrophoresis revealed the presence of several striatal somatostatin receptors of varying charge (pI values between 6 and 6.5) but only a single pituitary receptor. These findings indicate that physical differences may exist between subtypes of somatostatin receptors.  相似文献   

2.
Adult rat cerebellar nuclei contain a single population of [125I][Leu8,D-Trp22,Tyr25]somatostatin-28 binding sites characterized as sst1 receptors. In the present study, we have investigated the evolution of somatostatin receptors in rat cerebellar nuclei during development by means of quantitative autoradiography on tissue sections. The binding of [125I][Leu8,D-Trp22,Tyr25]somatostatin-28, observed in the primordium of the medial cerebellar nuclei at embryonic day 17, reached a maximum at postnatal day 7 or 10 in the different nuclei. Thereafter, the density of binding sites gradually decreased to the adult level. Competition studies were performed using the somatostatin analogues CH-288 and MK-678 as specific sst1 and sst2 ligands, respectively. Partial inhibition of the radioligand binding by CH-288 and MK-678 revealed the presence of a predominant population of sst1 from embryonic day 19-28 day postnatal and a minor population of sst2 receptors. The use of [125I]MK-678 as a radioligand confirmed the presence of a transient population of sst2 receptors, suggesting that somatostatin could act on rat cerebellar nuclei via sst1 and/or sst2 receptors during development.  相似文献   

3.
The neuropeptide somatostatin (SRIF) is a neurotransmitter in the brain that exerts physiological actions including the modulation of Ca2+ and K+ conductances, neuronal cell firing, neurotransmitter release, and certain behaviors such as locomotion and cognitive functions. SRIF induces its biological effects by interacting with cell surface receptors. Recent studies have revealed that subtypes of SRIF receptors exist in the brain and other tissues. The SRIF1 receptor can be distinguished by its high affinity for the agonist MK 678, is coupled to G proteins, and mediates the stimulatory effects of SRIF on a delayed rectifier K+ current in brain neurons. Furthermore, MK 678, when applied to the nucleus accumbens, evokes locomotor activity, and SRIF1 receptors in this brain region selectively mediate the stimulation of this behavioral response to SRIF. SRIF1 receptors are unevenly distributed in the brain, with high levels in the dentate gyrus of the hippocampus, the locus coeruleus, the neostriatum, and the inner layers of the cerebral cortex. This receptor subtype has characteristics similar to the recently cloned SRIF receptor, SSTR2. A second SRIF receptor subtype has been identified in the brain and is referred to as the SRIF2 receptor. It has no affinity for MK 678, can be selectively labeled with smaller structural analogs of the peptide CGP 23996, and has characteristics similar to the recently cloned receptor subtype SSTR1. SRIF2 receptors are not efficiently coupled to G proteins and have a distinct but overlapping distribution in brain with SRIF1 receptors. No clear biological function has been identified for SRIF2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Distribution of angiotensin II receptor subtypes in rat brain nuclei.   总被引:2,自引:0,他引:2  
Angiotensin II (ANG II) receptor subtypes in rat brain were characterized and quantified by competitive radioligand binding using [125I]Sar1 Ile8 angiotensin II ([125I]sarilesin) as a tracer and ANG II, sarilesin and the subtype selective ligands DuP 753 (AT1) and CGP 42112A (AT2) as competitors. The distribution of AT1 and AT2 receptors was determined in midbrain, brainstem, hypothalamus as well as in individual hypothalamic and periventricular nuclei. Whereas in midbrain and brainstem the AT1: AT2 ratio was 40%: 60% and 70%: 30% respectively, the AT1 receptors were by far predominant in hypothalamus and in the nuclei investigated. Interestingly, we found that approximately 25% of the ANG II receptors in hypothalamus did not bind DuP 753 even at 0.1 mM. These sites which bind CGP 42112A, ANG II and sarilesin may represent a third ANG II receptor subtype.  相似文献   

5.
M J Kadan  P R Hartig 《Neuroscience》1988,24(3):1089-1102
The sensitive serotonergic radioligand 2-[125I]lysergic acid diethylamide was used to study the distribution and pharmacological binding properties of serotonin receptors in Aplysia californica. The high specific activity of this radioligand allowed us to develop a methodology for the investigation of receptor binding properties and receptor distribution in a single ganglion. [125I]Lysergic acid diethylamide labels a population of high-affinity serotonergic sites (Kd = 0.41 nM) in Aplysia ganglia whose regional distribution matches that expected from previous electrophysiological and immunohistochemical studies. The properties of [125I]lysergic acid diethylamide binding sites in Aplysia are in general agreement with previous studies on [3H]lysergic acid diethylamide binding in this system but these sites differ from the serotonergic receptor subtypes described in the mammalian brain. Guanine nucleotides were shown to modulate agonist but not antagonist affinity for the [125I]lysergic acid diethylamide binding site in Aplysia, suggesting that this site is coupled to a G-protein. Images of serotonin receptor distribution in the Aplysia nervous system were obtained from autoradiograms of [125I]lysergic acid diethylamide binding. Serotonin receptors in ganglia tissue sections are located primarily within the neuropil. In addition, a subset of neuronal soma are specifically labeled by [125I]lysergic acid diethylamide. These studies indicate that [125I]lysergic acid diethylamide binds to sites in the Aplysia nervous system which display a regional distribution, pharmacological binding properties and evidence of coupling to a G-protein consistent with labeling of a subset of functional serotonin receptors. In addition, the techniques used in this investigation provide a general approach for rapidly characterizing the pharmacological properties and anatomical distribution of receptor binding sites in single invertebrate ganglia. Individual neurons containing these receptor subtypes can be identified by these methods and correlated with physiological responses in the same cell.  相似文献   

6.
In vitro autoradiography was used to visualize [125I]SCH 23982 binding sites in rat brain. Labeling was concentrated in the caudate-putamen, accumbens nucleus, olfactory tubercle, substantia nigra pars reticulata and the entopeduncular nucleus. [125I]SCH 23982 labels predominantly D-1 receptors but also labels 5-HT2 receptors in certain areas of the brain. These findings may relate to the distribution of dopamine's cerebral loci of action on D-1 receptors.  相似文献   

7.
J C Reubi  R Maurer 《Neuroscience》1985,15(4):1183-1193
Somatostatin receptor-binding sites have been visualized by autoradiography in the rat central nervous system and the pituitary using the [Tyr3] derivative of the stable octapeptide somatostatin analogue SMS 201-995, code named 204-090 (sequence in text), which has been shown to label specifically high-affinity somatostatin receptors in brain homogenates. Receptors are particularly concentrated in the deeper layers of the cerebral cortex and large areas of the limbic system are rich in somatostatin receptors, in particular the hippocampus (CA1, CA2, dentate gyrus), most amygdaloid nuclei, the medial habenula and the septum. Parts of the olfactory, visual and auditory, as well as visceral and somatic sensory systems are heavily labelled, in particular the anterior olfactory nucleus and tubercle, the superior and inferior colliculi, the nucleus of the solitary tract, the substantia gelatinosa of the spinal cord and the spinal trigeminal nucleus. It is of interest that the central grey and locus coeruleus are also substantially labelled with [125I]204-090. Striatum has moderate amounts of somatostatin receptors, distributed in a patchy and heterogeneous way. Cerebellum and substantia nigra are virtually devoid of somatostatin receptors. The described receptors are likely to represent the molecular target for a variety of pharmacological actions of somatostatin in the central nervous system and they emphasize the role played by somatostatin as a neuropeptide in this organ.  相似文献   

8.
The distribution of dopamine D1 receptors in the rat, labeled with [125I]SCH 23982, was studied using a quantitative in-vitro light-microscopic autoradiographic method. The binding of [125I]SCH 23982 to slide-mounted tissue sections and membrane preparations of prefrontal cortex was saturable, specific and of high affinity. Scatchard analysis revealed a Kd of 1.15 +/- 0.47 nM and Bmax of 8.76 +/- 0.34 fmol/mg tissue in prefrontal cortex membranes and a Kd of 1.27 +/- 0.14 nM and Bmax of 67.6 +/- 3.75 fmol/mg tissue in slide-mounted tissue sections at the level of the striatum. [125I]SCH 23982 was found to predominantly label D1 receptors, but a small fraction of the binding was to serotonin receptors. D1 receptors were found throughout the forebrain and were concentrated in the substantia nigra pars reticulata, accumbens nucleus, caudate putamen, entopeduncular nucleus, olfactory tubercle and the major island of Calleja. [125I]SCH 23982 binding to serotonin receptors was concentrated in the cortices, dorsal raphe, central gray, anterior hypothalamic area and the molecular cell layer of the cerebellum. Knowledge of the distribution of D1 receptors may increase our understanding of the role of D1 receptors in central nervous system dopaminergic function. Furthermore, data on the potential sites of interaction of [125I]SCH 23982 with serotonin receptors may help to understand the complex physiology and pharmacology of the primarily D1 selective compound.  相似文献   

9.
The topographical distribution of [alpha-125I]bungarotoxin [125I]BTX, [3H]nicotine ([3H]Nic), [3H]acetylcholine ([3H]ACh) (in the presence of atropine) binding in rat tel- and diencephalon was investigated using a quantitative receptor autoradiographical technique. With the [3H]ACh and [3H]Nic radioligands, a strong labelling was observed in various thalamic nuclei, including the medial habenula, a moderate labelling in different areas of the cortex cerebri, the nucleus caudatus putamen, the nucleus accumbens and tuberculum olfactorium and a uniform weak labelling in the hypothalamus. When the binding data for [3H]Nic were plotted against binding data for [3H]ACh in various brain nuclei, a significant correlation was obtained. Considering [125I]BTX, the strongest labelling was observed in the lateral mammillary nucleus and the hilus gyrus dentatus of the hippocampal formation. A weak labelling occurred in areas such as the nucleus causatus putamen, the thalamus and the cerebral cortex. No significant correlation was therefore obtained between the degree of [125I]BTX binding in various brain nuclei and the degree of binding observed with [3H]Nic or [3H]ACh. The present results underline the view that the high-affinity [3H]Nic and [3H]ACh binding sites label the same cholinergic nicotinic receptor binding site, while [125I]BTX labels another subpopulation of nicotinic cholinergic receptors, predominantly found in discrete areas of the hypothalamus and the limbic cortex.  相似文献   

10.
The selectivity of two new radioligands, [(125)I]YVP ([(125)I]YVPNLPQRF-NH(2)) and [(125)I]EYF ([(125)I]EYWSLAAPQRF-NH(2)), for neuropeptide FF (NPFF) receptor subtypes was determined using HEK293 cells expressing hNPFF(1) and CHO cells expressing hNPFF(2) receptors. Saturation binding and displacement experiments showed that [(125)I]YVP and [(125)I]EYF bound selectively with a very high affinity, K(D)=0.18 nM and 0.06 nM, to NPFF(1) and NPFF(2) receptors respectively.By using in vitro autoradiography with these radioligands and frog pancreatic polypeptide (PP) as selective unlabelled competitor of NPFF(2) binding sites, NPFF(1) and NPFF(2) receptor distribution was analyzed throughout the rat CNS.The highest densities of [(125)I]EYF binding sites were seen in the most external layers of the dorsal horn of the spinal cord, the parafascicular thalamic nucleus, laterodorsal thalamic nucleus and presubiculum of hippocampus. All specific binding of this radioligand was inhibited by 200 nM frog PP. The density of 0.1 nM [(125)I]YVP binding was much smaller in all brain areas and frog PP-insensitive binding sites (NPFF(1) receptor subtype) were detected in septal, thalamic and hypothalamic areas but were absent in the spinal cord.The restricted distribution of NPFF(1) receptors in the CNS supports its specific role in a limited number of neuronal functions. In contrast to the rat spinal cord where the NPFF(1) system is absent, there is no strict separation between NPFF(1) and NPFF(2) system at the supraspinal level.  相似文献   

11.
The ontogeny of somatostatin receptors in the rat brain has been studied by both membrane binding assays and in vitro receptor autoradiographic techniques. High levels of somatostatin binding sites were detected in brain of 15-day-old fetuses (E15). The pharmacological characterization of somatostatin binding sites and the regulatory effect of GTP on somatostatin binding at E15 suggest that somatostatin recognition sites correspond to authentic receptors. The values of maximal binding showed important variations throughout pre- and postnatal development. Globally, a marked increase in the total binding capacity was observed between E15 and postnatal day 8 (P8), with a transient fall at birth and P1. After P8, the concentration of somatostatin receptors progressively decreased and the weaning imposed at P21 accentuated the decline of receptor concentration. Although the density of somatostatin binding sites varied considerably, KD values did not change during brain development. Autoradiographic studies showed marked differences in the distribution of somatostatin receptors during ontogenesis. In the cortex, the cortical plate and the subplate zone appeared to contain high densities of binding sites from E15 to P1. However, the cortical layer which exhibited the higher labelling was the intermediate zone, located just beneath the subplate zone. On the contrary, the germinal epithelium bordering the lateral ventricle appeared virtually devoid of somatostatin binding sites. This laminar distribution of binding sites in the cortex disappeared from P4 to P8, in coincidence with the evolution of the underlying histological organization. At these stages, a homogeneous distribution was observed in almost all cortical layers, contrasting with the distribution of somatostatin receptors in the adult, which was restricted to layers IV-VI. In the cerebellar cortex, autoradiographic labelling was first seen at E15. After birth, the density of somatostatin receptors increased dramatically between P4 and P13, while, at P23, the labelling vanished in most lobes of the cerebellum. Taken together, these results show the early appearance of somatostatin receptors in the rat brain. The high density of somatostatin receptors observed in proliferative or pre-migratory areas suggests that somatostatin may be an important factor involved in the organization of the central nervous system.  相似文献   

12.
The selective dopamine D2 agonist [3H]N-0437 was used to label dopamine receptors in vitro in slide-mounted rat brain microtome sections. The characteristics of the binding of [3H]N-0437 to tissue section were similar to those observed previously in membrane preparations and indicated that this ligand labels sites with the properties of a dopamine D2 receptor. The regional distribution of these receptors was examined by autoradiography and quantified by computer-assisted microdensitometry. The highest densities of [3H]N-0437 sites were observed in the nucleus caudate-putamen, accumbens, olfactory tubercle, island of Calleja and the glomerular layer of the olfactory bulb. Lower densities of binding sites were seen in stratum griseum superficialis of the superior colliculus, substantia nigra pars compacta and area ventral tegmental, entorhinal cortex and in the molecular layer of the 9th and 10th lobules of the cerebellum. Very low densities were seen in the neocortex and hippocampal formation. The density of [3H]N-0437 binding sites in the rat striatum are higher than those observed with other dopamine D2 [3H]agonists and comparable to those seen with [3H]antagonists. [3H]N-0437 is a new useful tool for the anatomical localization of dopamine D2 receptors in brain.  相似文献   

13.
Quinuclidinyl benzilate (QNB) and its derivatives are being developed to investigate muscarinic receptor changes in vivo in Alzheimer's disease and dementia with Lewy bodies. This is the first study of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB binding in vitro in human brain. We have compared the in vitro binding of the muscarinic ligands [3H]pirenzepine and [3H]AF-DX 384, which have selectivity for the M1 and M2/M4 receptor subtypes, respectively, to the binding of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB. This will provide a guide to the interpretation of in vivo SPET images generated with [123I]-(R,R)-I-QNB and [123I]-(R,S)-I-QNB. Binding was investigated in striatum, globus pallidus, thalamus and cerebellum, and cingulate, insula, temporal and occipital cortical areas, which show different proportions of muscarinic receptor subtypes, in post-mortem brain from normal individuals. M1 receptors are of high density in cortex and striatum and are relatively low in the thalamus and cerebellum, while M4 receptors are mainly expressed in the striatum, and M2 receptors are most evident in the cerebellum and thalamus. [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB density distribution patterns were consistent with binding to both M1 and M4 receptors, with [125I]-(R,R)-I-QNB additionally binding to a non-cholinergic site not displaceable by atropine. This distribution can be exploited by in vivo imaging, developing ligands for both SPET and PET, to reveal muscarinic receptor changes in Alzheimer's disease and dementia with Lewy bodies during the disease process and following cholinergic therapy.  相似文献   

14.
Neuropeptide Y, one of the most abundant brain peptides, has been found to modulate several important biological functions via a family of G-protein coupled receptors. To investigate the localization of functional NPY receptor subtypes in the rat brain, we performed agonist-induced [35S]GTPgammaS autoradiography. The Y1/Y4/Y5 agonist Leu(31), Pro(34)-NPY increased [35S]GTPgammaS binding in several brain areas with a regional distribution consistent with that produced when labeling adjacent sections with [125I]-Leu(31), Pro(34)-PYY. The Y1 selective antagonist BIBP3226 antagonized the Leu(31), Pro(34)-NPY stimulated increase in [35S]GTPgammaS binding in all areas examined. The Y2 agonist C2-NPY stimulated [35S]GTPgamma binding in numerous brain areas with a regional distribution similar to the binding observed with [125I]-PYY 3-36. No increase in [35S]GTPgammaS binding above basal was observed in any brain area evaluated using Y4 and Y5 selective agonists. This study demonstrates abundant Y1 and Y2 receptor activation in the rat brain, while evidence for functional Y4 and Y5 receptors was not observed.  相似文献   

15.
The possible irreversible blockade of 5-hydroxytryptamine1 receptor subtypes 5-hydroxytryptamine1A, 5-hydroxytryptamine1B/5-hydroxytryptamine1D and 5-hydroxytryptamine1C by the chloramine 8-methoxy-2-(N-2'-chloropropyl,N-propyl)aminotetralin (8-MeO-2'-chloro-PAT) was investigated in rat brain sections by quantitative autoradiography using [3H]8-hydroxy-2-(di-n-propylamino)tetralin [( 3H]8-OH-DPAT), [3H]5-hydroxytryptamine, [125I]BH-8-MeO-N-PAT and [125I]cyanopindolol as radio-ligands. A marked reduction (-50% to -75%) of [3H]8-OH-DPAT and [125I]BH-8-MeO-N-PAT specific binding to 5-hydroxytryptamine1A sites in the hippocampus (CA1 area) and the dorsal raphe nucleus, and of [3H]5-hydroxytryptamine specific binding to 5-hydroxytryptamine1C sites in the choroid plexus was found in sections exposed to 1 microM 8-MeO-2'-chloro-PAT and then washed extensively. In contrast the specific binding of [3H]5-hydroxytryptamine to 5-hydroxytryptamine1B/5-hydroxytryptamine1D sites and of [125I]cyanopindolol to 5-hydroxytryptamine1B sites in the substantia nigra and dorsal subiculum remained unaltered by this treatment. Similarly [125I]cyanopindolol binding to beta-adrenergic receptors was not affected by 8-MeO-2'-chloro-PAT. Prior occupancy of 5-hydroxytryptamine1A sites by 10 microM 5-hydroxytryptamine or 8-OH-DPAT, and of 5-hydroxytryptamine1C sites by 10 microM 5-hydroxytryptamine prevented any subsequent blockade by 8-MeO-2'-chloro-PAT. These data indicate that 8-MeO-2'-chloro-PAT should be a useful alkylating agent for achieving selective irreversible blockade of central 5-hydroxytryptamine1A and 5-hydroxytryptamine1C receptors in vivo in the rat.  相似文献   

16.
The topographic distribution of specifically labeled neurotensin binding sites was examined by light microscopic radioautography in rat brain sections incubated with monoiodo [125I]Tyr3-neurotensin. Preliminary experiments indicated that under the present experimental conditions [125I]neurotensin specifically binds to a single apparent population of sites with a dissociation constant of 7.7 +/- 0.3 nM, and that fixation of the labeled sections with glutaraldehyde ensures regionally proportional retention of more than 70% of bound [125I]neurotensin molecules. High concentrations of [125I]neurotensin binding sites were detected in the olfactory bulb and tubercle, parts of the neocortex, the lateral septum, the diagonal band of Broca, the caudate putamen, the amygdala, the dentate gyrus, the anterior dorsal nucleus of the thalamus, the suprachiasmatic nucleus of the hypothalamus, the medial habenula, the zona incerta, the substantia nigra and the ventral tegmental area. In certain areas, such as in the diagonal band of Broca, the substantia innominata, the nucleus basalis and the pars compacta of the substantia nigra, discrete accumulations of silver grains were apparent over neuronal perikarya and their proximal dendrites. In most areas, however, the label appeared more or less uniformly distributed over nerve cell bodies and surrounding neuropil. In several instances, the labeling conformed with the distribution of cell bodies of origin and terminal aborizations of specific projection systems, suggesting that neurotensin receptors might be distributed both proximally and distally on the plasma membrane of certain neurons. Such putative "neurotensinoceptive" projection systems might involve part of the mesostriatal, mesocortical and mesolimbic dopamine systems, as well as the raphe-prosencephalic serotonin system and the habenulo-interpeduncular and basal forebrain-cortical cholinergic systems. Finally, areas of dense [125I]neurotensin labeling often corresponded to zones previously shown to exhibit intense acetylcholinesterase staining, suggesting the existence of a possible link between the expression of neurotensin binding sites and that of acetylcholinesterase in certain neuronal populations.  相似文献   

17.
The aim of this study was to label selectively and to map central vasopressin (AVP) and oxytocin (OT) binding sites in the common marmoset. [125I]VPA, a compound selective in rodents and human for the AVP V1a receptor, yielded the same labeling pattern as [3H]AVP, thus suggesting that most AVP receptors present in the marmoset brain are of the V1a subtype. Numerous areas exhibited AVP binding sites, among which the olfactory bulb, the accumbens nucleus, the bed nucleus of the stria terminalis, the hypothalamic suprachiasmatic, arcuate and ventromedial nuclei, the medial amygdaloid nucleus, the nucleus of the solitary tract and the cerebral cortex. Binding sites for [125I]OTA, a selective OT receptor antagonist in rat and human, were markedly less abundant than [125I]VPA ones, and, to a few exceptions, expressed in different areas. Neither AVP, nor OT binding sites were detected in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei identified by neurophysin immunoreactivity. Marked species-related differences were observed in the distribution of both AVP and OT binding sites. Altogether, our data provide a morphological basis to investigate the function of central AVP and OT in the marmoset.  相似文献   

18.
A1-adenosine receptors were identified in sections of rat brain and guinea pig kidney with the radioiodinated agonist 125I-N6-p-hydroxyphenylisopropyladenosine (125I-HPIA) using in vitro autoradiography. The affinities of adenosine receptor ligands in competing with 125I-HPIA binding to tissue sections were in good agreement with those found in membranes, and indicate that the binding site represents an A1-adenosine receptor. The distribution of 125I-HPIA binding sites in rat brain sections was similar to the pattern of [3H]N6-cyclohexyladenosine ([3H]CHA) binding sites determined previously, with highest densities in the hippocampus and dentate gyrus, the cerebellar cortex, some thalamic nuclei and certain layers of the cerebral cortex. In the guinea pig kidney 125I-HPIA labelled longitudinal structures in the medulla. This study demonstrates that 125I-HPIA allows the autoradiographic detection of A1 adenosine receptors in the brain and peripheral organs and has the advantage of short exposure times.  相似文献   

19.
Cholecystokinin (CCK) receptors were visualized autoradiographically using [125I]Bolton Hunter CCK8 ([125I]BHCCK8) in the fore- and midbrain of 3 monkeys rendered hemi-parkinsonian by unilateral intra-carotid infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). More specifically, CCK-A receptors were detected using [3H]MK-329 (devazepide), a peripheral-type (CCK-A) receptor antagonist. In the substantia nigra pars compacta, ipsilateral to the toxin infusion, where dopamine D2 receptors (labelled with [3H]sulpiride) were lost, there was a decrease in the binding of both [125I]BHCCK8 and [3H]MK-329. Binding of the two CCK ligands was also reduced in the ipsilateral nucleus accumbens and most medial part of the caudate nucleus, whereas 3H-sulpiride binding was increased in the lateral caudate nucleus and putamen. These results indicate that CCK-A receptors may be located on dopaminergic cells within the substantia nigra, which are lost in the parkinsonian brain, and may also be present on dopaminergic terminals within restricted regions of nigral/ventral tegmental area projection sites.  相似文献   

20.
The distribution and characteristics of [125I]Bolton Hunter-eledoisin binding sites in rat lumbar spinal cord were studied during postnatal development by in vitro receptor autoradiography. At three, six and 10 days of age, specific [125I]eledoisin binding was distributed throughout the dorsal and ventral horns of the spinal cord. In contrast, from day 24 onwards, specific binding of [125I]eledoisin was confined to superficial layers of the dorsal horn, with negligible amounts of specific binding in the ventral horn. [125I]Eledoisin binding to neonatal (three day) and adult (eight to 12 weeks) spinal cord sections was characterized using tachykinin agonists. In both dorsal and ventral horns of neonatal spinal cord, the rank order of potency of agonists indicated that the majority (64%) of specific [125I]eledoisin binding was to neurokinin-3 binding sites. The identity of the non-neurokinin-3 sites labelled by [125I]eledoisin remains to be determined. In adult rat spinal cord, [125I]eledoisin appeared to bind exclusively to neurokinin-3 binding sites. These results suggest that major changes take place in the localization of neurokinin-3 receptors during postnatal ontogeny of the rat spinal cord. These changes may reflect an important role for tachykinins in neuronal plasticity of the developing spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号