首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension.  相似文献   

2.
OBJECTIVE: NADPH oxidases are important sources of reactive oxygen species (ROS) in the vasculature. In phagocytic cells, the catalytic subunit of NADPH oxidase is a glycoprotein, gp91phox. However, vascular smooth muscle cells (VSMCs), which show prominent NADPH oxidase activity, lack gp91phox. Hence, we examined the role of Nox4, a gp91phox homologue, in superoxide production in mouse-cultured VSMCs. METHODS AND RESULTS: Incubation of VSMCs with NADPH increased ROS production whether detected by lucigenin-enhanced chemiluminescence or dichlorofluorescein. Superoxide production was inhibited by the NADPH oxidase inhibitors, diphenyleneiodonium and apocynin, but not by inhibitors of other potential sources of superoxide. In unstimulated VSMCs, phosphorothioate antisense oligonucleotides against Nox4 down-regulated mRNA expression of the subunit by 65% and attenuated superoxide production by 41% without affecting Nox1 expression. Interleukin-1beta (IL-beta) thrombin and platelet-derived growth factor (PDGF) also reduced Nox4 mRNA expression after 3 h without affecting Nox1 levels. Of these stimuli, only IL-beta reduced superoxide, but this effect was more rapid (< or =30 min) than its actions on Nox4. CONCLUSIONS: Under resting conditions, NADPH oxidase activity in VSMCs is largely dependent upon Nox4 expression. Proinflammatory mediators down-regulated Nox4 but did not affect Nox1 expression, so other factors must compensate to regulate superoxide production.  相似文献   

3.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced, in part, from NADPH oxidase in response to host invasion and tissue injury. Defects in NADPH oxidase impair host defense; however, the role of ROS and RNS in the response to tissue injury is not known. We addressed this issue by subjecting leukocyte oxidase (Nox2)-deficient (Nox2-/-) mice to arterial injury. Femoral artery injury was associated with increased Nox2 expression, ROS/RNS production, and oxidative protein and lipid modification in wild-type mice. In Nox2-/- mice, RNS-mediated protein oxidation, as monitored by protein nitrotyrosine content, was significantly diminished. This was accompanied by reduced neointimal proliferation, as monitored by intimal thickness and intimal/medial ratio, in Nox2-/- compared to wild-type mice. In addition, Nox2 deficiency led to reduced cellular proliferation and leukocyte accumulation. These data indicate that Nox2-mediated oxidant production has a requisite role in the response to tissue injury.  相似文献   

4.
BackgroundAging is associated with increased oxidative stress levels and impaired neovascularization following ischemia. Because Nox2-containing NADPH oxidase is a major source of ROS in the vasculature, we investigated its potential role for the modulation of ischemia-induced neovascularization in the context of aging.Methods and resultsHindlimb ischemia was surgically induced by femoral artery removal in young (2 months) and old (10 months) Nox2-deficient (Nox2?/?) and wild type mice. We found that Nox2 expression is increased by aging in ischemic muscles of wild type mice. This is associated with a significant reduction of blood flow recovery after ischemia in old compared to young mice at day 21 after surgery (Doppler flow ratios: 0.51 ± 0.05 vs. 0.72 ± 0.05; p < 0.05). We also demonstrate that capillary and arteriolar densities are significantly reduced in ischemic muscles of old animals, while oxidative stress levels are increased (nitrotyrosine immunostaining). Importantly, Nox2 deficiency reduces oxidative stress levels in ischemic tissues and restores blood flow recuperation and vascular densities in old animals. Endothelial progenitor cells (EPCs) have an important role for postnatal neovascularization. Here we show that the functional activities of EPCs (migration, adhesion to mature endothelial cells) are significantly impaired in old compared to young mice. However, Nox2 deficiency rescues EPC functional activities in old animals. We also demonstrate an age-dependent pathological increase of oxidative stress levels in EPCs (DHE, DCF-DA) that is not present in Nox2-deficient animals.ConclusionNox2-containing NADPH oxidase deficiency protects against age-dependent impairment of neovascularization. Potential mechanisms include reduced ROS generation in ischemic tissues and preserved angiogenic activities of EPCs.  相似文献   

5.
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phox-containing NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P<0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2- to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P<0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.  相似文献   

6.
Increased production of reactive oxygen species (ROS) is implicated in the development of left ventricular hypertrophy (LVH). Phagocyte-type NADPH oxidases are major cardiovascular sources of ROS, and recent data indicate a pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II (Ang II)-induced LVH. We investigated the role of this oxidase in pressure-overload LVH. gp91phox-/- mice and matched controls underwent chronic Ang II infusion or aortic constriction. Ang II-induced increases in NADPH oxidase activity, atrial natriuretic factor (ANF) expression, and cardiac mass were inhibited in gp91phox-/- mice, whereas aortic constriction-induced increases in cardiac mass and ANF expression were not inhibited. However, aortic constriction increased cardiac NADPH oxidase activity in both gp91phox-/- and wild-type mice. Myocardial expression of an alternative gp91phox isoform, Nox4, was upregulated after aortic constriction in gp91phox-/- mice. The antioxidant, N-acetyl-cysteine, inhibited pressure-overload-induced LVH in both gp91phox-/- and wild-type mice. These data suggest a differential response of the cardiac Nox isoforms, gp91phox and Nox4, to Ang II versus pressure overload.  相似文献   

7.
Our previous studies suggest that heme oxygenase (HO)-1 induction and/or subsequent bilirubin generation in endothelial cells may suppress superoxide generation of from reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. In this study, we examined the consequence of HO-1 induction in vivo on NADPH oxidase activity. Three doses of hemin (25 mg x kg(-1), IP, every 48 hours), with or without cotreatment with the HO inhibitor tin protoporphyrin-IX (15 mg x kg(-1), IP), were given to apolipoprotein E-deficient mice, which display vascular oxidative stress. Hemin treatment increased HO-1 expression and activity in aorta (undetectable at baseline) and kidney (by 3-fold) and significantly reduced both NADPH oxidase activity (by approximately 25% to 50%) and superoxide generation in situ. The increase in HO-1 activity and inhibition of NADPH oxidase activity by hemin were reversed by tin protoporphyrin-IX and were not associated with changes in Nox2 or Nox4 protein levels. Hemin also reduced plasma F(2)-isoprostane levels by 23%. The inhibition of NADPH oxidase activity by hemin in the aorta was mimicked by bilirubin in vitro (0.01 to 1 micromol/L). Bilirubin also concentration-dependently reduced NADPH oxidase-dependent superoxide production stimulated by angiotensin II in rat vascular smooth muscle cells and by phorbol 12-myristate 13-acetate in human neutrophil-like HL-60 cells. HO-1 overexpression by plasmid-mediated gene transfer in rat vascular smooth muscle cells decreased NADPH-stimulated superoxide production. Thus, systemic expression of HO-1 suppresses NADPH oxidase activity by mechanisms at least partly mediated by the bile pigment bilirubin, thereby reducing oxidative stress.  相似文献   

8.
9.
NADPH (nicotinamide adenine dinucleotide phosphate) oxidases are important sources of reactive oxygen species (ROS). In the vascular system, ROS can have both beneficial and detrimental effects. Under physiologic conditions, ROS are involved in signaling pathways that regulate vascular tone as well as cellular processes like proliferation, migration and differentiation. However, high doses of ROS, which are produced after induction or activation of NADPH oxidases in response to cardiovascular risk factors and inflammation, contribute to the development of endothelial dysfunction and vascular disease. In vascular cells, the NADPH oxidase isoforms Nox1, Nox2, Nox4, and Nox5 are expressed, which differ in their activity, response to stimuli, and the type of ROS released. This review focuses on the specific role of different NADPH oxidase isoforms in vascular physiology and their potential contributions to vascular diseases.  相似文献   

10.
Dammanahalli JK  Sun Z 《Endocrinology》2008,149(10):4979-4987
Endothelin (ET)-1 stimulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and increases superoxide production in some cells such as vascular smooth muscle cells. Here, we reported that ET1 inhibited NADPH oxidase activity, superoxide generation, and cell proliferation in human abdominal aortic endothelial cells (HAAECs) via the ETB1-Pyk2-Rac1-Nox1 pathway. Superoxide production was determined by assessing ethidium fluorescence using flow cytometry in HAAECs exposed to ET1 (10-30 nm) at different time intervals. ET1 significantly decreased superoxide production in HAAECs in the presence of NG-nitro-L-arginine methyl ester, indicating that ET1 suppressed superoxide generation independent of nitric oxide synthase. ET1 significantly attenuated NADPH oxidase activity and cell proliferation, which could be abolished by silence of Nox1 gene, suggesting that ET1-induced inhibition of NADPH oxidase activity was mediated by Nox1. Furthermore, RNA interference silence of ETB1 receptors significantly increased NADPH oxidase activity, and blocked the inhibitory effect of ET1 on NADPH oxidase activity. Activation of ETB1 receptors by ET1 suppressed protein phosphorylation of pyk2 (Y402) and Rac1, suggesting that ET1 inhibited NADPH oxidase activity via ETB1-Pyk2-Rac1 pathway. Indeed, inhibition of Pyk2 by AG-17 abolished ET1-induced suppression of NADPH oxidase activity. ET1 also attenuated angiotensin II-induced activation of NADPH oxidase and cell proliferation. This study demonstrated, for the first time, that ET1, via ETB1, inhibited NADPH oxidase activity in HAAECs by suppressing the Pyk2-Rac1-Nox1 pathway. This finding reveals a novel function of ETB1 receptors in regulating endothelial NADPH oxidase activity, superoxide production, and cell proliferation, opening a new avenue for understanding the role of ETB1 receptors in protecting endothelial cells.  相似文献   

11.
Excess production of superoxide anion in response to angiotensin II plays a central role in the transduction of signal molecules and the regulation of vascular tone. We examined the ability of insulin resistance to stimulate superoxide anion production and investigated the identity of the oxidases responsible for its production. Rats were fed diets containing 60% fructose (fructose-fed rats) or 60% starch (control rats) for 8 weeks. In aortic homogenates from fructose-fed rats, the superoxide anion generated in response to NAD(P)H was more than 2-fold higher than that of control rats. Pretreatment of the aorta from fructose-fed rats with inhibitors of NADPH oxidase significantly reduced superoxide anion production. In the isolated aorta, contraction induced by angiotensin II was more potent in fructose-fed rats compared with control rats. Losartan normalized blood pressure, NAD(P)H oxidase activity, endothelial function, and angiotensin II-induced vasoconstriction in fructose-fed rats. To elucidate the molecular mechanisms of the enhanced constrictor response to angiotensin II, expressions of angiotensin II receptor and subunits of NADPH oxidase were examined with the use of angiotensin II type 1a receptor knockout (AT1a KO) mice. Expression of AT1a receptor mRNA was enhanced in fructose-fed mice, whereas expression of either AT1b or AT2 was unaltered. In addition, protein expression of each subunit of NADPH oxidase was increased in fructose-fed mice, whereas the expression was significantly decreased in fructose-fed AT1a KO mice. The novel observation of insulin resistance-induced upregulation of AT1 receptor expression could explain the association of insulin resistance with endothelial dysfunction and hypertension.  相似文献   

12.
Oxidative stress is implicated in human diseases. Some of the oxidative pathways are harbored in the mitochondria. NAD(P)H oxidases have been identified not only in phagocytic but also in somatic cells. Nox4 is the most ubiquitous of these oxidases and is a major source of reactive oxygen species (ROS) in many cell types and in kidney tissue of diabetic animals. We generated specific Nox4 antibodies, and found that Nox4 localizes to mitochondria. (i) Immunoblot analysis in cultured mesangial cells and kidney cortex revealed that Nox4 is present in crude mitochondria, in mitochondria-enriched heavy fractions, and in purified mitochondria; (ii) immunofluorescence confocal microscopy also revealed that Nox4 localizes with the mitochondrial marker Mitotracker; and (iii) the mitochondrial localization prediction program MitoProt indicated that the probability score for Nox4 is identical to mitochondrial protein cytochrome c oxidase subunit IV. We also show that in purified mitochondria, siRNA-mediated knockdown of Nox4 significantly reduces NADPH oxidase activity in pure mitochondria and blocks glucose-induced mitochondrial superoxide generation. In a rat model of diabetes, mitochondrial Nox4 expression is increased in kidney cortex. Our data provide evidence that a functional Nox4 is present and regulated in mitochondria, indicating the existence of a previously undescribed source of ROS in this organelle.  相似文献   

13.
Endothelial dysfunction in vascular disease states is associated with reduced NO bioactivity and increased superoxide (O2*-) production. Some data suggest that an important mechanism underlying endothelial dysfunction is endothelial NO synthase (eNOS) uncoupling, whereby eNOS generates O2*- rather than NO, possibly because of a mismatch between eNOS protein and its cofactor tetrahydrobiopterin (BH4). However, the mechanistic relationship between BH4 availability and eNOS coupling in vivo remains undefined because no studies have investigated the regulation of eNOS by BH4 in the absence of vascular disease states that cause pathological oxidative stress through multiple mechanisms. We investigated the stoichiometry of BH4-eNOS interactions in vivo by crossing endothelial-targeted eNOS transgenic (eNOS-Tg) mice with mice overexpressing endothelial GTP cyclohydrolase 1 (GCH-Tg), the rate-limiting enzyme in BH4 synthesis. eNOS protein was increased 8-fold in eNOS-Tg and eNOS/GCH-Tg mice compared with wild type. The ratio of eNOS dimer:monomer was significantly reduced in aortas from eNOS-Tg mice compared with wild-type mice but restored to normal in eNOS/GCH-Tg mice. NO synthesis was elevated by 2-fold in GCH-Tg and eNOS-Tg mice but by 4-fold in eNOS/GCH-Tg mice compared with wild type. Aortic BH4 levels were elevated in GCH-Tg and maintained in eNOS/GCH-Tg mice but depleted in eNOS-Tg mice compared with wild type. Aortic and cardiac O2*- production was significantly increased in eNOS-Tg mice compared with wild type but was normalized after NOS inhibition with Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME), suggesting O2*- production by uncoupled eNOS. In contrast, in eNOS/GCH-Tg mice, O2*- production was similar to wild type, and L-NAME had no effect, indicating preserved eNOS coupling. These data indicate that eNOS coupling is directly related to eNOS-BH4 stoichiometry even in the absence of a vascular disease state. Endothelial BH4 availability is a pivotal regulator of eNOS activity and enzymatic coupling in vivo.  相似文献   

14.
BACKGROUND: Ghrelin is a novel peptide involved in the control of appetite, but its role in vascular pathologies remains to be elucidated. Ghrelin was shown to decrease blood pressure (BP) and improve endothelial function. Its plasma levels are correlated with BP in humans. Mechanisms of these effects are unknown. Because oxidative stress and increased superoxide production by NAD(P)H oxidases (Nox) are critical in the pathogenesis of hypertension, we aimed to study the effects of ghrelin on vascular superoxide production and NAD(P)H oxidase activity in spontaneously hypertensive rats (SHR). METHODS: Aortic superoxide production and NAD(P)H oxidase activity were measured using lucigenin (5 micromol/L) chemiluminescence. Aortas from Wistar-Kyoto rats (WKY) were used as control. Direct superoxide scavenging properties of ghrelin were tested using xanthine-xanthine oxidase system. RESULTS: Both basal superoxide production and vascular NADPH oxidase activity were significantly higher in aortas from SHR, than from WKY. Preincubation of aortic segments from SHR or WKY with ghrelin caused concentration-dependent (from 50 pg/mL to 5 ng/mL) decrease of basal superoxide production. Vascular NAD(P)H oxidase activity was inhibited by ghrelin, abolishing the difference between SHR and basal WKY. Ghrelin did not affect superoxide release from the in vitro xanthine-xanthine oxidase system, indicating lack of direct superoxide scavenging properties or inhibitory effects on xanthine oxidase in vitro. Nitric oxide synthase (NOS) inhibition, using N(omega)-nitro-L-arginine methyl ester (L-NAME), partially blunted the effects of ghrelin on NADPH oxidase activity indicating potential role of nitric oxide. CONCLUSIONS: Ghrelin inhibits vascular oxidative stress in SHR. This effect is likely related to the inhibition of vascular NAD(P)H oxidases.  相似文献   

15.
Reduced insulin sensitivity is characteristic of various pathological conditions such as type 2 diabetes mellitus and hypertension. Angiotensin II, acting through its angiotensin type 1 receptor, inhibits the actions of insulin in the vasculature which may lead to deleterious effects such as vascular inflammation, remodeling, endothelial dysfunction, and insulin resistance. In contrast, insulin normally exerts vasodilatory, antiinflammatory, and prosurvival actions. To explore the impact of angiotensin II on insulin signaling, NADPH oxidase-derived reactive oxygen species formation, vascular inflammation, apoptosis, and remodeling, we used transgenic TG(mRen2)27 (Ren2) rats, which harbor the mouse renin transgene and exhibits elevated tissue angiotensin II levels. Compared with Sprague-Dawley controls, Ren2 aortas exhibited greater NADPH oxidase activity, reactive oxygen species levels, C-reactive protein, tumor necrosis factor-alpha expression, apoptosis, and wall thickness, which were significantly attenuated by in vivo treatment with angiotensin type 1 receptor blockade (valsartan) or the superoxide dismutase/catalase mimetic (tempol). There was substantially diminished Akt and endothelial NO synthase activation in Ren2 aortas in response to in vivo insulin stimulation, and this was significantly improved by in vivo treatment with valsartan or tempol. In vivo treatment with valsartan, but not tempol, significantly reduced blood pressure in Ren2 rats. Further, there was reduced insulin induced Akt activation and increased tumor necrosis factor-alpha levels in vascular smooth muscle cells from Ren2 and Sprague-Dawley rats treated with angiotensin II, abnormalities that were abrogated by angiotensin type 1 receptor blockade with valsartan or antioxidant N-acetylcysteine. Collectively, these data suggest that increased angiotensin type 1 receptor/NADPH oxidase activation/reactive oxygen species contribute to vascular insulin resistance, endothelial dysfunction, apoptosis, and inflammation.  相似文献   

16.
The dorsomedial portion of the nucleus tractus solitarius (dmNTS) is the site of termination of baroreceptor and cardiorespiratory vagal afferents and plays a critical role in cardiovascular regulation. Angiotensin II (Ang II) is a powerful signaling molecule in dmNTS neurons and exerts some of its biological effects by modulating Ca(2+) currents via reactive oxygen species (ROS) derived from reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. We investigated whether a Nox2-containing NADPH oxidase is the source of the Ang II-induced ROS production and whether the signaling mechanisms of its activation require intracellular Ca(2+) or protein kinase C (PKC). Second-order dmNTS neurons were anterogradely labeled with 4-(4-[didecylamino]styryl)-N-methylpyridinium iodide transported from the vagus and isolated from the brain stem. ROS production was assessed in 4-(4-[didecylamino]styryl)-N-methylpyridinium iodide-positive dmNTS neurons using the fluorescent dye 6-carboxy-2',7'-dichlorodihydro-fluorescein di(acetoxymethyl ester). Ang II (3 to 2000 nmol/L) increased ROS production in dmNTS neurons (EC(50)=38.3 nmol/L). The effect was abolished by the ROS scavenger Mn (III) porphyrin 5,10,20-tetrakis (benzoic acid) porphyrin manganese (III), the Ang II type 1 receptor antagonist losartan, or the NADPH oxidase inhibitors apocynin or gp91ds-tat. Ang II failed to increase ROS production or to potentiate L-type Ca(2+) currents in dmNTS neurons of mice lacking Nox2. The PKC inhibitor GF109203X or depletion of intracellular Ca(2+) attenuated Ang II-elicited ROS production. We conclude that the powerful effects of Ang II on Ca(2+) currents in dmNTS neurons are mediated by PKC activation leading to ROS production via Nox2. Thus, a Nox2-containing NADPH oxidase is the critical link between Ang II and the enhancement of Ca(2+) currents that underlie the actions of Ang II on central autonomic regulation.  相似文献   

17.
Craige SM  Chen K  Pei Y  Li C  Huang X  Chen C  Shibata R  Sato K  Walsh K  Keaney JF 《Circulation》2011,124(6):731-740
BACKGROUND- Reactive oxygen species serve signaling functions in the vasculature, and hypoxia has been associated with increased reactive oxygen species production. NADPH oxidase 4 (Nox4) is a reactive oxygen species-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. METHODS AND RESULTS: Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the vascular endothelial cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hindlimb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by reactive oxygen species, we probed the effect of Nox4 on eNOS. In cultured endothelial cells overexpressing Nox4, we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4, we crossed our transgenic Nox4 mice with eNOS(-/-) mice. Aortas from these mice did not demonstrate enhanced aortic sprouting, and VECad-Nox4 mice on the eNOS(-/-) background did not demonstrate enhanced recovery from hindlimb ischemia. CONCLUSIONS: Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner.  相似文献   

18.
Aging is a major risk factor for carotid artery disease that may lead to stroke and dementia. Vascular effects associated with aging include increased vasomotor tone, as well as enhanced contractility to endothelial vasoconstrictor prostanoids and reduced nitric oxide (NO) bioactivity partly due to increased oxidative stress. We hypothesized that vascular NADPH oxidase (Nox)-derived superoxide may be involved in prostanoid- and NO-related functional aging. NO-mediated relaxations and prostanoid-mediated contractions to acetylcholine as well as phenylephrine-dependent contractions were investigated in the carotid artery from young (4 months) and aged mice (24 months). Gene expression of Nox subunits and endothelial NO synthase (eNOS) was determined in the carotid artery and aorta. In young mice, the thromboxane-prostanoid receptor antagonist SQ 29,548 fully blocked acetylcholine-induced contractions while reducing responses to phenylephrine by 75 %. The Nox2-targeted inhibitor Nox2ds-tat and the superoxide scavenger tempol reduced acetylcholine-stimulated, prostanoid-mediated contractions by 85 and 75 %, respectively, and phenylephrine-dependent contractions by 45 %. Unexpectedly, in aged mice, the substantial Nox2-dependent component of acetylcholine- and phenylephrine-induced, prostanoid-mediated contractions was abolished. In addition, endothelium-dependent, NO-mediated relaxations were impaired with aging. The expression of Nox subunits was greater in the aorta compared with the carotid artery, in which Nox1 was undetectable. eNOS gene expression was reduced in the aorta of aged compared to young mice. In conclusion, aging decreases prostanoid-mediated contractility in the carotid artery involving a loss of Nox2 activity and is associated with impaired endothelium-dependent, NO-mediated relaxation. These findings may contribute to a better understanding of the pathophysiology of carotid artery disease and the aging process.  相似文献   

19.
Nebivolol is a beta(1)-receptor antagonist with vasodilator and antioxidant properties. Because the vascular NADPH oxidase is an important superoxide source, we studied the effect of nebivolol on endothelial function and NADPH oxidase activity and expression in the well-characterized model of angiotensin II-induced hypertension. Angiotensin II infusion (1 mg/kg per day for 7 days) caused endothelial dysfunction in male Wistar rats and increased vascular superoxide as detected by lucigenin-derived chemiluminescence, as well as dihydroethidine staining. Vascular NADPH oxidase activity, as well as expression at the mRNA and protein level, were markedly upregulated, as well as NOS III uncoupled, as evidenced by NO synthase III inhibitor experiments and dihydroethidine staining and by markedly decreased hemoglobin-NO concentrations. Treatment with the beta-receptor blocker nebivolol but not metoprolol (10 mg/kg per day for each drug) normalized endothelial function, reduced superoxide formation, increased NO bioavailability, and inhibited upregulation of the activity and expression of the vascular NADPH oxidase, as well as membrane association of NADPH oxidase subunits (Rac1 and p67(phox)). In addition, NOS III uncoupling was prevented. In vitro treatment with nebivolol but not atenolol or metoprolol induced a dissociation of p67(phox) and Rac1, as well as an inhibition of NADPH oxidase activity assessed in heart membranes from angiotensin II-infused animals, as well as in homogenates of Nox1 and cytosolic subunit-transfected and phorbol ester-stimulated HEK293 cells. These findings indicate that nebivolol interferes with the assembly of NADPH oxidase. Thus, inhibitory effects of this beta-blocker on vascular NADPH oxidase may explain, at least in part, its beneficial effect on endothelial function in angiotensin II-induced hypertension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号