首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A W Freeman  V A Nguyen 《Vision research》2001,41(23):2943-2950
Binocular rivalry is the alternating perception that occurs when the two eyes are presented with incompatible stimuli. We have developed a new method for controlling binocular rivalry and measuring its progress. One eye views a static grating while the fellow eye views a grating that smoothly and cyclically varies between two orientations, one the same as the static grating and the other orthogonal. Contrast sensitivity was tested monocularly a number of times during the stimulus cycle. When the eye viewing the static grating was tested, sensitivity varied between maximum and minimum values as the conditioning stimulus varied from binocularly compatible to incompatible. The interocular suppression thus demonstrated was limited to the eye viewing the static grating; variations in the fellow eye's sensitivity were due to interocular masking alone.  相似文献   

2.
We used binocular rivalry as a psychophysical probe to explore center-surround interactions in orientation, motion and color processing. Addition of the surround matching one of the rival targets dramatically altered rivalry dynamics. For all visual sub-modalities tested, predominance of the high-contrast rival target matched to the surround was greatly reduced-a result that disappeared at low contrast. At low contrast, addition of the surround boosted dominance of orientation and motion targets matched to the surround. This contrast-dependent modulation of center-surround interactions seems to be a general property of the visual system and may reflect an adaptive balance between surround suppression and spatial summation.  相似文献   

3.
S H Lee  R Blake 《Vision research》1999,39(8):1447-1454
Binocular rivalry has been used to investigate neural correlates of visual awareness. For this investigation to succeed, however, it is necessary to know what rivals during binocular rivalry. Recent work has raised questions about whether rivalry is between eyes or between stimuli. We find that stimulus rivalry occurs only within a limited range of spatial and temporal parameters--otherwise eye rivalry dominates.  相似文献   

4.
Single binocular vision of central serous choroid-retinopathy   总被引:1,自引:0,他引:1  
S M Yang  G Chen 《眼科学报》1987,3(1):25-27
  相似文献   

5.
Dichoptic presentation of dot arrays produces binocular rivalry if the arrays are of opposite contrast relative to background. Rivalry can occur even if individual dots in one eye's array do not overlap with the dots in the contralateral eye's array. The amount of unitary perception of only one array is a measure of the probability that the stimuli rival as textured surfaces rather than as portions of arrays or as individual dot elements. In accordance with Gestalt grouping principles, arrays of uniform brightness or color produced more unitary perception than mixed arrays. However, experiments with parametric variation of dot motion coherence suggested that segmentation mechanisms based on detection of collinearity can also influence perceptual selection and suppression in binocular rivalry.  相似文献   

6.
7.
Stochastic resonance in binocular rivalry   总被引:7,自引:0,他引:7  
When a different image is presented to each eye, visual awareness spontaneously alternates between the two images--a phenomenon called binocular rivalry. Because binocular rivalry is characterized by two marginally stable perceptual states and spontaneous, apparently stochastic, switching between them, it has been speculated that switches in perceptual awareness reflect a double-well-potential type computational architecture coupled with noise. To characterize this noise-mediated mechanism, we investigated whether stimulus input, neural adaptation, and inhibitory modulations (thought to underlie perceptual switches) interacted with noise in such a way that the system produced stochastic resonance. By subjecting binocular rivalry to weak periodic contrast modulations spanning a range of frequencies, we demonstrated quantitative evidence of stochastic resonance in binocular rivalry. Our behavioral results combined with computational simulations provided insights into the nature of the internal noise (its magnitude, locus, and calibration) that is relevant to perceptual switching, as well as provided novel dynamic constraints on computational models designed to capture the neural mechanisms underlying perceptual switching.  相似文献   

8.
When the two eyes are presented with dissimilar images, human observers report alternating percepts-a phenomenon coined binocular rivalry. These perceptual fluctuations reflect competition between the two visual inputs both at monocular and binocular processing stages. Here we investigated the influence of auditory stimulation on the temporal dynamics of binocular rivalry. In three psychophysics experiments, we investigated whether sounds that provide directionally congruent, incongruent, or non-motion information modulate the dominance periods of rivaling visual motion percepts. Visual stimuli were dichoptically presented random-dot kinematograms (RDKs) at different levels of motion coherence. The results show that directional motion sounds rather than auditory input per se influenced the temporal dynamics of binocular rivalry. In all experiments, motion sounds prolonged the dominance periods of the directionally congruent visual motion percept. In contrast, motion sounds abbreviated the suppression periods of the directionally congruent visual motion percepts only when they competed with directionally incongruent percepts. Therefore, analogous to visual contextual effects, auditory motion interacted primarily with consciously perceived visual input rather than visual input suppressed from awareness. Our findings suggest that auditory modulation of perceptual dominance times might be established in a top-down fashion by means of feedback mechanisms.  相似文献   

9.
Minimal physiological conditions for binocular rivalry and rivalry memory   总被引:3,自引:0,他引:3  
Wilson HR 《Vision research》2007,47(21):2741-2750
Binocular rivalry entails a perceptual alternation between incompatible stimuli presented to the two eyes. A minimal explanation for binocular rivalry involves strong competitive inhibition between neurons responding to different monocular stimuli to preclude simultaneous activity in the two groups. In addition, strong self-adaptation of dominant neurons is necessary to enable suppressed neurons to become dominant in turn. Here a minimal nonlinear neural model is developed incorporating inhibition, self-adaptation, and recurrent excitation. The model permits derivation of an equation for mean dominance duration as a function of the underlying physiological variables. The dominance duration equation incorporates an explicit representation of Levelt's second law. The same equation also shows that introduction of a simple compressive response nonlinearity can explain Levelt's fourth law. Finally, addition of brief, recurrent synaptic facilitation to the model generates properties of rivalry memory.  相似文献   

10.
Effects of dominant and nondominant eyes in binocular rivalry.   总被引:1,自引:0,他引:1  
PURPOSE: To investigate the relation between sighting and sensory eye dominance and attempt to quantitatively examine eye dominance using a balance technique based on binocular rivalry. METHODS: The durations of exclusive visibility of the dominant and nondominant eye target in binocular rivalry were measured in 14 subjects. The dominant eye was determined by using the hole-in-card test (sighting dominance). In study 1, contrast of the target in one eye was fixed at 100% and contrast of the target in the other eye was varied from 100% to 80% to 60% to 40% to 20%, when using rectangular gratings of 1, 2, and 4 cycles per degree (cpd) at 2 degrees, 4 degrees , and 8 degrees in size. In study 2, contrast of the target in the nondominant eye was fixed at 100% and contrast of the target in the dominant eye was varied from 100% to 80% to 60% to 40% to 20%, when using a rectangular grating of 2 cpd at 4 degrees in size. RESULTS: In study 1, the total duration of exclusive visibilities of the dominant eye target; that is, the target seen by the eye that had sighting dominance was longer compared with that of the nondominant eye target. When using rectangular gratings of 4 cpd, mean total duration of exclusive visibility of the dominant eye target was statistically longer than that of the nondominant eye target (p < 0.05). In study 2, reversals (in which duration of exclusive visibility of the nondominant eye becomes longer than the dominant eye when the contrast of the dominant eye target is decreased) were observed for all contrasts except for 100%. CONCLUSIONS: The dominant sighting eye identified by the hole-in-card test coincided with the dominant eye as determined by binocular rivalry. The contrast at which reversal occurs indicates the balance point of dominance and seems to be a useful quantitative indicator of eye dominance to clinical applications.  相似文献   

11.
In this study personal observations during parachute jumping under various visual conditions are recorded. Jumps were executed with reduced visual acuity, monocular vision, and hemianopic defects of the visual fields. The conclusions regarding admission to parachute jumping drawn from the author's personal observations are discussed.  相似文献   

12.
When two moving gratings are superimposed in normal viewing they often combine to form a pattern that moves with a single direction of motion. Here, we investigated whether the same mechanism underlies pattern motion when drifting gratings are presented independently to the two eyes. We report that, with relatively large circular grating patches (4 deg), there are periods of monocular dominance in which one eye's orientation alone is perceived, usually moving orthogonal to the contours (component motion). But, during the transitions from one monocular view to the other, a fluid mosaic is perceived, consisting of contiguous patches, each containing contours of only one of the gratings. This entire mosaic often appears to move in a single direction (pattern motion), just as when two gratings are literally superimposed. Although this implies that motion signals from the perceptually suppressed grating continue to influence the perception of motion, an alternative possibility is that it reflects a strategy that involves integrating directional information from the contiguous single-grating patches. To test between these possibilities, we performed a second experiment with very small grating stimuli that were about the same size as the contiguous single-grating patches in the mosaic (1-deg diameter). Despite the fact that the form of only one grating was perceived, we report that pattern motion was still perceived on about one third of trials. Moreover, a decrease in the occurrence of pattern motion was apparent when the contrast and spatial frequency of the gratings were made more different from each other. This phenomenon clearly demonstrates an independent binocular interaction for form and motion.  相似文献   

13.
We examined whether interocular inhibition in binocular rivalry could occur at the interocular intersection of horizontal and vertical rectangular patches which are locally fusible but globally rivalrous between the two eyes. We measured contrast increment (and decrement) thresholds of a monocularly presented probe which was presented on the horizontal patch corresponding to the intersection. We found that the threshold was higher when the horizontal patch was perceptually suppressed than when it was dominant. In addition, threshold elevation did not occur when both patches were dominant, or when the horizontal patch was viewed in isolation. These results indicate that interocular inhibition occurs at the potentially fusible region, and the determination of binocular fusion or binocular rivalry does not depend on physical stimulus but rather perceptual state at the time.  相似文献   

14.
Neural hysteresis plays a fundamental role in stereopsis and reveals the existence of positive feedback at the cortical level [Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2), 55-80]. We measured hysteresis as a function of orientation disparity in tilted gratings in which a transition is perceived between stereopsis and binocular rivalry. The patterns consisted of sinusoidal gratings with orientation disparities (0 degrees, 1 degrees, 2 degrees,..., 40 degrees) resulting in various degrees of tilt. A movie of these 41 pattern pairs was shown at a rate of 0.5, 1 or 2 pattern pairs per second, in forward or reverse order. Two transition points were measured: the point at which the single tilted grating appeared to split into two rivalrous gratings (T1), and the point at which two rivalrous gratings appeared to merge into a single tilted grating (T2). The transitions occurred at different orientation disparities (T1=25.4 degrees, T2=17.0 degrees) which was consistent with hysteresis and far exceeded the difference which could be attributed to reaction time. The results are consistent with a cortical model which includes positive feedback and recurrent inhibition between neural units representing different eyes and orientations.  相似文献   

15.
Hayashi R  Maeda T  Shimojo S  Tachi S 《Vision research》2004,44(20):2367-2380
Half-occluded points (visible only in one eye) are perceived at a certain depth behind the occluding surface without binocular rivalry, even though no disparity is defined at such points. Here we propose a stereo model that reconstructs 3D structures not only from disparity information of interocularly paired points but also from unpaired points. Starting with an array of depth detection cells, we introduce cells that detect unpaired points visible only in the left eye or the right eye (left and right unpaired point detection cells). They interact cooperatively with each other based on optogeometrical constraints (such as uniqueness, cohesiveness, occlusion) to recover the depth and the border of 3D objects. Since it is contradictory for monocularly visible regions to be visible in both eyes, we introduce mutual inhibition between left and right unpaired point detection cells. When input images satisfy occlusion geometry, the model outputs the depth of unpaired points properly. An interesting finding is that when we input two unmatched images, the model shows an unstable output that alternates between interpretations of monocularly visible regions for the left and the right eyes, thereby reproducing binocular rivalry. The results suggest that binocular rivalry arises from the erroneous output of a stereo mechanism that estimates the depth of half-occluded unpaired points. In this sense, our model integrates stereopsis and binocular rivalry, which are usually treated separately, into a single framework of binocular vision. There are two general theories for what the "rivals" are during binocular rivalry: the two eyes, or representations of two stimulus patterns. We propose a new hypothesis that bridges these two conflicting hypotheses: interocular inhibition between representations of monocularly visible regions causes binocular rivalry. Unlike the traditional eye theory, the level of the interocular inhibition introduced here is after binocular convergence at the stage solving the correspondence problem, and thus open to pattern-specific mechanisms.  相似文献   

16.
Sobel KV  Blake R 《Vision research》2003,43(14):1533-1540
Binocular rivalry probably involves distributed neural processes, some responsible for dominance, others for suppression and still others for fluctuations in perception. Focusing on the suppression process, the present study asks whether neural events underlying rivalry suppression take place prior to, or subsequent to those underlying the synthesis of subjective contours. Specifically, we examined whether (i) a subjective contour could prematurely return a suppressed target to dominance and (ii) whether suppression of a Kanizsa-type inducer precludes the formation of a subjective contour. Suppression durations were not abbreviated by the subjective contour, but suppression did prevent the formation of a subjective contour. Evidently suppression precedes the synthesis of subjective contours in the visual processing hierarchy.  相似文献   

17.
Y Bonneh  D Sagi 《Vision research》1999,39(2):271-281
Supra-threshold spatial integration was studied by testing the saliency of multi-Gabor element configurations in short duration binocular rivalry (dichoptic masking) conditions. Dichoptic presentations allow for a competition between spatially overlapping supra-threshold stimuli that involve non-overlapping monocular receptive fields in the first stage of visual filtering. Different spatial configurations of Gabor patches (sigma = lambda = 0.12 degree) were presented to one eye (target) together with a bandpass noise presented to the other eye (mask). After a short rivalry period (120 ms) in which a dominance of one eye was established, a probe (a randomly positioned small rectangle of reduced contrast in the target) was presented for additional detection period (80 ms). Probe detection performance was measured (two-alternative-forced choice paradigm (2AFC) by finding the mask contrast leading to 79% correct response. Results show that configuration saliency is consistently expressed as dominance in short-duration binocular rivalry, with similar results obtained for longer durations (200 ms and continuous presentations). We find that textures of high-contrast randomly oriented patches are more dominant than uniform textures where the effect decreases and eventually reverses with decreasing of contrast. For supra-threshold contours, however, we find that smooth collinear contours are more dominant than 'jagged' ones, regardless of phase and contrast. These findings suggest principles underlying early lateral integration mechanisms based on contrast dependent inhibitory and excitatory connections. This mechanism could be based on iso-orientation surround (2D) inhibition and collinear (1D) facilitation, with inhibition being more effective at high contrasts.  相似文献   

18.
Matching velocity in central and peripheral vision   总被引:2,自引:2,他引:2  
The apparent velocity of peripheral, drifting sinusoidal gratings was measured as a function of eccentricity and viewing distance. Gratings appeared to move more slowly in the periphery. Apparent velocities in fovea and periphery could be matched by an appropriate spatial scaling of peripheral gratings. This scaling factor provides a psychophysical measure of the changing spatial grain of the visual system with eccentricity. Scaling factors were found to be the same for lower threshold of motion and for velocity matching with standard gratings of 2 and 6 Hz. The finding generalised over a range of standard temporal frequencies (less than 7 Hz) and spatial frequencies (1.2-9 c/deg). The psychophysically determined scaling factors were found to be proportional to the square root of macaque mean cortical receptive field area as a function of eccentricity. The data support a ratio strategy for encoding motion in which motion information is expressed relative to the changing spatial grain of the visual system. Locations for the apparent identity of physically identical grating motion fell along a straight line in space, prompting an explanation of these visual field effects in terms of the acquisition of environmental information from optic flow.  相似文献   

19.
The visual resolution of motion is important both for indicating the presence of moving objects and for assisting locomotion and spatial orientation. Additionally, motion may enhance the visibility of low contrast features of the environment. For patients with reduced central vision, these functions may be especially significant as the detection of motion is superior to the ability to resolve stationary detail in peripheral vision. The present paper analyzes the effects of specific stimulus variables on motion sensitivity in both central and peripheral vision. Implications of these findings for low vision patients are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号