首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K+ channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K+ channels and Na+/K+-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent doses 0.05 μg/100 g, im, 7 days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O2 production, and apocynin (0.3 μM), superoxide dismutase (150 U/mL) and catalase (1000 U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K+-induced relaxation curves. Ouabain (100 μM) plus L-NAME (100 μM), aminoguanidine (50 μM) or tetraethylammonium (TEA, 2 mM) reduced the K+-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60 mM/L) or preincubated with TEA (2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 μM) or charybdotoxin (0.1 μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K+ channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress.  相似文献   

2.
Methylmercury (MeHg), a potent neurotoxicant, easily passes through the blood-brain barrier (BBB), accumulates in the brain regions and causes severe irreversible damage. However, the neurotoxic effects and action mechanisms of MeHg are still unclear, especially in low-dose and long-term exposure. In this study, we attempted to explore the toxic effects of low-dose MeHg (0.05 mg/kg/day), which was the possible exposed dose by ingestion in MeHg-contaminated areas, on the time course of changes in locomotor activities and auditory brainstem response (ABR) system after administration for 7 consecutive weeks in mice. The results showed that the retention time on the rotating rod (60 rpm) was preferentially decreased after 1-week oral administration with MeHg. The locomotor activities parameters of ambulatory distances and stereotype-1 episodes were significantly increased and vertical-plane entries were progressively decreased after MeHg exposure in 3 consecutive weeks. Gradually progressive abnormality of ABR (increase in hearing thresholds, prolonged absolute and interwave latencies) was found during 4-6 weeks administration of MeHg. These impairments correlated with significant Hg accumulation and biochemical alterations in brain regions and/or other tissues, including the increase of lipid peroxidation (LPO) production, influence of Na+/K(+)-ATPase activities and nitric oxide (NO) levels were found. These findings provide evidence that the signaling of oxidative stress/Na+/K(+)-ATPase/NO plays a role in the underlying mechanisms of the neurotoxic effects induced by low-dose and long-term exposure of MeHg.  相似文献   

3.
Effects of organotin compounds were studied on voltage-gated K+ current in whole-cell voltage clamped lymphocytes and in NlE-115 neuroblastoma cells. In human peripheral blood lymphocytes the immunotoxic compounds dibutyltinchloride (DBT, 2.5 M) and triphenyltinchloride (TPhT, 2.5 M) decrease the peak amplitude of the K+ current and prolong time to peak. Tributyltinchloride (TBT, 2.5 M) decreases the K+ current to a greater extent than DBT and TPhT, without affecting the time to peak. The neurotoxic organotin compound trimethyltinchloride (TMT, 2.5 M) does not affect the voltage-gated K+ current in lymphocytes. Similar effects of DBT were observed in freshly isolated and PHA-activated human lymphocytes and with rat thymocytes. On the other hand, in mouse NIE-115 neuroblastoma cells, none of the organotin compounds altered the voltage-dependent K+ current.In human lymphocytes DBT affects both the peak amplitude and the time to peak of the K+ current in a concentration-dependent manner. At the maximum concentration of 10 M tested, the peak amplitude of the K+ current was reduced to 22 ± 4% of the control current. The IC50 and slope factor for block of the peak outward current by DBT amounts to 6.7 ± 0.4 M, and 2.7 ± 0.4, respectively. The delay in K+ current activation does not saturate. At 10 M DMT increases the time to peak to 332 ± 12% of the control value. The present results suggest that the effects by DBT originate from two separate interactions with the voltage-gated K+ channel at the extracellular site of the membrane: a direct effect on the closed K+ channel causing a delay in current activation and a membrane-related effect causing inhibition of the K+ current. The differential effects of the organotin compounds may relate to their differential toxicological action.  相似文献   

4.
The goal of this study was to investigate the effects of endomorphin-1 on Na(+),K(+)-ATPase activity in mouse brain synaptosome in vitro, and its antinociceptive interaction with the Na(+),K(+)-ATPase inhibitor ouabain. Endomorphin-1 (0.1 nM-10 microM) produced a concentration-dependent (EC(50): 43.19 nM, CI: 23.38-65.71 nM, E(max): 25.86%, CI: 24.53-27.20%), naloxone-reversible increase of the synaptosomal Na(+),K(+)-ATPase activity. The intrathecally (i.t.) administered endomorphin-1 (2-20 microg) produced a dose-dependent short-lasting increase in the tail-flick latency. Ouabain itself (1-1000 ng, i.t.) did not cause antinociception. Treatment with 10 ng ouabain significantly decreased the antinociceptive effect of 2 microg endomorphin-1, but none of the other combinations did significantly differ from the endomorhin-1-treated groups. These data indicate that endomorphin-1 increases the activity of Na(+),K(+)-ATPase in vitro but this effect may play a weak role in the antinociception induced by intrathecal endomorphin-1.  相似文献   

5.
BACKGROUND AND PURPOSE The Na(+) /Ca(2+) exchanger is a bi-directional transporter that plays an important role in maintaining the concentration of cytosolic Ca(2+) ([Ca(2+) ](i) ) of quiescent platelets and increasing it during activation with some, but not all, agonists. There are two classes of Na(+) /Ca(2+) exchangers: K(+) -independent Na(+) /Ca(2+) exchanger (NCX) and K(+) -dependent Na(+) /Ca(2+) exchanger (NCKX). Platelets have previously been shown to express NCKX1. However, initial studies from our laboratory suggest that NCX may also play a role in platelet activation. The objective of this study was to determine if the human platelet expresses functional NCXs. EXPERIMENTAL APPROACH RT-PCR, DNA sequencing and Western blot analysis were utilized to characterize the human platelet Na(+) /Ca(2+) exchangers. Their function during quiescence and collagen-induced activation was determined by measuring [Ca(2+) ](i) with calcium-green/fura-red in response to: changes in the Na(+) and K(+) gradient, NCX pharmacological inhibitors (CBDMB, KB-R7943 and SEA0400) and antibodies specific to extracellular epitopes of the exchangers. KEY RESULTS Human platelets express NCX1.3, NCX3.2 and NCX3.4. The NCXs operate in the Ca(2+) efflux mode in resting platelets and also during their activation with thrombin but not collagen. Collagen-induced increase in [Ca(2+) ](i) was reduced with the pharmacological inhibitors of NCX (CBDMB, KB-R7943 or SEA0400), anti-NCX1 and anti-NCX3. In contrast, anti-NCKX1 enhanced the collagen-induced increase in [Ca(2+) ](i) . CONCLUSIONS AND IMPLICATIONS Human platelets express K(+) -independent Na(+) /Ca(2+) exchangers NCX1.3, NCX3.2 and NCX3.4. During collagen activation, NCX1 and NCX3 transiently reverse to promote Ca(2+) influx, whereas NCKX1 continues to operate in the Ca(2+) efflux mode to reduce [Ca(2+) ](i) .  相似文献   

6.
BACKGROUND AND PURPOSE: As nitric oxide (NO) plays an essential role in the inhibitory neurotransmission of the bladder neck of several species, the current study investigates the mechanisms underlying the NO-induced relaxations in the pig urinary bladder neck. EXPERIMENTAL APPROACH: Urothelium-denuded bladder neck strips were dissected and mounted in isolated organ baths containing a physiological saline solution at 37 degrees C and continuously gassed with 5% CO(2) and 95% O(2), for isometric force recording. The relaxations to transmural nerve stimulation (EFS), or to exogenously applied acidified NaNO(2) solution were carried out on strips pre-contracted with phenylephrine, and treated with guanethidine and atropine, to block noradrenergic neurotransmission and muscarinic receptors, respectively. KEY RESULTS: EFS (0.2-1 Hz) and addition of acidified NaNO(2) solution (1 microM-1 mM) evoked frequency- and concentration-dependent relaxations, respectively. These responses were potently reduced by the blockade of guanylate cyclase and were not modified by the K(+) channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The voltage-gated K(+) (Kv) channels inhibitor 4-aminopyridine, greatly enhanced the nitrergic relaxations evoked by EFS, but did not affect the NaNO(2) solution-induced relaxations. CONCLUSIONS AND IMPLICATIONS: NO, whose release is modulated by pre-junctional Kv channels, relaxes the pig urinary bladder neck through a mechanism dependent on the activation of guanylate cyclase, in which post-junctional K(+) channels do not seem to be involved. Modulation of Kv channels could be useful in the therapy of the urinary incontinence produced by intrinsic sphincteric deficiency.  相似文献   

7.
Previously it was shown that minK protein expression in uterus is regulated by estrogen. In the present study, we were interested in putative direct effects of estrogen on minK protein induced K+ currents (IminK) in Xenopus oocytes. Superfusion with 17--estradiol (1 M) resulted in an inhibition of minK-induced currents, but had no appreciable effects on the delayed rectifier and inward rectifier K+ channels Kv1.1 and Kir2.1, respectively. The inhibition of IminK by 17--estradiol was concentration-dependent, with an IC50 of approximately 0.5 M. In the presence of 17--estradiol, the conductance-voltage relationship was shifted to more depolarized potentials. IminK inhibition occurred also in the presence of the estrogen-receptor antagonist tamoxifen, suggesting that a mechanism independent of estrogen receptors is involved. The synthetic estrogen diethylstilbestrol (DES) also inhibited IminK but with a lower affinity (IC50 of 4.5 M), while cortisol and progesterone had only weak effects on IminK. In summary, the results indicate that estrogens directly inhibit IminK.  相似文献   

8.
Summary The relationship between Na+, K+-ATPase inhibition by monovalent cations and their inotropic effect was studied in guinea pig hearts. The activity of partially purified cardiac enzyme was assayed in the presence of 5.8 mM KCl and either 20 or 150 mM NaCl. Rb+ and Tl+ inhibited Na+, K+-ATPase activity, the magnitude of the inhibition by these cations being greater in the assay media containing lower Na+ concentrations. Tl+ produced a dose-dependent inhibition of Na+, K+-ATPase activity in the presence of 20 mM Na+ and 75 mM K+, a cationic condition similar to that of intracellular fluid. Other monovalent cations such as K+, Cs+, NH4 +, Na+ or Li+ produced essentially no effect on the Na+, K+-ATPase activity or slightly stimulated it. In left atrial strips stimulated with field electrodes and bathed in Krebs-Henseleit solution (5.8 mM K+ and 145 mM Na+), addition of Cs+ failed to alter the isometric contractile force significantly. NH4 + and K+ caused a transient positive inotropic effect which was partially blocked by propranolol. The positive inotropic response to K+ was followed by a negative inotropic response. Rb+ produced a sustained, dose-dependent inotropic response reaching a plateau at 1–2 min, whereas Tl+ produced a dose-dependent positive inotropic effect which developed slowly over a 30-min period. The positive inotropic effects produced by Rb+ and Tl+ were insensitive to propranolol pretreatment. Concentrations of Tl+ and cardiac glycosides which produce similar inotropic effects appear to cause the same degree of Na+-pump inhibition. The onset of the positive inotropic response to Rb+ or Tl+ was not dependent on the number of contractions which is in contrast to the cardiac glycoside-induced inotropic response. Substitution of 20 mM LiCl for an equimolar amount of NaCl in Krebs-Henseleit solution produced a significantly greater inotropic response than that observed when sucrose was substituted for NaCl. It appears that, among monovalent cations, only sodium pump inhibitors produce a sustained positive inotropic response.  相似文献   

9.
Summary Hog kidney Na+, K+-ATPase, purified to the microsomal stage and activated with detergent, binds palytoxin, as shown by the nearly complete competition of the toxin with 3H-ouabain. The K i-values of palytoxin, but not of ouabain, depend on the protein concentration; this indicates additional binding sites for the toxin on kidney membranes. — Palytoxin inhibits the enzymatic activity of the detergent-activated preparation nearly completely (IC50 8·10–7 mol/l). Inhibition of ATPase activity and of ouabain binding are promoted by borate, a known activator of palytoxin. — Palytoxin also inhibits the Na+, K+-ATPase of erythrocyte ghosts in the same dose range.The data are discussed in context with the hypothesis (Chhatwal et al. 1983) that palytoxin raises the cellular permeability by altering the state of Na+, K+-ATPase or its environment.Part of the thesis (Dr. rer. nat.) of H. Böttinger  相似文献   

10.
Summary The sodium pump, (Na++K+)-ATPase, which is involved in the transport of cations and water movement by the colonic mucosa, may be decreased in various diarrhoeal states. In this study, we have measured 3H-ouabain binding and (Na++K+)-ATPase activity in human colonic biopsy homogenates and the influence of various inflammatory and antiinflammatory compounds on these parameters. 3H-ouabain binds to one site of high affinity (K D 1.9±0.2×10–9 mol/l) with a maximal binding capacity of 7.5±0.8×1014 binding sites/g protein. Both arachidonic and linoleic acid inhibited (Na++K+)-ATPase activity (IC50 arachidonic acid: 7.5×10–5 mol/l, linoleic acid: 6.5×10–5 mol/l) and Mg2+-ATPase activity (IC50 arachidonic acid: 9×10–5 mol/l, linoleic acid: 4×10–5 mol/l). Arachidonic acid inhibited 3H-ouabain binding, (IC50 3.2×10–5 mol/l). The following antiinflammatory compounds, at concentrations up to 1×10–3 mol/l, did not influence ATPase activity directly nor reverse the arachidonic acid-induced inhibition: indomethacin (cyclooxygenase inhibitor), nordihydroguaretic acid (lipoxygenase inhibitor), sulphasalazine and its metabolites: 5-aminosalicylic acid, N-acetylaminosalicylic acid and sulphapyridine.These results indicate that human colonic (Na++K+)-ATPase is inhibited by the prostanoid precursors, arachidonic and linoleic acid. From a therapeutic point of view (effect on colonic (Na++K+)-ATPase and perhaps diarrhoea), the suppression of the production of these prostanoid precursors by drugs may, therefore, be beneficial in the treatment of inflammatory bowel disease.Supported by DFG (Er65/4-4)  相似文献   

11.
Summary Dehydro-digitoxosides are metabolites of digitalis glycosides. In order to study their possible biological activity their affinity to (Na++K+)-activated ATPase was determined and compared with unchanged glycosides. Based on the dissociation constants of glycoside-enzyme-complexes, the affinity of the dehydro-digitoxosides ranged in the same order of magnitude as that of the native glycosides. Comparing mono-, bis-, and tris-digitoxosides of digitoxigenin (dt-1, dt-2, dt-3) and of digoxin (dg-1, dg-2, dg-3) with the corresponding dehydrodigitoxosides (3-dehydro-dt-1, 9-dehydro-dt-2, 15-dehydro-dt-3, 3-dehydro-dg-1 and 9-dehydro-dg-2, respectively) the dehydro-digitoxosides had lower affinities to the enzyme. The highest dissociation constants (K D)were found for 3-dehydro-dt-1 and 3-dehydro-dg-1. The half maximal inhibition of (Na++K+)-ATPase activity (I50) corresponded to affinity measurements in all but two cases: dehydro-dt-3 and dehydro-dt-2 showed very low I50 values.  相似文献   

12.
Summary The influence of potassium ions on the equilibrium state of the binding of cardiac glycosides and their derivatives to partially purified dog heart and rat brain enzyme preparations was studied in vitro. The addition of potassium to the incubation mixture containing enzyme preparation, 3H-ouabain, Na+, Mg2+ and ATP, at the time when the binding reaction is close to equilibrium, caused an immediate reduction of the bound drug concentration; the concentration apparently shifting toward a lower equilibrium state. The degree of the potassium-induced reduction in bound drug concentration was dependent on the potassium concentration and on the chemical structure of the compound. The binding of aglycones, pentacetyl-gitoxin and cassaine was affected to a greater extent than that of the glycosides. These data suggest that one of the mechanisms by which potassium antagonizes the toxic actions of digitalis on the heart is to reduce the drug binding to cardiac Na+, K+-ATPase.This work was supported by a U.S. Public Health Service Grant, HL-16052  相似文献   

13.
The K+ channel encoded by the Ether-á-go-go-Related Gene (ERG) is expressed in different tissues of different animal species. There are at least three subtypes of this channel, being the sub-type 1 (ERG1) crucial in the repolarization phase of the cardiac action potential. Mutations in this gene can affect the properties of the channel producing the type II long QT syndrome (LQTS2) and many drugs are also known to affect this channel with a similar side effect. Various scorpion, spider and sea anemone toxins affect the ERG currents by blocking the ion-conducting pore from the external side or by modulating channel gating through binding to the voltage-sensor domain. By doing so, these toxins become very useful tools for better understanding the structural and functional characteristics of these ion channels. This review discusses the interaction between the ERG channels and the peptides isolated from venoms of these animals. Special emphasis is placed on scorpion toxins, although the effects of several spider venom toxins and anemone toxins will be also revised.  相似文献   

14.
Summary Iminodibenzyl-, iminostilbene-, dibenzocycloheptadiene-, dibenzooxepine- and dibenzothiepine-derivatives of tricyclic antidepressant drugs were able to inhibit Na+-stimulated Mg2+ efflux in human erythrocytes at concentrations of 10–5–10–3 mol/l. Tricyclic antidepressant drugs belonging to other chemical groups, non-tricyclic antidepressant drugs and phenothiazines were less potent inhibitors (IC50 of 10–4 mol/l or higher).Imipramine and dothiepine, the most potent compounds, inhibited the Mg" carrier with IC50 of 2.5 and 4 × 10–5 mol/1 respectively. These IC50 are of similar order of magnitude to those of some classical transport inhibitors (such as furosemide for the [Na+K+,Cl]-cotransport system). In addition, these concentrations of imipramine and dothiepine were free of: i) side effects on other erythrocyte Na and K+ transport pathways (with the exception of a slight inhibition of Ca2+-sensitive K+-channels and [Na+,K+,Cl]- and [K+,Cl]-cotransport systems) and ii) toxic effects on the membrane leak for divalent or monovalent cations. Therefore, we selected imipramine as an useful tool for investigating fluxes catalyzed by the Na+-stimulated Mg2+ carrier.Imipramine was tested on the initial rate of ouabain and bumetanide-resistant net Na+ influx in Na+-depleted, Mg2+-loaded erythrocytes. The compound was able to inhibit a Na+ influx of about 300–500 mol (l · cells × h)–1 with an IC50 of about 3 x 10–5 mol/1. This imipramine-sensitive Na+ influx was coupled with an imipramine-sensitive Mg2+ efflux in a stoichiometry of 3.03±0.34 (mean±SEM of 7 experiments).Abbreviations MOPS 4-morpholinopropanesulfonic acid - PCMBS p-chloromercuribenzenesulfonate - EGTA ethylene glycol bis-(beta-aminoethyl ether)N,NNN-tetraacetic acid - Tris tris(hydroxymethyl)aminomethane Send offprint requests to R. Garay at the above address  相似文献   

15.
To study the role of K(+) channels in the coronary and renal vascular response to vasopressin during diabetes mellitus, and whether there are gender differences in this role, we have examined the isometric response to this peptide of 2-mm-long arterial segments from male and female, normoglycemic and streptozotocin-induced diabetic rats. Vasopressin (10(-12)-3 x 10(-8) M) produced arterial concentration-dependent contraction, and during normoglycemia, this contraction was lower in coronary arteries from female than from male rats, and it was similar in renal arteries from both genders. This contraction was reduced by diabetes in coronary arteries, and increased in renal arteries, from both genders. The blocker of Ca(2+)-sensitive K(+) channels charybdotoxin (10(-7) M) increased the contraction to vasopressin in coronary arteries of diabetic females, but not in the other cases (diabetic males and normoglycemic females or males). This blocker also increased the contraction to vasopressin in renal arteries from diabetic, but not in those from normoglycemic female rats, and also increased it in a higher magnitude in arteries from diabetic than in those from normoglycemic male rats. The blocker of ATP-sensitive K(+) channels glybenclamide (10(-5) M) or the scavenger of superoxide radicals superoxide dismutase (100 U/ml) did not modify the contraction to vasopressin in any experimental group. These results suggest that diabetes activates the modulatory role of K(+) channels in the coronary and renal vasoconstriction to vasopressin, but it alters in a different way the vasoconstriction to vasopressin in these two types of arteries. The effects of diabetes on this vasoconstriction are not related to increased release of superoxide radicals.  相似文献   

16.
Summary The tissue distribution after repeated intravenous administration of tritium-labelled digoxin, -methyldigoxin and ouabain was examined in heart and brain of 6 beagle dogs. In addition, the (Na++K+)-ATPase activity was measured in various heart and brain areas, and its affinity to the cardiac glycosides was determined. The glycoside concentrations in the atria are lower than in the ventricles, and the left heart areas show higher concentrations than the right areas. Significant differences in the (Na++K+)-ATPase activity or its binding capacity in the various heart areas, which could be responsible for this characteristic distribution pattern, were not found. In agreement with its greater lipid-solubility, -methyldigoxin shows a higher accumulation in the brain than digoxin and ouabain. However, while -methyldigoxin is evenly distributed throughout all brain areas, concentration differences are found for digoxin and ouabain in the telencephalon, cerebellum and brain stem. This characteristic distribution of the more polar glycosides may be partly determined by the different structure of the capillaries in the central nervous system. In addition, the binding affinities for digoxin and ouabain also differ in the various crude brain preparations. In the diencephalon, pons, cerebellum and medulla the dissociation constants as a reciprocal measure of the binding affinity were lower for digoxin with 7.5 to 9.9×10–9 than in the telencephalon, mesencephalon and spinal cord with dissociation constants of 1.1 to 1.45×10–8 M. Since, in these brain areas higher glycoside concentrations per g wet weight were also measured, the glycoside accumulation in the various brain areas could be dependent on the higher receptor affinity of these brain areas. On the other hand, the binding affinities for -methyldigoxin were the same in all brain areas, with a mean dissociation constant of 1.45×10–8 M.  相似文献   

17.

Objective:

To study the role of Na+, K+- ATPase enzyme in the vascular response of goat ruminal artery.

Materials and Methods:

Ruminal artery was obtained in chilled aerated modified Krebs-Henseleit solution (KHS) from a local slaughterhouse and transported in ice for further processing. The endothelium intact arterial ring was mounted in a thermostatically controlled (37 ± 0.5°C) organ bath containing 20 ml of modified KHS (pH 7.4) bubbled with oxygen (95%) and CO2 (5%) under 2g tension. An equilibration of 90 min was allowed before addition of drugs into the bath. The responses were recorded isometrically in an automatic organ bath connected to PowerLab data acquisition system. In order to examine intact functional endothelium, ACh (10 μM) was added on the 5-HT (1.0 μM) - induced sustained contractile response. Similarly, functional characterization of Na+, K+-ATPase activity was done by K+-induced relaxation (10 μM-10 mM) in the absence and presence of ouabain (0.1 μM/ 0.1 mM), digoxin (0.1 μM) and barium (30 μM).

Results:

ACh (10−5 M) did not produce any relaxing effect on 5-HT-induced sustained contractile response suggesting that vascular endothelium has no significant influence on the activation of sodium pump by extracellular K+ in ruminal artery. Low concentration of Ba2+ (30 μM) (IC50: 0.479 mM) inhibited K+-induced relaxation suggesting Kir (inward rectifier) channel in part had role in K+-induced vasodilatation in ruminal artery. Vasorelaxant effect of KCl (10 μM-10 mM) in K+-free medium is also blocked by ouabain (0.1 μM and 0.1 mM) (IC50:0.398 mM and IC35: 1.36 mM), but not by digoxin (0.1 μM) (IC50 0.234 mM) suggesting that ouabain sensitive Na+, K+-ATPase isoform is present in the ruminal artery.

Conclusion:

In the goat ruminal artery functional regulation of sodium pump is partly mediated by K+ channel and ouabain sensitive Na+, K+ ATPase.  相似文献   

18.

Aim:

To investigate the effect of acute insulin administration on the subcellular localization of Na+/K+-ATPase isoforms in cardiac muscle of healthy and streptozotocin-induced diabetic rats.

Methods:

Membrane fractions were isolated with subcellular fractionation and with cell surface biotinylation technique. Na+/K+-ATPase subunit isoforms were analysed with ouabain binding assay and Western blotting. Enzyme activity was measured using 3-O-methylfluorescein-phosphatase activity.

Results:

In control rat heart muscle α1 isoform of Na+/K+ ATPase resides mainly in the plasma membrane fraction, while α2 isoform in the intracellular membrane pool. Diabetes decreased the abundance of α1 isoform (25 %, P<0.05) in plasma membrane and α2 isoform (50%, P<0.01) in the intracellular membrane fraction. When plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of α2- but not α1-subunits was detected. α1-Subunit translocation was only detectable by cell surface biotinylation technique. After insulin administration protein level of α2 increased by 3.3-fold, α1 by 1.37-fold and β1 by 1.51-fold (P<0.02) in the plasma membrane of control, and less than 1.92-fold (P<0.02), 1.19-fold (not significant) and 1.34-fold (P<0.02) in diabetes. The insulin-induced translocation was wortmannin sensitive.

Conclusion:

This study demonstrate that insulin influences the plasma membrane localization of Na+/K+-ATPase isoforms in the heart. α2 isoform translocation is the most vulnerable to the reduced insulin response in diabetes. α1 isoform also translocates in response to insulin treatment in healthy rat. Insulin mediates Na+/K+-ATPase α1- and α2-subunit translocation to the cardiac muscle plasma membrane via a PI3-kinase-dependent mechanism.  相似文献   

19.
Drugs that prolong the QT interval can trigger the life-threatening arrhythmia, torsade de pointes, but there is a poor correlation between the extent of QT prolongation and the occurrence of torsade de pointes. The clinical status of a patient may modify the arrhythmogenicity of drugs; thus, we have investigated whether a mediator of fever and inflammation, prostaglandin E(2), alters the proarrhythmic effects of clofilium. In pentobarbitone-anaesthetized, open-chest, alpha-adrenoceptor-stimulated rabbits, prostaglandin E(2) 0.28, 0.84 and 2.80 nmol kg(-1) min(-1), infused into the left ventricle, reduced the incidence of torsade de pointes from 50% in controls to 20%, 20% and 0%, respectively (n=10 per group). Pretreatment with glibenclamide (10 micromol kg(-1)) did not alter the antiarrhythmic effect of prostaglandin E(2) (2.80 nmol kg(-1) min(-1)). These results indicate that prostaglandin E(2) prevents drug-induced torsade de pointes and that this action of prostaglandin E(2) is not mediated via opening of ATP-dependent K(+) channels (K(ATP)).  相似文献   

20.
Many antipsychotic drugs produce QT interval prolongation on the electrocardiogram (ECG). Blockade of the human cardiac K(+) channel known as human ether-a-go-go-related gene (HERG) often underlies such clinical findings. In fact, HERG channel inhibition is now commonly used as a screen to predict the ability of a drug to prolong QT interval. However, the exact relationship between HERG channel blockade, target receptor binding affinity and clinical QT prolongation is not known. Using patch-clamp electrophysiology, we examined a series of seven antipsychotic drugs for their ability to block HERG, and determined their IC(50) values. We then compared these results to their binding affinities (K(i) values) for the dopamine D(2) receptor, the 5-HT(2A) receptor and, where available, to clinical QT prolongation data. We found that sertindole, pimozide and thioridazine displayed little (<10-fold) or no selectivity for dopamine D(2) or 5-HT(2A) receptors relative to their HERG channel affinities. This lack of selectivity likely underlies the significant QT interval prolongation observed with administration of these drugs. Of the other drugs tested (ziprasidone, quetiapine, risperidone and olanzapine), olanzapine displayed the greatest selectivity for dopamine D(2) and 5-HT(2A) receptor binding (100-1000-fold) compared to its HERG channel IC(50). We also compared these HERG channel IC(50) values to QT interval prolongation and plasma drug levels obtained in a recent clinical study. We found that the ratio of total plasma drug concentration to HERG IC(50) value was indicative of the degree of QT prolongation observed. Target receptor affinity and expected clinical plasma levels are important parameters to consider for the interpretation of HERG channel data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号