首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+-Ca2+ exchange in cultured vascular smooth muscle cells   总被引:4,自引:0,他引:4  
Vascular smooth muscle cells (VSMC) contract as intracellular free calcium ([Ca2+]i) rises. While Na+-Ca2+ exchange has been proposed to contribute to transmembrane Ca2+ flux, its role in cultured VSMC is unknown. Accordingly, we have investigated the role of Na+-Ca2+ exchange in unidirectional and net transmembrane Ca2+ fluxes in cultured rat aortic VSMC under basal conditions and following agonist-mediated stimulation. Transmembrane Ca2+ uptake was significantly increased in response to a low external Na+ concentration ([Na+]o) compared with 140 mM [Na+]o. Na+-dependent Ca2+ uptake in response to low [Na+]o was further increased by intracellular Na+ loading by preincubation of the VSMC with 1 mM ouabain. Under steady-state conditions, Ca2+ content varied inversely with [Na+]o, increasing from 1.0 nmol Ca2+/mg protein at 140 mM [Na+]o to 4.0 nmol Ca2+/mg protein at 20 mM [Na+]o. Increasing [K+]o to 55 mM also enhanced Na+-dependent Ca2+ influx. Augmentation of Ca2+ uptake with K+ depolarization was not significantly inhibited by the calcium channel antagonist verapamil. Transmembrane Ca2+ efflux was increased in response to 130 mM [Na+]o compared with zero [Na+]o (iso-osmotic substitution with choline+), and was further stimulated by the vasoconstrictor angiotensin II, which is known to elevate [Ca2+]i. These changes in [Ca2+]i were studied directly using fura-2 fluorescence measurements. Elevated [Ca2+]i levels returned to baseline more rapidly in the presence of normal (130 mM) [Na+]o compared with zero [Na+]o (iso-osmotic substitution with choline+). These findings suggest that a bidirectional Na+-Ca2+ exchange mechanism is present in cultured rat aortic VSMC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
OBJECTIVES: In situations of [Ca2+]i-overload, arrhythmias are believed to be triggered by delayed afterdepolarizations, which are generated by a transient inward current ITI. This study was designed to examine [Ca2+]i-dependent membrane currents in the absence of the Na+/Ca(2+)-exchanger as possible contributors to ITI in human cardiac cells. METHODS: The whole cell voltage clamp technique was used for electrophysiological measurements in human atrial and ventricular cardiomyocytes. [Ca2+]i-measurements were performed using the fluorescent Ca(2+)-indicator fura-2. All solutions were Na(+)-free. Voltage-independent [Ca2+]i-transients were elicited by rapid caffeine applications. RESULTS: In atrial myocytes, caffeine induced a transient membrane current in the absence of Na+ and K+. This current could be suppressed by internal EGTA (10 mM). Cl- did not contribute to this current. Experiments with different cations suggested non-selectivity for Cs+ and Li+, whereas N-methyl-D-glucamine appeared to be impermeable. Voltage ramps indicated a linear current-voltage relation in the range of +80 to -80 mV. Fluorescence measurements revealed a dissociation between the time courses of current and bulk [Ca2+]i-signal. In ventricular cardiomyocytes, caffeine failed to induce transient currents in 54 cells from 22 different patients with or without terminal heart failure. CONCLUSIONS: In human atrial cardiomyocytes, a [Ca2+]i-dependent nonspecific cation channel is expressed and may contribute to triggered arrhythmias in situations of [Ca2+]i-overload. No evidence could be found for the existence of a [Ca2+]i-dependent chloride current in atrial cells. In ventricular cells, neither a [Ca2+]i-dependent nonspecific cation channel nor a [Ca2+]i-dependent chloride channel seems to be expressed. Possible delayed afterdepolarizations in human ventricular myocardium might therefore be carried by the Na+/Ca(2+)-exchanger alone.  相似文献   

3.
Ca2+ imaging and single-channel recording were used to study the regulation of cytosolic free Ca2+ ([Ca2+]i) in local regions of frog sympathetic neurons. Digital imaging with the fluorescent Ca2+ indicator fura-2 demonstrated: (i) resting [Ca2+]i of 70-100 nM; (ii) significant increases in [Ca2+]i in growth cones and cell bodies following depolarization induced by extracellular electrical stimulation or increased external K+; (iii) in cell bodies, large transient increases in [Ca2+]i following exposure to caffeine and sustained oscillations in [Ca2+]i in the presence of elevated K+ and caffeine; and (iv) in growth cones, smaller and briefer changes in [Ca2+]i in response to caffeine. The nature of the depolarization-induced Ca2+ entry was studied with cell-attached patch recordings (110 mM Ba2+ in recording pipette). Ca2+ channel activity was observed in 18 of 20 patches on cell bodies, 3 of 5 patches along neurites, and 36 of 41 patch recordings from growth cones. We observed two types of Ca2+ channels: L-type channels, characterized by a 28-pS slope conductance, sensitivity to dihydropyridine Ca2+ channel agonist, and availability even with depolarizing holding potentials; and N-type channels, characterized by a 15-pS slope conductance, resistance to dihydropyridines, and inactivation with depolarized holding potentials. Both types of channels were found on growth cones and along neurites as well as on cell bodies; channels often appeared concentrated in local hot spots, sometimes dominated by one channel type.  相似文献   

4.
Primary cultured human coronary myocytes (HCMs) derived from ischemic human hearts express an atypical voltage-gated tetrodotoxin (TTX)-sensitive sodium current (I(Na)). The whole-cell patch-clamp technique was used to study the properties of I(Na) in HCMs. The variations of intracellular calcium ([Ca2+]i) and sodium ([Na+]i) were monitored in non-voltage-clamped cells loaded with Fura-2 or benzofuran isophthalate, respectively, using microspectrofluorimetry. The activation and steady-state inactivation properties of I(Na) determined a "window" current between -50 and -10 mV suggestive of a steady-state Na+ influx at the cell resting membrane potential. Consistent with this hypothesis, the resting [Na+]i was decreased by TTX (1 micromol/L). In contrast, it was increased by Na+ channel agonists that also promoted a large rise in [Ca2+]i. Veratridine (10 micromol/L), toxin V from Anemonia sulcata (0.1 micromol/L), and N-bromoacetamide (300 micromol/L) increased [Ca2+]i by 7- to 15-fold. This increase was prevented by prior application of TTX or lidocaine (10 micromol/L) and by the use of Na(+)-free or Ca(2+)-free external solutions. The Ca(2+)-channel antagonist nicardipine (5 micromol/L) blocked the effect of veratridine on [Ca2+]i only partially. The residual component disappeared when external Na+ was replaced by Li+ known to block the Na+/Ca2+ exchanger. The resting [Ca2+]i was decreased by TTX in some cells. In conclusion, I(Na) regulates [Ca2+]i in primary cultured HCMs. This regulation, effective at baseline, involves a tonic control of Ca2+ influx via depolarization-gated Ca2+ channels and, to a lesser extent, via a Na+/Ca2+ exchanger working in the reverse mode.  相似文献   

5.
Na+ influx via INa during cardiac action potentials can raise bulk [Na+]i by 10 to 15 micromol/L. However, larger rises in submembrane [Na+] ([Na+]sm) local to Na+-Ca2+ exchangers (NCX) could enhance Ca2+ influx via NCX (and Ca2+-induced Ca2+ release). We tested whether INa could increase [Na+]sm, using NCX current (INCX) as a biosensor in rabbit ventricular myocytes (with [Ca2+]i buffered, [Na+]i=10 mmol/L, and other currents blocked). We measured INCX as early as 5 ms after INa. Prior INa activation did not affect INCX at physiological membrane potentials (Em=-100 to +50 mV), but for Em >+50 mV (where INCX is especially sensitive to [Na+]i), INCX shifted outward. At 5 ms and +100 mV, INa shifted INCX outward by 0.23 A/F (corresponding to Delta[Na+]sm=0.24 mmol/L). The effect of INa dissipated with a time constant of approximately 15 ms. Thus, the impact of INa on NCX is almost undetectable at physiological Em and short lived. This suggests that INa effects on excitation-contraction coupling (via outward INCX) are minimal and limited to early during the action potential. However, local Delta[Na+]sm during INa may be 60 times higher than bulk Delta[Na+]i.  相似文献   

6.
Conduction velocities along longitudinal (vL) and transverse (vT) fiber axes were determined in isolated porcine hearts from subepicardial activation patterns that were produced by local stimulation and measured with a multiterminal electrode. In some of the experiments extracellular [K+] ([K+]o) and transmembrane potentials were recorded. During normal perfusion vL and vT were (cm/sec) 50.08 +/- 2.13, (SE) and 21.08 +/- 0.97. After 3 to 5 min of global ischemia, vL and vT decreased to approximately 30 and 13 cm/sec. Before the occurrence of total inexcitability propagation became time dependent 2: 1 block developed and centrifugal spread from the stimulus site was partially blocked at short intervals and was normal at long intervals. This suggested that slowed conduction was dependent on spatial nonuniformities of recovery from excitability. Slowing of conduction during ischemia was not explained by accumulation of [K+]o alone, because vL and vT at a given [K+]o were lower during ischemia than during perfusion with elevated K+. In hearts perfused at 20 mM [K+]o "slow responses" were produced by addition of epinephrine (2.5 X 10(-5)M). Resting membrane potentials of slow responses were significantly lower than of depressed action potentials during ischemia. The values vL and vT of slow responses (10 and 5 cm/sec) were much lower than the lowest values during ischemia (20 and 10 cm/sec). This indicates that slow conduction in ischemia is associated with depressed action potentials initiated by a partially inactivated rapid Na+ inward current. The time dependence of nonuniform propagation and the relatively high conduction velocities explain two major characteristics of reentrant tachycardias in acute ischemia: the large diameters of reentrant circuits and the beat-to-beat changes in localization of conduction block.  相似文献   

7.
Action potentials activate voltage-dependent calcium channels and attendant increases in cytosolic calcium concentration ([Ca2+]i) in many excitable cells. The role of these channels in the regulation of [Ca2+]i in nonspiking cells that do not depolarize to membrane potentials sufficient to activate a substantial fraction of the available current is less clear. Measurements of the peak activation and steady-state inactivation of L-type calcium currents have predicted the existence of a noninactivating current window over a voltage range where channel inactivation is incomplete. The degree to which such small currents might regulate [Ca2+]i, however, has not been established. Here we demonstrate a "calcium window" in nondialyzed, quiescent smooth muscle cells over a small voltage range near the resting membrane potential. Sustained depolarizations in this voltage range, but not to more positive potentials, resulted in sustained rises in calcium, despite the fact that macroscopic inward currents were < 2 pA. The calcium window corresponded well with the predicted window current determined under the same conditions; the peak of the calcium window occurred at -30 mV, with steady-state rises in [Ca2+]i in some cells at -50 mV. Steady-state rises in [Ca2+]i following depolarization were completely blocked by nisoldipine and were augmented and shifted to more negative potentials by BAY K8644. Voltage-dependent calcium channels thus regulate steady-state calcium levels in nonspiking cells over a voltage range where macroscopic currents are only barely detectable. This voltage range is bounded at negative potentials by calcium channel activation and at more positive potentials by channel inactivation.  相似文献   

8.
Small trabeculae were excised from the rabbit left atrium and exposed to 1 mmol . litre-1 Ba2+-Tyrode solution containing variable amounts of potassium (range: 10 to 25 mmol . litre-1). One end of the trabecula was stimulated by means of a suction electrode. Intracellular microelectrodes were employed for measuring membrane potentials. In presence of Ba2+, the cell depolarises and slow responses can be elicited. Slow responses thus obtained do not propagate. Slow response overshoot, maximum rate of rise and duration are depressed by increasing extracellular potassium concentrations ([K+]o). The resting potential decreases by 1 to 3 mV on changing [K+]o from 10 to 25 mmol . litre-1. The depression in slow response overshoot caused by [K+]o is compatible with an increase in the relationship between K+ and Ca2+ permeabilities as [K+]o increases. The dependence of slow response excitability on the frequency of stimulation is also depressed by [K+]o. The inhibition of slow response electrogenesis caused by extracellular potassium is an important phenomenon to consider in trying to understand the origin of certain cardiac arrhythmias.  相似文献   

9.
The ionic current underlying the upstroke of axonal action potentials is carried by rapidly activating, voltage-dependent Na+ channels. Termination of the action potential is mediated in part by the rapid inactivation of these Na+ channels. We previously demonstrated that an influx of Na+ plays a critical role in the cascade leading to irreversible anoxic injury in central nervous system white matter. We speculated that a noninactivating Na+ conductance mediates this pathological Na+ influx and persists at depolarized membrane potentials as seen in anoxic axons. In the present study we measured the resting compound membrane potential of rat optic nerves using a modified "grease-gap" technique. Application of tetrodotoxin (2 microM) to resting nerves ([K+]o = 3 mM) or to nerves depolarized by 15 or 40 mM K+ resulted in hyperpolarizing shifts of membrane potential. We interpret these shifts as evidence for a persistent, noninactivating Na+ conductance. This conductance is present at rest and persists in nerves depolarized sufficiently to abolish classical transient Na+ currents. PK/PNa ratios were estimated at 35.5, 23.2, and 88 in 3 mM, 15 mM, and 40 mM K+, respectively. We suggest that this noninactivating Na+ conductance may provide an inward pathway for Na+ ions, necessary for the operation of Na+, K(+)-ATPase. Under pathological conditions, such as anoxia, this conductance is the likely route of Na+ influx, which causes damaging Ca2+ entry through reverse operation of the Na(+)-Ca2+ exchanger. The presence of this conductance in white matter axons may provide a therapeutic opportunity for diseases such as stroke and spinal cord injury.  相似文献   

10.
Effects of concentrations of intracellular calcium, [Ca2+]i, on the voltage-dependent Ca2+ current (ICa) recorded from dispersed single smooth muscle cells of the rabbit portal vein were studied, using a whole cell voltage clamp method combined with an intracellular perfusion technique. Outward currents were minimized by replacement of Cs+ -rich solution in the pipette and 20 mM tetraethylammonium in the bath. The ICa was evoked by command pulses of above -30 mV, and the maximum amplitude was obtained at about 0 mV. This ICa was dose dependently inhibited by increases in the [Ca2+]i above 30 nM. The Kd value of the [Ca2+]i required to inhibit the ICa was about 100 nM. The Ba2+ current was also inhibited by increases in the [Ca2+]i. Conversely, perfusion of Ba2+ into the cell up to 100 microM did not suppress the ICa. Changes in the [Ca2+]i did not modify the steady-state inactivation curve. The inhibition of the ICa evoked by the test pulse is most prominent when the preceding influx of Ca2+ during the conditioning pulse was large, as estimated using a double pulse protocol. This inhibition was proportionally reduced by increases in the concentration of the Ca2+ chelator, ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). Therefore, the Ca2+ -dependent inactivation of the Ca2+ channel may contribute toward regulating [Ca2+]i in smooth muscle cells of the rabbit portal vein.  相似文献   

11.
Membrane potential was changed uniformly in segments, 0.7-1.0 mm long, of guinea pig papillary muscles excised from the right ventricle by using extracellular polarizing current pulses applied across two electrically insulated cf preparations superfused with Tyrode's solution at maximum diastolic membrane potentials ranging from-35.2+/-7.5 (threshold) to +4.0+/-9.2 mV. The average maximum dV/dt of RAD ranged from 17.1 to 18.0 V/sec within a membrane potential range of -40 to +20 mV. Raising extracellular Ca2+ concentration [Ca2+]0 from 1.8 to 6.8 mM, or application of isoproterenol (10(-6)g/ml) enhanced the rate of RAD, but lowering [Ca2+]0 to 0.4 mM or exposure to MnCl2 (6 mM) abolished RAD. RAD were enhanced by lowering extracellular K+ concentration [K+]0 from 5.4 to 1.5 mM. RAD were suppressed in 40% of fibers by raising [K+]0 to 15.4 mM, and in all fibers by raising [K+]0 to 40.4 mM. This suppression was due to increased [K+]0 and not to K-induced depolarization because it persisted when membrane potential was held by means of a conditioning hyperpolarizing puled gradually after maximum repolarization. These observations suggest that the development of RAD in depolarized myocardium is associated with a time-dependent decrease in outward current (probably K current) and with increase in the background inward current, presumably flowing through the slow cha-nel carrying Ca or Na ions, or both.  相似文献   

12.
Spontaneous and CRF-stimulated changes in the cytosolic free calcium concentration ([Ca2+]i) were studied in two types of corticotrophs: 1) cultured human ACTH-secreting pituitary adenoma cells (hACTH cells), and 2) identified small ovoid corticotrophs cultured from normal rat pituitaries. [Ca2+]i was monitored in individual corticotrophs by dual emission microspectrofluorimetry using indo-1 as the intracellular fluorescent Ca2+ probe. In hACTH cells, [Ca2+]i measurements were carried out in combination with electrophysiological recordings obtained using whole cell patch-clamp techniques. It was shown that a single spontaneous Ca(2+)-dependent action potential led to a marked transient increase in [Ca2+]i in human tumoral corticotrophs. Spontaneous fluctuations in [Ca2+]i were also observed in unpatched corticotrophs whether derived from human pituitary tumors or normal rat tissue. Based on their striking kinetic features and their sensitivity to external Ca2+, we suggest that these spontaneous [Ca2+]i transients were the consequence of action potential firing. Under separate voltage-clamp (patch-clamp) conditions, tumor corticotrophs showed two Ca2+ current components: a low threshold, rapidly inactivating (T-type) current, and a higher threshold, slowly inactivating (L-type) current. The dihydropyridine Ca2+ channel blocker PN 200-110 (100 nM) abolished the L-type current without affecting the T-type current, while the inorganic Ca2+ channel blocker Cd2+ (200 microM) suppressed both Ca2+ currents. The Na+ channel blocker tetrodotoxin (5 microM) did not affect inward currents in tumor corticotrophs. Both L- and T-type voltage-gated Ca2+ channels were involved in controlling [Ca2+]i transients in both tumor and normal corticotrophs, inasmuch as Cd2+ (200 microM) abolished [Ca2+]i) transients, while PN 200-110 (100 nM) greatly diminished, but did not completely abolish, [Ca2+]i transients. The latter did not appear to depend on a voltage-dependent Na+ influx, since they were unaffected by tetrodotoxin (5 microM). Corticotrophs generate [Ca2+]i transients in response to the hypothalamic secretagogue CRF by acting on their membrane excitability. Indeed, we demonstrated in combined fluorescent and electrophysiological experiments that CRF (100 nM) had a coordinate action on human tumoral corticotrophs comprised of a modest depolarization and an increase in the frequency of both action potentials and subsequent [Ca2+]i transients. A coincident increase in the peak amplitude of the [Ca2+]i transient and after hyperpolarization was also observed in some CRF-stimulated cells. CRF (100 nM) evoked qualitatively similar [Ca2+]i patterns in human tumoral and normal rat corticotrophs not subjected to patch-clamping.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
An electrically gated Na+ channel can be made to appear in the membrane of the Xenopus laevis oocyte by simple depolarization. This membrane normally responds passively to imposed transmembrane currents with resting potentials around -60 mV, but when it is held depolarized to more than about +30 mV it becomes possible to obtain long-lasting regenerative depolarizations up to +80 mV; these depolarizations can last as long as 20 min. This potential is due to an "induction" of a Na+-dependent channel that is electrically gated open and closed. Its threshold for opening is about -20 mV and it is selective for Na+ over Cs+ and choline+ but is blocked by relatively small quantities of Li+. When a long voltage clamp step to a positive potential under ENa (+70 to +90 mV) is applied, an inward current is observed for many minutes, implying that this channel does not have an inactivation mechanism. The inward Na+ current is blocked by 0.50 mM tetrodotoxin. When the membrane is held at or near resting potential, the excitability will disappear with time, but it can be made to reappear by again depolarizing the membrane.  相似文献   

14.
An early inward tail current evoked by membrane depolarization (from -80 to -40 mV) sufficient to activate sodium but not calcium current was studied in single voltage-clamped ventricular myocytes isolated from guinea pig hearts. Like forward-mode Na-Ca exchange, this early inward tail current required [Na+]o and [Ca2+]i and is thought to follow earlier reverse-mode Na-Ca exchange that triggers Ca2+ release from sarcoplasmic reticulum. The dependence of the early inward tail current on [Ca2+]i was supported by the ability of small (+10 mV) and large (+80 mV) voltage jumps from -40 mV to decrease and increase, respectively, the size of early inward tail currents evoked by subsequent voltage steps from -80 to -40 mV. As expected, tetrodotoxin selectively inhibited the early inward tail current but not the late inward tail current that followed voltage jumps to +40 mV test potentials. Although tetrodotoxin also blocked the fast Na+ current, replacement of extracellular Na+ by Li+ sustained the fast Na+ current. However, Li+, which does not support Na-Ca exchange, reversibly suppressed both the early and late inward tail currents. Inhibitors (ryanodine and caffeine) and promoters (intracellularly dialyzed inositol 1,4,5-trisphosphate) of sarcoplasmic reticulum Ca2+ release decreased and increased, respectively, the magnitude of the early inward tail current. The results substantiate the hypothesis that Ca2+ release from the sarcoplasmic reticulum participates in early Na-Ca exchange current and demonstrate that inositol 1,4,5-trisphosphate, by releasing Ca2+ from the sarcoplasmic reticulum, can promote Na-Ca exchange across the plasma membrane.  相似文献   

15.
Elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in excitable cells often acts as a negative feedback signal on firing of action potentials and the associated voltage-gated Ca2+ influx. Increased [Ca2+]i stimulates Ca2+-sensitive K+ channels (IK-Ca), and this, in turn, hyperpolarizes the cell and inhibits Ca2+ influx. However, in some cells expressing IK-Ca the elevation in [Ca2+]i by depletion of intracellular stores facilitates voltage-gated Ca2+ influx. This phenomenon was studied in hypothalamic GT1 neuronal cells during store depletion caused by activation of gonadotropin-releasing hormone (GnRH) receptors and inhibition of endoplasmic reticulum (Ca2+)ATPase with thapsigargin. GnRH induced a rapid spike increase in [Ca2+]i accompanied by transient hyperpolarization, followed by a sustained [Ca2+]i plateau during which the depolarized cells fired with higher frequency. The transient hyperpolarization was caused by the initial spike in [Ca2+]i and was mediated by apamin-sensitive IK-Ca channels, which also were operative during the subsequent depolarization phase. Agonist-induced depolarization and increased firing were independent of [Ca2+]i and were not mediated by inhibition of K+ current, but by facilitation of a voltage-insensitive, Ca2+-conducting inward current. Store depletion by thapsigargin also activated this inward depolarizing current and increased the firing frequency. Thus, the pattern of firing in GT1 neurons is regulated coordinately by apamin-sensitive SK current and store depletion-activated Ca2+ current. This dual control of pacemaker activity facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process may also provide a general mechanism for the integration of voltage-gated Ca2+ influx into receptor-controlled Ca2+ mobilization.  相似文献   

16.
Transient receptor potential (TRP) proteins are a diverse family of proteins with structural features typical of ion channels. TRPM5, a member of the TRPM subfamily, plays an important role in taste receptors, although its activation mechanism remains controversial and its function in signal transduction is unknown. Here we characterize the functional properties of heterologously expressed human TRPM5 in HEK-293 cells. TRPM5 displays characteristics of a calcium-activated, nonselective cation channel with a unitary conductance of 25 pS. TRPM5 is a monovalent-specific, nonselective cation channel that carries Na+, K+, and Cs+ ions equally well, but not Ca2+ ions. It is directly activated by [Ca2+]i at concentrations of 0.3-1 microM, whereas higher concentrations are inhibitory, resulting in a bell-shaped dose-response curve. It activates and deactivates rapidly even during sustained elevations in [Ca2+]i, thereby inducing a transient membrane depolarization. TRPM5 does not simply mirror levels of [Ca2+]i, but instead responds to the rate of change in [Ca2+]i in that it requires rapid changes in [Ca2+]i to generate significant whole-cell currents, whereas slow elevations in [Ca2+]i to equivalent levels are ineffective. Moreover, we demonstrate that TRPM5 is not limited to taste signal transduction, because we detect the presence of TRPM5 in a variety of tissues and we identify endogenous TRPM5-like currents in a pancreatic beta cell line. TRPM5 can be activated physiologically by inositol 1,4,5-trisphosphate-producing receptor agonists, and it may therefore couple intracellular Ca2+ release to electrical activity and subsequent cellular responses.  相似文献   

17.
Na(+)-Ca2+ exchange is proposed to be an important regulator of myoplasmic intracellular Ca2+ concentration ([Ca2+]i) and contraction in vascular smooth muscle. We investigated the role of Na(+)-Ca2+ exchange in regulating [Ca2+]i in swine carotid arterial tissues that were loaded with aequorin to allow simultaneous measurement of [Ca2+]i and force. Reversal of Na(+)-Ca2+ exchange, by reduction of extracellular Na+ concentration ([Na+]o) to 1.2 mM, induced a large increase in aequorin-estimated [Ca2+]i and a low [Ca2+]i sensitivity. The contraction induced by 1.2 mM [Na+]o was partially caused by depolarization and opening of L-type Ca2+ channels because 10 microM diltiazem partially attenuated the 1.2 mM [Na+]o-induced increases in [Ca2+]i. High dose ouabain (10 microM), a putative endogenous Na+,K(+)-ATPase inhibitor, increased both [Ca2+]i and force. However, the increases in [Ca2+]i and force were mostly blocked by 10 microM phentolamine, suggesting the predominant effect of ouabain was to increase norepinephrine release from nerve terminals. In the presence of 10 microM phentolamine, 10 microM ouabain slightly accentuated 1 microM histamine-induced increases in [Ca2+]i and force. The ouabain dose necessary to induce contraction in the absence of phentolamine was significantly less than the ouabain dose necessary to accentuate histamine-induced contractions in the presence of phentolamine. These results suggest that Na(+)-Ca2+ exchange exists in swine arterial smooth muscle. These data also suggest that ouabain (which should increase [Na+]i and inhibit Na(+)-Ca2+ exchange) primarily enhances contractile function in the swine carotid artery by releasing catecholamines from nerve terminals; direct action of Na+,K(+)-ATPase inhibitors on smooth muscle appears to occur only with very high doses.  相似文献   

18.
OBJECTIVE: The mechanism by which elevated extracellular potassium ion concentration ([K+]o) causes dilation of skeletal muscle arterioles was evaluated. METHODS: Arterioles (n = 111) were hand-dissected from hamster cremaster muscles, cannulated with glass micropipettes and pressurized to 80 cm H2O for in vitro study. The vessels were superfused with physiological salt solution containing 5 mM KCl, which could be rapidly switched to test solutions containing elevated [K+]o and/or inhibitors. The authors measured arteriolar diameter with a computer-based diameter tracking system, vascular smooth muscle cell membrane potential with sharp micropipettes filled with 200 mM KCl, and changes in intracellular Ca2+ concentration ([Ca2+]i) with Fura 2. Membrane currents and potentials also were measured in enzymatically isolated arteriolar muscle cells using patch clamp techniques. The role played by inward rectifier K+ (KIR) channels was tested using Ba2+ as an inhibitor. Ouabain and substitution of extracellular Na+ with Li+ were used to examine the function of the Na+/K+ ATPase. RESULTS: Elevation of [K+]o from 5 mM up to 20 mM caused transient dilation of isolated arterioles (27 +/- 1 microm peak dilation when [K+]o was elevated from 5 to 20 mM, n = 105, p <.05). This dilation was preceded by transient membrane hyperpolarization (10 +/-1 mV, n = 23, p <.05) and by a fall in [Ca2+]i as indexed by a decrease in the Fura 2 fluorescence ratio of 22 +/- 5% (n = 4, p <.05). Ba(2+) (50 or 100 microM) attenuated the peak dilation (40 +/- 8% inhibition, n = 22) and hyperpolarization (31 +/- 12% inhibition, n = 7, p <.05) and decreased the duration of responses by 37 +/-11% (n = 20, p < 0.05). Both ouabain (1 mM or 100 microM) and replacement of Na+ with Li+ essentially abolished both the hyperpolarization and vasodilation. CONCLUSIONS: Elevated [K+]o causes transient vasodilation of skeletal muscle arterioles that appears to be an intrinsic property of the arterioles. The results suggest that K+-induced dilation involves activation of both the Na+/K+ ATPase and KIR channels, leading to membrane hyperpolarization, a fall in [Ca2+]i, and culminating in vasodilation. The Na+/K+ ATPase appears to play the major role and is largely responsible for the transient nature of the response to elevated [K+]o, whereas KIR channels primarily affect the duration and kinetics of the response.  相似文献   

19.
Inotropic interventions were compared with respect to their maximum effect on force of contraction in rat myocardium to identify limiting steps in calcium handling. Peak force, sarcomere length, and action potentials were measured in thin ventricular trabeculae. Relevant control conditions were stimulation frequency, 0.2 Hz; [Ca2+]o, 1 mM; [K+]o, 5 mM; [Na+]o, 150 mM. The inotropic interventions and results were as follows. 1) The interventions of high [Ca2+]o, low [Na+]o, high [K+]o, addition of tetraethylammonium chloride, or postextrasystolic potentiation resulted in approximately the same (within 5%) maximum force (Fmax). Above the respective optimum doses, force declined and aftercontractions were often observed. Combinations of the different interventions never enhanced force to above Fmax. This suggests that Fmax is determined by a maximum level of Ca2+ in the sarcoplasmic reticulum, above which spontaneous release occurs. 2) Sr2+ (10 mM) caused an increase of force to 1.3 X Fmax and lengthening of contraction and action potentials. The force-sarcomere length relation was, then, similar to that in skinned fibers at maximum activation. Hence, 1.3 X Fmax reflects saturation of the sarcomeres. We postulate that a large influx of Sr2+ during the long action potential can circumvent the reticulum and activate the sarcomeres directly. When the reticulum was blocked with ryanodine, maximum force of tetanic contractions was about 1.1 X Fmax. This result supports the above conclusions. 3) Isoproterenol increased force to a maximum that was 20% below Fmax and shortened the contraction. This may be due to a decreased sensitivity of the sarcomeres to Ca2+ or to stimulation of the Ca2+ pump in the reticulum, that is, an increasing fraction of the released Ca2+ is sequestered before it can activate the sarcomeres. Thus, three factors that limit force production were identified, depending on the inotropic stimulus.  相似文献   

20.
The relationships between the activation status of voltage-sensitive Ca2+ channels and secretory responses were analyzed in perfused rat gonadotrophs during stimulation by high extracellular K+ concentration ([K+]e) or the physiological agonist, gonadotropin-releasing hormone (GnRH). Increase of [K+]e to 50 mM evokes an on-off secretory response, with a rapid rise in luteinizing hormone (LH) secretion to a peak at 35 sec (on response) followed by an exponential decrease to the steady-state level. Cessation of K+ stimulation elicits a transient (off) response followed by an exponential decrease to the basal level. The LH response to high [K+]e is nifedipine-sensitive and its amplitude depends on membrane potential. There is a close relationship between the LH secretory response to high [K+]e and the amplitude of the inward Ca2+ current measured at 100 msec in whole-cell patch clamp experiments. In addition, the profile of the LH secretory response is similar to that of the response of intracellular Ca2+ concentration ([Ca2+]i) in K(+)-stimulated cells. In Ca2(+)-deficient medium, the effect of high [K+]e is abolished; subsequent elevation of [Ca2+]e during the K+ pulse is followed by restoration of the on response, but with reduced magnitude. Agonist stimulation during the steady-state phase of the [K+]e pulse or after repetitive stimulation by high [K+]e elicited biphasic [Ca2+]i and secretory responses with a significantly reduced plateau phase; conversely, K(+)-induced LH release was reduced in cells treated with desensitizing doses of GnRH. These findings indicate that depolarization-induced changes in the status of voltage-sensitive Ca2+ channels determine the profiles of [Ca2+]i and LH responses to stimulation by high [K+]e; the initial activation of dihydropyridine-sensitive Ca2+ channels is clearly dependent on membrane potential, whereas their subsequent inactivation depends on increased [Ca2+]i. Such inactivation of voltage-sensitive Ca2+ channels also occurs during GnRH action and may represent an additional regulatory mechanism to limit the entry of extracellular Ca2+ during prolonged or frequent agonist stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号