首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The purpose of the present study was to describe in greater anatomical detail the changes in brain structure that occur during maturation between childhood and adolescence. High-resolution MRI, tissue classification, and anatomical segmentation of cortical and subcortical regions were used in a sample of 35 normally developing children and adolescents between 7 and 16 years of age (mean age 11 years; 20 males, 15 females). Each cortical and subcortical measure was examined for age and sex effects on raw volumes and on the measures as proportions of total supratentorial cranial volume. Results indicate age-related increases in total supratentorial cranial volume and raw and proportional increases in total cerebral white matter. Gray-matter volume reductions were only observed once variance in total brain size was proportionally controlled. The change in total cerebral white-matter proportion was significantly greater than the change in total cerebral gray-matter proportion over this age range, suggesting that the relative gray-matter reduction is probably due to significant increases in white matter. Total raw cerebral CSF volume increases were also observed. Within the cerebrum, regional patterns varied depending on the tissue (or CSF) assessed. Only frontal and parietal cortices showed changes in gray matter, white matter, and CSF measures. Once the approximately 7% larger brain volume in males was controlled, only mesial temporal cortex, caudate, thalamus, and basomesial diencephalic structures showed sex effects with the females having greater relative volumes in these regions than the males. Overall, these results are consistent with earlier reports and describe in greater detail the regional pattern of age-related differences in gray and white matter in normally developing children and adolescents.  相似文献   

2.
The question whether body height is related to different brain size measures has recently gained renewed interest as some studies have reported that body height correlates with intelligence and several brain size measures. In this study, we re‐evaluated this question by examining the relationship between body height and different brain size measures including intracranial volume, total brain volume, total cortical surface area, total cortical volume, volume of normal‐appearing white matter, white matter hyperintensity, cortical surface area, cortical thickness, subcortical grey matter volume, cerebellar cortex and cerebellar white matter in a relatively large sample (n = 216) of physically and cognitively healthy elderly subjects (mean age 71 years, age range 65–85 years). We identified small correlations (r = .11–.19) between body height and seven out of 10 brain metrics (total brain volume, cortical surface area, cortical volume, subcortical volume, normal‐appearing white matter volume and cerebellar grey as well as white matter volumes) when controlling for sex and age. Based on these small relationships between body height and various brain size measures, we discuss the possible reasons and theoretical problems for these small relationships.  相似文献   

3.
Theories of adult brain development, based on neuropsychological test results and structural neuroimaging, suggest differential rates of age‐related change in function across cortical and subcortical sub‐regions. However, it remains unclear if these trends also extend to the aging dopamine system. Here we examined cross‐sectional adult age differences in estimates of D2‐like receptor binding potential across several cortical and subcortical brain regions using PET imaging and the radiotracer [18F]Fallypride in two samples of healthy human adults (combined N = 132). After accounting for regional differences in overall radioligand binding, estimated percent difference in receptor binding potential by decade (linear effects) were highest in most temporal and frontal cortical regions (~6–16% per decade), moderate in parahippocampal gyrus, pregenual frontal cortex, fusiform gyrus, caudate, putamen, thalamus, and amygdala (~3–5%), and weakest in subcallosal frontal cortex, ventral striatum, pallidum, and hippocampus (~0–2%). Some regions showed linear effects of age while many showed curvilinear effects such that binding potential declined from young adulthood to middle age and then was relatively stable until old age. Overall, these data indicate that the rate and pattern of decline in D2 receptor availability is regionally heterogeneous. However, the differences across regions were challenging to organize within existing theories of brain development and did not show the same pattern of regional change that has been observed in gray matter volume, white matter integrity, or cognitive performance. This variation suggests that existing theories of adult brain development may need to be modified to better account for the spatial dynamics of dopaminergic system aging.  相似文献   

4.
The present study analyzes the relationship between cortical and subcortical brain volumes in patients with Huntington's disease. The brains of seven patients with a clinical diagnosis and positive family history of Huntington's disease and 12 controls were collected at autopsy with consent from relatives. Detailed clinical assessments were available for all study subjects with genotype confirmation for patients with Huntington's disease. Volume analysis of the brain on serial 3-mm coronal slices was performed as previously described. All patients with Huntington's disease exhibited significant brain atrophy resulting from volume reductions in both cortical and subcortical grey matter. Atrophy of the cortex was relatively uniform, although the medial temporal lobe structures were spared. The caudate nucleus and putamen were strikingly reduced in all cases and this atrophy correlated with the severity of cortical atrophy, suggesting an associated disease process. The rate of cortical but not subcortical atrophy correlated with CAG repeat numbers. Loss of frontal white matter correlated with both cortical and striatal atrophy. Age of onset of chorea correlated with the amount of subcortical atrophy, while duration of chorea correlated negatively with atrophy of the white matter. These results suggest a more widespread and global disease process in patients with Huntington's disease.  相似文献   

5.
Regional brain morphometry and lissencephaly in the Sirenia   总被引:1,自引:0,他引:1  
Neuroanatomical structure was examined in the brains of West Indian manatees (Trichechus manatus) using computer-based morphometric methods. Although manatees have a small relative brain size, volume estimates of the major brain regions indicate that the telencephalon comprises 71% of total brain volume and is 90% cerebral cortex. These values are comparable to those seen among a diversity of taxa having large relative brain size, including many primates. Manatee brains also exhibit well-defined cortical lamination. The measured gyration index (an index of cortical folding) was 1.06, representing a highly lissencephalic condition. These findings demonstrate that small relative brain size and lissencephaly do not constrain the elaboration of internal brain structures. The marked lissencephalic condition is unusual for brains of this absolute size range, and may be related to the thickness of the cortical gray matter and underlying white matter.  相似文献   

6.
Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies.  相似文献   

7.
Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both.  相似文献   

8.
A quantitative technique involving serial sectioning and semiautomatic morphometric analysis was used to assess the severity of the reduction in size of the major brain structures in cerebral hemispheres of children congenitally infected with HIV-1. Cerebral hemispheres from 12 children (18–48 months of age) who died of AIDS were sectioned into 5-mm-thick serial slabs and photographed. The cross-sectional areas of grossly recognizable brain structures were digitized, and the volumes were calculated according to Cavalieri’s principle. The results were compared with those of an identically processed group of control brains from non-AIDS children. Analysis of the brain weight showed that there was a significant reduction in supratentorial and infratentorial weight in the AIDS group. The results of the morphometric study revealed that the loss in brain mass was associated with a statistically significant reduction in the total volume of both hemispheres, the entire cortex, white matter, and basal ganglia. Detailed analysis of individual brain structures also showed a significant reduction in volume of all cortical regions and most of the subcortical gray matter (e.g., caudate nucleus, putamen, globus pallidus, claustrum, and thalamus). It appears that in the microencephaly observed as a frequent sequel in pediatric AIDS, the loss of brain tissue is global and includes an almost proportional loss of cortex, subcortical gray matter and white matter. Received: 18 July 1995 / Revised: 17 July 1996 / Accepted: 22 August 1996  相似文献   

9.
We characterized the regional and temporal patterns of neuronal injury and axonal degeneration after controlled cortical impact of moderate severity in mice at postnatal day 21. Animals were euthanized at 1, 3, or 7 days after injury or sham operation. The brains were removed and prepared for immunolocalization of neurons and microglia/macrophages or subjected to Fluoro-Jade and silver stains, indicators of irreversible neuronal cell injury and axonal degeneration. There was significant neuronal loss in both the ipsi- and the contralateral cortices, ipsilateral hippocampus, and ipsilateral thalamus by 7 days post injury compared to sham-operated animals. Activated microglia/macrophages were most prominent in regions of neuronal loss including the ipsilateral cortex, hippocampus, and thalamus. Neuronal injury, as evidenced by Fluoro-Jade labeling, was not apparent in sham-operated animals. In injured animals, labeling was identified in the ipsilateral cortex and hippocampus at 1 and 3 days post injury. Silver- and Fluoro-Jade-labeled degenerating axons were observed in the ipsilateral subcortical white matter by 1 day post injury, in the ipsilateral external capsule, caudate putamen, and contralateral subcortical white matter by 3 days post injury, and in the internal capsule, pyramidal tracts, and cerebellar peduncles by 7 days post injury. Our findings demonstrate that controlled cortical impact in the developing brain generates neuronal loss in both the ipsilateral and the contralateral cortex, a temporally distinct pattern of subcortical neuronal injury/death, and widespread white matter damage. These observations serve as an important baseline for studying human brain injury and optimizing therapies for the brain-injured child.  相似文献   

10.
The cause of acquired immunodeficiency syndrome (AIDS) dementia, which is a frequent late manifestation of human immunodeficiency virus (HIV) infection, is unknown but radiological and pathological studies have implicated alterations in subcortical white matter. To investigate the pathological basis of these white matter abnormalities, we performed an immunocytochemical and histological analysis of subcortical white matter from AIDS patients with and without dementia, from pre-AIDS patients (asymptomatic HIV-seropositive patients), and from HIV-seronegative control subjects. Reduced intensity of Luxol fast blue staining, designated “diffuse myelin pallor,” was detected in 8 of 15 AIDS dementia patients, 3 of 13 AIDS nondemented patients, and none of the pre-AIDS patients (n = 2) or control subjects (n = 9). In contrast to Luxol fast blue staining, sections stained immunocytochemically for myelin proteins did not show decreased staining intensities in regions of diffuse myelin pallor. In addition, neither demyelinated axons nor active demyelination were detected in light and electron micrographs of subcortical white matter from brains of patients with AIDS dementia. An increase in the number of perivascular macrophages and hypertrophy of astrocytes and microglia occurred in brain sections from HIV-infected patients. These changes were not specific to dementia or regions of diffuse myelin pallor and they occurred in both gray and white matter. In contrast to the lack of myelin pathology in AIDS dementia brains, significant accumulations of serum proteins in white matter glia were detected in the brains of 12 of 12 patients with AIDS dementia and 6 of 12 AIDS patients without dementia. Serum protein-immunopositive cortical neurons were detected in the frontal cortex of 11 of 12 patients with AIDS dementia and 3 of 12 nondemented AIDS patients. Seronegative control subjects showed minimal serum protein immunoreactivity in both cortex and white matter. We conclude therefore that alterations in the blood-brain barrier and not demyelination contribute to the development of AIDS dementia.  相似文献   

11.
Cerebral atrophy is a well-described, but poorly understood complication of human immunodeficiency virus (HIV) infection. Despite reduced prevalence of HIV-associated dementia in the highly active antiretroviral therapy (HAART) era, HIV continues to affect the brains of patients with chronic infection. In this study we examine patterns of brain volume loss in HIV-infected patients on HAART, and demographic and clinical factors contributing to brain volume loss. We hypothesized that nadir CD4+ lymphocyte count, duration of HIV infection, and age would be associated with reduced cortical volumes. Volumes of cortical and subcortical regions in 69 HIV-infected neuroasymptomatic (NA) individuals and 13 with at least mild acquired immunodeficiency syndrome (AIDS) dementia complex (ADC) were measured using voxel-based morphometry. Demographic and clinical factors (age, plasma HIV RNA level, current and nadir CD4 counts, duration of infection, central nervous system [CNS] penetration of antiretroviral regimen) along with their interactions were entered into a regression model selection algorithm to determine the final models that best described regional brain volumes. Relative to NA, individuals with ADC exhibited decreased total gray matter and parietal cortex volumes and increased total ventricular volumes. Final regression models showed overall cerebral volume, including gray and white matter volume and volumes of the parietal, temporal, and frontal lobes and the hippocampus, were most strongly associated with disease history factors (nadir CD4 and duration of infection). In contrast, basal ganglia volumes were related most strongly to current disease factors, most notably plasma HIV RNA. These findings indicate that individuals with a history of chronic HIV infection with previous episodes of severely impaired immune function, as reflected by reduced nadir CD4+ lymphocyte count, may be at greatest risk for cerebral atrophy. The pattern of HIV-associated brain loss may be changing from a subcortical to a cortical disease among patients who are largely asymptomatic on HAART.  相似文献   

12.
A study was performed to determine whether the thickness of the cerebral cortex remains unchanged during agerelated brain atrophy in the normal elderly (physiological brain atrophy of the elderly). Thirty autopsied brains from normal subjects (normal brains; patient age 65–96 years) and two from patients with Alzheimer-type dementia (ATD brains; patient age 90 and 101 years) were analyzed. Volumes of the fresh brain and intracranial cavity were measured at autopsy to estimate the degree of brain atrophy using the ratio of fresh brain volume to intracranial cavity volume (BV/ICV ratio). Each brain was then fixed, and sliced coronally at 1.0 cm intervals. Each cut surface was photographed, and input to a personal computer. Then, the cross-sectional areas of the cortex and the white matter, and the perimeter of the cortex were measured to calculate the volumes of the cortex and the white matter. For normal brains, the cortical thickness was constant (0.27 ± 0.01 cm), regardless of age and the BV/ICV ratio. In addition, the volume ratio of the cortex to the white matter remained unchanged, regardless of the brain volume or BV/ICV ratio. These results show that the cortical thickness remains constant regardless of the degree of brain atrophy or cortical atrophy. In the two ATD brains, the cortical thickness was 0.23 and 0.21 cm, being less than that of any of the normal brains. Thus, the mean cortical thickness remains unchanged in physiological brain atrophy of the elderly, and a decrease in cortical thickness can be a pathological phenomenon.  相似文献   

13.
IntroductionRepetitive behaviour and inhibitory control deficits are core features of autism; and it has been suggested that they result from differences in the anatomy of striatum; and/or the ‘connectivity’ of subcortical regions to frontal cortex. There are few studies, however, that have measured the micro-structural organisation of white matter tracts connecting striatum and frontal cortex.AimsTo investigate differences in bulk volume of striatum and micro-structural organisation of fronto-striatal white matter in people with autism; and their association with repetitive behaviour and inhibitory control.MethodsWe compared the bulk volume of striatum (caudate nucleus, putamen and nucleus accumbens) and white matter organisation of fronto-striatal tracts using (respectively) structural magnetic resonance imaging (sMRI) and tract specific diffusion tensor imaging (DTI) measures in 21 adults with autism and 22 controls. We also assessed performance on a cognitive inhibition (go/nogo) task.ResultsBulk volume of striatal structures did not differ between groups. However, adults with autism had a significantly smaller total brain white matter volume, lower fractional anisotropy of white matter tracts connecting putamen to frontal cortical areas, higher mean diffusivity of white matter tracts connecting accumbens to frontal cortex and worse performance on the go/nogo task. Also, performance on the go/nogo task was significantly related to anatomical variation when both groups were combined; but not within the autism group alone.ConclusionsThese data suggest that autism may be associated with differences in the anatomy of fronto-striatal white matter tracts.  相似文献   

14.
There is cumulative evidence that young people in an “at-risk mental state” (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS.Key words: magnetic resonance imaging, voxel-based morphometry, surface-based morphometry, early psychosis, schizophrenia  相似文献   

15.
Lüders E  Steinmetz H  Jäncke L 《Neuroreport》2002,13(17):2371-2374
Magnetic resonance imaging was used to evaluate the influence of sex and brain size on compartmental brain volumes (grey matter, white matter, CSF) in a large and well-matched sample of neurologically normal women (n = 50) and men (n = 50). As expected, we found a significant sex difference for the absolute volumes of total brain, grey matter, white matter and CSF, with greater volumes for men. Relating these compartmental volume measures to brain volume resulting in proportional volume measures revealed a higher proportion of grey matter in women. No significant sex differences were found for white matter and CSF proportions. However, when the influence of sex was partialized out by regression analyses, brain volume explained 40-81% of the variance of the absolute grey matter, white matter and CSF volumes. Performing these regression analyses for the proportional volume measures revealed that brain volume explained approximately 16% of the variance in grey matter proportion. Sex or the interaction between sex and brain volume revealed no additional predicitve values. Interestingly, the correlation between brain volume and grey matter proportion was negative, with larger brains exhibiting relatively smaller proportions of grey matter. Thus, sex is not the main variable explaining the variability in grey matter volume. Rather, we suggest that brain size is the main variable determining the proportion of grey matter.  相似文献   

16.
Previous brain-imaging studies have reported that major depressive disorder (MDD) is characterized by decreased volumes of several cortical and subcortical structures, including the hippocampus, amygdala, anterior cingulate cortex, and caudate nucleus. The purpose of the present study was to identify structural volumetric differences between MDD and healthy participants using a method that allows a comparison of gray and white matter volume across the whole brain. In addition, we explored the relation between symptom severity and brain regions with decreased volumes in MDD participants. The study group comprised 22 women diagnosed with MDD and 25 healthy women with no history of major psychiatric disorders. Magnetic resonance brain images were analyzed using optimized voxel-based morphometry to examine group differences in regional gray and white matter volume. Compared with healthy controls, MDD participants were found to have decreased gray matter volume in the bilateral caudate nucleus and the thalamus. No group differences were found for white matter volume, nor were there significant correlations between gray matter volumes and symptom severity within the MDD group. The present results suggest that smaller volume of the caudate nucleus may be related to the pathophysiology of MDD and may account for abnormalities of the cortico-striatal-pallido-thalamic loop in MDD.  相似文献   

17.
BACKGROUND: Larger gray matter (GM) volume in healthy children is correlated with higher IQ. Children with neurofibromatosis type 1 (NF1) have larger brains, their magnetic resonance images frequently show T2-weighted hyperintensities, and their IQs are lower. OBJECTIVES: To confirm the hypotheses that (1) children with NF1 have larger GM and white matter volumes, (2) the greatest volume differences are in the frontal and parietal regions and in children with NF1 with hyperintensities, and (3) GM volume is inversely related to IQ in children with NF1. DESIGN: Wechsler Intelligence Scale for Children-Third Edition IQ testing and measurement of cerebral volumes and hyperintensities in brain magnetic resonance images were performed on 36 children with NF1 and on 36 matched relatives who served as control subjects. RESULTS: Gray matter and white matter volumes were significantly larger in children with NF1. The greatest difference was observed in cerebral white matter volume, predominantly in the frontal lobes, whereas the greatest difference in GM volume was in the temporal, parietal, and occipital regions. In controls, IQ was significantly related to GM volume, but in children with NF1, IQ was not inversely associated with GM volume, although IQs of children with NF1 were significantly lower. CONCLUSIONS: Children with NF1 do not have the normal relationship between GM volume and IQ. Larger GM volume in the posterior brain regions and larger white matter volumes in the frontal brain regions contribute to the larger brain volume in children with NF1.  相似文献   

18.
Previous research studies have reported many hemispherical asymmetries in cortical and subcortical anatomy, but only a subset of findings is consistent across studies. Here, we used improved Freesurfer-based automated methods to analyse the properties of the cortex and seven subcortical structures in 138 young adult subjects. Male and female subjects showed similar hemispheric asymmetries in gyral and sulcal structures, with many areas associated with language processing enlarged in the left hemisphere (LH) and a number of areas associated with visuospatial processing enlarged in the right hemisphere (RH). In addition, we found greater (non-directional) cortical asymmetries in subjects with larger brains. Asymmetries in subcortical structures included larger LH volumes of thalamus, putamen and globus pallidus and larger RH volumes of the cerebellum and the amygdala. We also found significant correlations between the subcortical structural volumes, particularly of the thalamus and cerebellum, with cortical area. These results help to resolve some of the inconsistencies in previous studies of hemispheric asymmetries in brain anatomy.  相似文献   

19.
Alcohol-induced brain changes in dogs   总被引:4,自引:0,他引:4  
We studied the neuropathologic effects of chronic alcohol ingestion on the brains of healthy, well-nourished, male mongrel dogs. Five experimental dogs were provided 36% of their calories as ethyl alcohol for 1 year. Following killing, their brains were weighed, photographed, sectioned, and processed for computerized morphometric determinations of ventricular size, cortical thickness, and neocortical neuron and glial cell populations. Compared with a similarly handled control group, the alcoholic dog brains showed lateral ventricular enlargement, cortical thinning in the temporal lobe only, and fewer glial cells in the temporal and frontal cortices. There were no statistically significant differences between the alcoholic and control groups in brain weight, frontal or parietal cortical thickness, or neocortical neuron populations. These results imply a disproportionate vulnerability of white matter to the damaging effects of alcohol with consequent lateral ventricular enlargement, and some regional variation in neocortical susceptibility to alcohol-induced cortical thinning and glial cell loss. In general, such changes are consistent with those described in neuroradiologic imaging studies of human alcoholics.  相似文献   

20.
Regional differences in human brain development during infancy have been studied for many years, but little is known about how regionalization of the brain proceeds during intrauterine life. We investigated the regionalization of cerebral volume and cortical convolutions based on the volumetric magnetic resonance images (MRIs) of 43 fetuses, ranging from 21 to 37 weeks of gestation. Two plausible parcellations of MRI are proposed, and curvature index together with gyrification index are used to quantify the regional cortical convolutions. Our results elucidate that the cortical foldings among different brain regions develop at comparable rates, suggesting a similar uniformity of changes in size of the cortical sheet in these regions over time. On the contrary, the growth of the cerebral volume presents regional difference, with the frontal and parieto-temporal regions growing significantly faster than other regions due to the contribution from expansion of basal ganglia. This quantitative regional information suggests that cerebral volume is not a relevant parameter to measure in relation to gyrification, and that the size of the cortical sheet is more likely to be directly related to cortical folding. The availability of quantitative regional information on normal fetal brains in utero will allow clinical application of this information when probing neurodevelopmental disorders in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号