首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tegaserod is a 5-HT(4) receptor partial agonist approved for the treatment of irritable bowel syndrome in women with constipation and in both men and women with chronic constipation. The efficacy of tegaserod is based on the importance of 5-HT(4) receptors regulating intestinal peristalsis and secretion, and possibly visceral sensory pathways. Our aim was to investigate the effect of tegaserod on colorectal sensitivity using models of normal and exaggerated responsiveness to colorectal distension (CRD). The visceromotor responses (VMR) to CRD at graded pressures (0-60 mmHg) were measured by the number of reflex abdominal contractions. Acute colorectal hypersensitivity was induced by intracolonic infusion of dilute acetic acid. Chronic hypersensitivity was observed in rats following spontaneous resolution of trinitrobenzenesulfonic acid-induced colitis. Rats with normosensitive colons served as controls. Tegaserod (0.1-10 mg kg(-1)) caused dose-dependent reduction of the VMR to CRD in control rats and in those with colonic hypersensitivity. 5-HT(4) antagonists reversed the effects of tegaserod in rats with normosensitive colons, and partially inhibited effects in rats with colonic hypersensitivity. Central administration of tegaserod had no inhibitory effect. These results support the assumption that colonic hypersensitivity could be normalized by tegaserod acting, at least in part, through peripheral 5-HT(4) receptors.  相似文献   

2.
Activation of 5-HT(1B) receptors is thought to play an important role in the inhibitory influence of serotonin on feeding behaviour and body weight in mammals. Earlier studies have shown that 5-HT(1B)-knockout (KO) mice eat more and are heavier than wild-type (WT) controls and that the selective 5-HT(1B) receptor agonist CP-94,253 reduces food intake in food-deprived mice. Here we characterize the behavioural effects of both CP-94,253 and the selective 5-HT(1B) receptor antagonist SB224289 on feeding and other behaviours within the behavioural satiety sequence, and also report a c-fos mapping study using CP-94,253. CP-94,253 produced a dose-dependent suppression of food intake with a profile consistent with a selective effect on feeding behaviour. These effects were absent or reduced in 5-HT(1B)-KO mice and in WT mice pretreated with SB224289. SB224289 administered alone enhanced food intake consistent with impaired satiation; a similar effect was apparent in 5-HT(1B)-KO mice compared to WT. CP-94,253 induced c-fos in a range of structures previously implicated in the expression of feeding behaviour. These results suggest that the activation of 5-HT(1B) receptors is an important component of endogenous satiation mechanisms in the mouse.  相似文献   

3.
Abstract  Since metoclopramide was first described (in 1964) there have been several attempts to develop compounds which retained gastrointestinal prokinetic activity (via 5-HT4 receptor activation) but without the limiting side effects associated with dopamine D2 receptor antagonism. Early compounds (mosapride, cisapride, renzapride, tegaserod) were identified before several of the 5-HT receptors were even described (including 5-HT4 and 5-HT2B), whereas prucalopride came later. Several compounds were hampered by non-selectivity, introducing cardiac liability (cisapride: activity at human Ether-a-go-go Related Gene) or potentially, a reduced intestinal prokinetic activity caused by activity at a second 5-HT receptor (renzapride: antagonism at the 5-HT3 receptor; tegaserod: antagonism at the 5-HT2B receptor). Poor intrinsic activity at gastrointestinal 5-HT4 receptors has also been an issue (mosapride, tegaserod). Perhaps prucalopride has now achieved the profile of good selectivity of action and high intrinsic activity at intestinal 5-HT4 receptors, without clinically-meaningful actions on 5-HT4 receptors in the heart. The progress of this compound for treatment of chronic constipation, as well as competitor molecules such as ATI-7505 and TD-5108, will now be followed with interest as each attempts to differentiate themselves from each other. Perhaps at last, 5-HT4 receptor agonists are being given the chance to show what they can do.  相似文献   

4.
Recent evidence that 5-hydroxytryptamine (5-HT or serotonin) enhances the release and the gene expression of vasopressin and oxytocin in the hypothalamic paraventricular nucleus (PVN) suggests that 5-HT can excite the PVN magnocellular neurons. The objective of this study was to examine the underlying mechanisms for such excitatory action in the electrophysiologically identified hypothalamic PVN magnocellular neurons in rats using whole-cell patch-clamp. We found that 5-HT weakly depolarizes 33.3% of PVN magnocellular neurons in the presence of tetrodotoxin. A minuscule inward current was produced by 5-HT in 48% of the cells, which was attenuated when the 5-HT(4) antagonist GR113808 or the 5-HT(7) antagonist SB269970 was added. In addition, 5-HT reduced the frequency of miniature inhibitory postsynaptic currents in a dose-dependent manner. This inhibition was mimicked by the 5-HT(1B) agonist CP93129, and reversed in the presence of 5-HT(1B) antagonists cyanopindolol and SB224289. Besides, 5-HT induced a biphasic effect on the frequency of miniature excitatory postsynaptic currents, comprising a transient inhibition and a delayed concentration-dependent excitation (onset latency approximately 5 min). The facilitation was mimicked by the 5-HT(2A/2C) agonist DOI and abolished in the presence of the 5-HT(2C) antagonist RS102221. Our findings reveal that 5-HT directly increases the excitability of the PVN magnocellular neurons via multiple receptor subtypes and mechanisms. This may help understanding the regulation of 5-HT-induced hormone release and feeding behavior in the PVN.  相似文献   

5.
Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.  相似文献   

6.
Serotonin (5-HT), 5-HT agonists, the 5-HT precursor 5-hydroxytryptophan, 5-HT-releasers and -reuptake inhibitors stimulate the release of vasopressin and oxytocin. We investigated the involvement of 5-HT receptors in the serotonergic regulation of vasopressin and oxytocin secretion. Vasopressin and oxytocin secretion was stimulated by 5-HT, the 5-HT(1A+1B+5A+7) agonist 5-carboxamidotryptamine (5-CT), the 5-HT(2A+2C) agonist DOI, the 5-HT(2C+2A) agonist mCPP, the 5-HT(2C) agonist MK-212, the 5-HT(3) agonist SR 57277 and the 5-HT(4) agonist RS 67506. The 5-HT(1A) agonist 8-OH-DPAT, which had no effect on vasopressin secretion, stimulated oxytocin secretion. The 5-HT-induced release of vasopressin and oxytocin was inhibited by central infusion of the 5-HT antagonists WAY 100635 (5-HT(1A)), LY 53857 (5-HT(2A+2C)), ICS 205-930 (5-HT(3+4)) and RS 23597 (5-HT(4)). The 5-HT2+6+7 antagonist metergoline in combination with the 5-HT1A+2+7 antagonist methysergide inhibited the stimulatory effect of 5-CT on both hormones, whereas the 5-HT1A+1B antagonist cyanopindolol only inhibited the oxytocin response. The 5-HT(2A) antagonist 4-(4-flourobenzoyl)-1-(4-phenylbutyl)-piperidine oxalate had no effect on DOI-induced hormone response. The 5-HT(2C) antagonist Y 25130 partly inhibited the stimulating effect of MK-212. ICS 205-930 and RS 23597 inhibited vasopressin and oxytocin secretion induced by RS 67506. WAY 100635 inhibited 8-OH-DPAT-induced oxytocin secretion. We conclude that 5-HT-induced vasopressin secretion primarily is mediated via 5-HT(2C), 5-HT(4) and 5-HT(7) receptors, whereas 5-HT(2A), 5-HT(3) and 5-HT(5A) receptors seem to be of minor importance. 5-HT-induced oxytocin secretion involves 5-HT(1A), 5-HT(2C) and 5-HT(4) receptors; in addition an involvement of 5-HT(1B), 5-HT(5A) and 5-HT(7) receptors seems likely, whereas 5-HT(2A) and 5-HT(3) receptors seem to be less important.  相似文献   

7.
Actions of the 5-HT(4) serotonergic receptor partial agonist, tegaserod, were investigated on mucosal secretion in the guinea-pig and human small intestine and on electrophysiological behaviour of secretomotor neurons in the guinea-pig small intestinal submucosal plexus. Expression of 5-HT(4) receptor protein and immunohistochemical localization of the 5-HT(4) receptor in the submucosal plexus in relation to expression and localization of choline acetyltransferase and the vesicular acetylcholine (ACh) transporter were determined for the enteric nervous system of human and guinea-pig small intestine. Immunoreactivity for the 5-HT(4) receptor was expressed as ring-like fluorescence surrounding the perimeter of the neuronal cell bodies and co-localized with the vesicular ACh transporter. Exposure of mucosal/submucosal preparations to tegaserod in Ussing chambers evoked increases in mucosal secretion reflected by stimulation of short-circuit current. Stimulation of secretion had a relative high EC(50) of 28.1 +/- 1.3 mumol L(-1), was resistant to neural blockade and appeared to be a direct action on the secretory epithelium. Tegaserod acted at presynaptic 5-HT(4) receptors to facilitate the release of ACh at nicotinic synapses on secretomotor neurons in the submucosal plexus. The 5-HT(2B) receptor subtype was not involved in actions at nicotinic synapses or stimulation of secretion.  相似文献   

8.
It has been suggested that serotonin (5-hydroxytryptamine) type-4 (5-HT4) receptors modulate the sensitivity of intrinsic afferents of the intestinal mucosa. We studied the involvement of 5-HT4receptors in the modulation of extrinsic afferent sensitivity of the intestinal wall. During distension ramps, mechanoreceptive rectal afferents in sacral dorsal roots were examined in decerebrate anaesthesia-free cats using the selective 5-HT4receptor partial agonist, tegaserod (HTF 919), and the 5-HT4receptor antagonist, SB 203186. The static discharge rate of the afferents evoked by rectal distension decreased after intravenous (i.v.) administration of tegaserod at intraluminal pressures above 30 mmHg, with the most effective reduction occurring at 50 mmHg. The effect was dose-dependent, with maximal reduction occurring at 1.2 mg kg-1 bodyweight, and could be partly reversed by i.v. administration of SB 203186. Tegaserod did not alter the pressure-volume relationship (compliance) of the rectum. It is tentatively concluded that 5-HT4receptor activation has an inhibitory effect on intramural mechanoreceptors in the cat's rectum. Our results are in line with the observation that tegaserod relieves the sensory symptoms of patients suffering from irritable bowel syndrome.  相似文献   

9.
The effect of serotonin (5-HT) and of more selective 5-HT agonists on the peristaltic reflex evoked in the isolated guinea-pig ileum was investigated. Using the Trendelenburg technique, peristaltic contractions were elicited by increasing intraluminal pressure, and rhythmic contractions of the longitudinal and circular muscle were measured after serosal administration of the drugs. 5-HT potently stimulated contractions of the longitudinal muscle. The effect of 5-HT was partly antagonized by the 5-HT4 receptor antagonist SDZ 205–557. Of the potent 5-HT1A receptor agonists, 8-OH-DPAT, 5-carboxamidotryptamine (5-CT) and dipropyl-5-CT (DP-5-CT), only 5-CT caused a substantial stimulation. Of the 5-HT1C-/5-HT2 receptor agonists DOI and 5-methoxytryptamine (5-MeOT), DOI was inactive, whereas 5-MeOT potently stimulated contractions. 5-HT1D receptor agonists (5-CT1 sumatriptan) had a stimulatory effect. The effect of sumatriptan was antagonized by the 5-HT1D receptor antagonist metitepine but not by the 5-HT4 receptor antagonist SDZ 205–557. The 5-HT3 receptor agonist 2-methyl-5-HT and the antagonists ICS 205–930 and granisetron did not influence the peristaltic reflex. 6-OH-indalpine, a 5-HT1P agonist, was inactive. This data suggest that 5-HT stimulates the peristaltic reflex in the isolated guinea-pig ileum by activation of 5-HT4- and 5-HT1D receptors; other 5-HT receptor subtypes appear not to play a significant role in the modulation of this reflex.  相似文献   

10.
The effect of ionophoretically applied serotonin (5-HT) was tested on cutaneous sensory responses of multireceptive dorsal horn neurones in the anaesthetized rat. Three types of 5-HT action were discerned: selective inhibition of nociceptive responses (10/18 cells), non-selective inhibition of responses to both noxious and innocous stimuli as well as to excitatory amino acids (4/18 cells) and non-selective excitation of evoked responses (1/18 cells). A few cells (3/18) were unaffected by 5-HT. The use of agonists, shown to discriminate between subtypes of 5-HT1 receptor revealed that a 5-HT1A receptor agonist mimicked the non-selective effects of 5-HT, whereas a 5-HT1B receptor agonist mimicked the selective antinociptive effects of 5-HT. A 5-HT2 receptor agonist, in contrast, was without effect. Both the selective and the non-selective effects were reversed by a 5-HT1 receptor antagonist, but not a 5-HT2 antagonist.  相似文献   

11.
This study investigated the involvement of 5-HT(1) and 5-HT(2) receptors in the antidepressant-like effect of agmatine in the mouse forced swimming test (FST). Pretreatment with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, intraperitoneally (i.p.), an inhibitor of serotonin synthesis, for 4 consecutive days), methysergide (5 mg/kg, i.p., a serotonin (5-HT) antagonist), pindolol (32 mg/kg, i.p., a 5-HT(1A/1B) receptor/beta-adrenoceptor antagonist), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridynyl)cyclohexanecarboxamide (WAY 100635; 0.3 mg/kg, subcutaneously (s.c.), a selective 5-HT(1A) receptor antagonist), 1-(2-methoxyphenyl)-4[-(2-phthalimido)butyl]piperazine) (NAN-190; 0.5 mg/kg, i.p., a 5-HT(1A) receptor antagonist), 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane; 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist), cyproheptadine (3 mg/kg, i.p., a 5-HT(2) antagonist) or ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), prevented the effect of agmatine (10 mg/kg, i.p.) in the FST. A subeffective dose of agmatine (0.001 mg/kg, i.p.) produced a synergistic antidepressant-like effect with pindolol (32 mg/kg), NAN-190 (0.5 mg/kg, i.p.), WAY 100635 (0.03 mg/kg, s.c.), (+)-8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT; 0.01 mg/kg, i.p., a 5-HT(1A) receptor agonist), R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI; 1 mg/kg, i.p., a preferential 5-HT(2A) receptor agonist), or fluoxetine (10 mg/kg, i.p., a selective serotonin reuptake inhibitor, SSRI) but not with isamoltane (2.5 mg/kg, i.p.), ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist) or ketanserin (5 mg/kg, i.p.). Taken together, the results firstly demonstrate that agmatine antidepressant-like effects in the FST seem to be mediated, at least in part, by an interaction with 5-HT(1A/1B) and 5-HT(2) receptors.  相似文献   

12.
The analgesic effect of calcitonin when serotonin (5-HT) concentration is increased and the involvement of some 5-HT receptors were studied using the writhing test in mice. 5-hydroxytryptophan (5-HTP) administration increased both 5-HT levels in the central nervous system (CNS) and calcitonin analgesia. The 5-HT1A agonist (±)-8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) diminished calcitonin analgesia, this effect being antagonised by the 5-HT1A antagonist (WAY 100, 135). As the stimulation of 5-HT1A autoreceptors reduces the turnover of 5-HT, the effect of 8-OH-DPAT on calcitonin analgesia may be attributed to this decrease. The 5-HT2A–2C agonist (±)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride (DOI) diminished calcitonin analgesia. A sub-analgesic dose of the 5-HT2A antagonist ketanserin failed to prevent this effect. The 5-HT3 agonist (±)-2-methyl-5-hydroxytryptamine maleate (2-methyl-5-HT) potentiated calcitonin analgesia, whereas it was significantly reduced by the 5-HT3 antagonist tropisetron. The effect of 2-methyl-5-HT on calcitonin analgesia was also reversed by tropisetron, This result suggests that the 5-HT3 receptor may play an important role in the relationship between calcitonin and the serotonergic system. Tropisetron also reversed the analgesia induced by calcitonin plus 5-HTP corroborating importance of the 5-HT3 receptors.  相似文献   

13.
The involvement of serotonin (5-HT) receptor subtypes in motor activity of the ex vivo vascularly perfused rat duodenum was investigated. Clusters of phasic contractions (CPCs), migrating in an oral to anal direction, were obtained without any stimulation. Drug effects were evaluated by changes in different components of the pressure waves, such as motor index (MI), frequency, amplitude and duration of the CPC. The effect of 5-HT depletion on motor activity was examined in animals treated with p-chlorophenylalanine (PCPA). The MI, frequency and duration of CPC were decreased by PCPA, but the amplitude was not affected, suggesting that endogenous 5-HT may play an important role in regulation of the motor activity of the rat intestine. The importance of the 5-HT receptor subtypes in the regulation of motor activity was examined. Neither the nonselective 5-HT1 and 5-HT2 receptor antagonist, methysergide, nor the 5-HT2 receptor antagonist, ketanserin, affected motor activity. However, the 5-HT3 receptor antagonists, granisetron and azasetron, decreased percentage MI, frequency, percentage amplitude and percentage duration of CPC. The 5-HT4 receptor antagonist, SB204070, exerted both excitatory and inhibitory actions, with a higher dose (10 nM) stimulating percentage MI, frequency, percentage amplitude and percentage duration, and a lower dose (0.1 nM or 1 nM) decreasing percentage MI and percentage duration of CPC. These results suggest that endogenous 5-HT regulates the motor activity of the rat duodenum through 5-HT3 and 5-HT4 receptors, with the former mediating the stimulatory influence and the latter mediating both stimulatory and inhibitory influences.  相似文献   

14.
Opioid neurons exhibit tonic restraint on intestinal motility; opioid antagonists stimulate peristalsis and increase transit. In vitro, 5-hydroxytryptamine (5-HT4) agonists combined with selective opioid antagonists significantly increased colonic propulsion relative to a 5-HT4 agonist alone. We hypothesized that the combination of 5-HT4 agonist and non-selective opioid antagonist enhances intestinal transit more than either treatment alone in female constipation-predominant irritable bowel syndrome (C-IBS) patients. Our aim was to examine the effect of tegaserod 6 mg b.i.d. alone and combined with naltrexone 50 mg on intestinal transit and stool characteristics in females with C-IBS. Forty-eight patients were randomized to tegaserod alone, naltrexone alone or in combination with tegaserod or placebo for 6 days. Small bowel, ascending colon half-life (in pharmacokinetics) (t1/2), and colonic geometric centre (8, 24, 48 h) were assessed by scintigraphy. Tegaserod increased small bowel (P < 0.01) and colon transit (P < 0.01). Naltrexone did not accelerate colonic transit relative to placebo. Combination treatment did not significantly accelerate transit relative to tegaserod alone. Tegaserod and tegaserod with naltrexone resulted in looser stool form (P < 0.01). In female C-IBS patients, tegaserod accelerates small bowel and colon transit and contributed to looser stool consistency. Use of naltrexone, 50 mg, does not support the hypothesis that combination of 5-HT4 agonist and non-selective opioid antagonist enhances intestinal transit.  相似文献   

15.
Serotonin and neuroprotection in functional bowel disorders   总被引:1,自引:0,他引:1  
Abstract  The 5-HT4 partial agonist tegaserod is effective in the treatment of chronic constipation and constipation predominant irritable bowel syndrome. 5-HT4 receptors are located on presynaptic terminals in the enteric nervous system. Stimulation of 5-HT4 receptors enhances the release of acetylcholine and calcitonin gene related peptide from stimulated nerve terminals. This action strengthens neurotransmission in prokinetic pathways, enhancing gastrointestinal motility. The knockout of 5-HT4 receptors in mice not only slows gastrointestinal activity but also, after 1 month of age, increases the age-related loss of enteric neurons and decreases the size of neurons that survive. 5-HT4 receptor agonists, tegaserod and RS67506, increase numbers of enteric neurons developing from precursor cells and/or surviving in culture; they also increase neurite outgrowth and decrease apoptosis. The 5-HT4 receptor antagonist, GR113808, blocks all of these effects, which are thus specific and 5-HT4-mediated. 5-HT4 receptor agonists, therefore, are neuroprotective and neurotrophic for enteric neurons. Because the age-related decline in numbers of enteric neurons may contribute to the dysmotilities of the elderly, the possibility that the neuroprotective actions of 5-HT agonists can be utilized to prevent the occurrence or worsening of these conditions should be investigated.  相似文献   

16.
5-Hydroxytryptamine (5-HT)4 receptor agonists stimulate gut motility through cholinergic pathways, although there are data suggesting that noncholinergic (tachykininergic) excitatory pathways may also be involved. Differences may exist between the small bowel and colon. Our aims were: (i) to compare the prokinetic effect exerted by the 5-HT4 receptor agonist ML10302 in the canine small bowel and colon in vivo; and (ii) to investigate the role of tachykininergic pathways in mediating this response. In fasting, conscious dogs, chronically fitted with electrodes and strain-gauge force transducers along the small bowel and colon, intravenous injection of ML10302 (35 microg kg-1) immediately stimulated spike activity and significantly increased propagated myoelectrical events at both intestinal levels. In the small bowel, the effects of ML10302 were unchanged by previous administration of the selective NK1 tachykinin receptor antagonist SR140333, the NK2 tachykinin receptor antagonist SR48968, or the NK3 tachykinin receptor antagonist SR142801. In the colon, all tachykinin receptor antagonists significantly inhibited stimulation of spike and mechanical activity by ML10302, without affecting ML10302-induced propagated myoelectrical events. Atropine (100 microg kg-1 i.v.) suppressed the stimulatory effect of ML10302 at both intestinal levels. In conclusion, the 5-HT4 receptor agonist ML10302 induced significant prokinesia both in the small bowel and colon through activation of cholinergic pathways. Tachykininergic pathways are not involved in the ML10302-induced prokinesia in the small bowel, but they play an important role in mediating the colonic motor response to ML10302.  相似文献   

17.
Dopamine neurons of the substantia nigra pars compacta receive a prominent serotonin (5-HT) projection from the dorsal raphe nucleus and important functional interactions between the serotonergic and the dopaminergic system have been postulated. In the present report we examined the role of 5-HT in the modulation of the metabotropic glutamate receptor-mediated inhibitory postsynaptic current (mGluR-IPSC) in midbrain dopamine neurons, and we found a reversible depression of this synaptic response at concentrations of 5-HT ranging from 100 nm to 30 microm (EC50 1.06 microm). This resulted in a shift towards excitation of the overall dopamine neuron response to glutamatergic synaptic input. This effect was not because of a direct modulation of the Ca2+-sensitive K+ conductances underlying the mGluR-IPSC, but was associated with a decrease in the intracellular calcium signal triggered by mGluR stimulation. Similar results were obtained with alpha-methyl-5-hydroxytryptamine and 5-methoxytryptamine, but not with 5-carboxamidotryptamine or 1-(3-chlorophenyl) piperazine. No significant depression of the mGluR-IPSC by 5-HT was observed in the presence of the 5-HT2 antagonist cinanserin or the 5-HT4 receptor antagonist RS 23597-190, whereas the 5-HT2C antagonist RS 102221 was ineffective. Our results demonstrate a powerful inhibition of the mGluR-IPSC by 5-HT in midbrain dopamine neurons, most probably through stimulation of 5-HT2A and 5-HT4 receptors.  相似文献   

18.
Serotonin (5-HT) is a mediator (through 5-HT1P receptors) of slow EPSPs in myenteric ganglia of the small intestine. The effect of 5-HT can be mimicked by elevating cAMP; therefore, we tested the hypothesis that the slow EPSP-like response to 5-HT is cAMP-mediated. Guinea pig gut was enzymatically dissociated; myenteric ganglia remained intact and were collected by filtration. Neurons in the isolated ganglia retained their ability to manifest the slow EPSP-like response to 5-HT. Exposure to 5-HT raised the ganglionic level of cAMP (ED50 0.3 μM). This effect was not antagonized by the 5-HT1P antagonist, N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide (100.0 μM), or mimicked by the 5-HT1P agonist, 5-hydroxyindalpine (10.0 μM). Increases in cAMP were also evoked by the 5-HT1 agonist, 5-carboxyamidotryptamine (10.0 μM), the 5-HT2 agonist, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1.0–10.0 μM), and by the 5-HT4 agonists, renzapride (1.0–10.0 μM) and 5-methoxytryptamine (1.0–10.0 μM); however, neither the 5-HT1/5-HT2 antagonists, spiperone, methysergide, and methiothepin, nor the 5-HT4 antagonist, tropisetron (ICS 205–930; 10.0 μM), were able to inhibit the rise in cAMP evoked by these compounds or by 5-HT (0.1–10.0 μM). The 5-HT-evoked elevation of cAMP was antagonized by ketanserin (10.0 μM), which also blocked the effects of 5-methoxytryptamine and DOI, but not those of renzapride. The effective concentration of DOI, however, was higher than that needed for activation of 5-HT2 receptors, and Northern analysis using a cDNA probe encoding the rat 5-HT2 receptor failed to reveal the presence of 5-HT2 mRNA in myenteric ganglia, although it hybridizes with mRNA of the right size in the guinea pig brain. Compounds that failed to change levels of cAMP or to antagonize the action of 5-HT included 8-hydroxy-di-n-propylamino tetralin, R58639, R88226, and sumatriptan. It is concluded that the receptor responsible for the 5-HT-induced rise in cAMP in ganglia isolated from the guinea pig myenteric plexus is not a known subtype of 5-HT receptor. Since the pharmacology of this novel receptor is different from that of the slow EPSP-like response to 5-HT, the receptor probably does not mediate the slow EPSP. © 1993 Wiley-Liss, Inc.  相似文献   

19.
3,4-methylenedioxy-N-methylamphetamine (MDMA, 'Ecstasy') is a potent inhibitor of serotonin uptake, which induces both an increase in locomotion and a decrease in exploratory activity in rodents. Serotonin 5-HT1B receptors, located on the terminals of striatal efferent neurons, have been suggested to mediate these motor effects of MDMA. Striatal neurons projecting to the globus pallidus contain met-enkephalin, whilst those projecting to the substantia nigra contain substance P. We therefore analysed the levels of both peptides using radioimmunocytochemistry after MDMA administration (10 mg/kg, 3 h) in wild-type and 5-HT1B receptor knockout mice. Our results demonstrate that MDMA induces a decrease in pallidal met-enkephalin immunolabelling in wild-type, but not in 5-HT1B receptor knockout mice. Similar results were obtained following treatment with the 5-HT1A/1B agonist RU24969 (5 mg/kg, 3 h), suggesting that activation of 5-HT1B receptors leads to a reduction in met-enkephalin levels in the globus pallidus. In contrast, MDMA had no effect on the nigral substance P levels. We have previously shown that both MDMA and RU24969 fail to stimulate locomotor activity in 5-HT1B receptor knockout mice. Our present data indicate that the opioid antagonist naloxone suppressed the locomotor effects of MDMA. This study is the first to demonstrate that Enk contributes to MDMA-induced increases in locomotor activity. Such an effect may be related to the 5-HT control of pallidal met-enkephalin levels via the 5-HT1B receptors.  相似文献   

20.
The effect of serotonin 5-HT2 receptor stimulation on long-term potentiation (LTP) in the primary visual cortex was investigated by using rat brain slices in vitro. Field potentials evoked by stimulation of layer IV were recorded in layer II/III. The 5-HT2 receptor agonist 1-(2,5-dimethyl-4-iodophenyl)-2-aminopropane (DOI) did not affect baseline synaptic potentials evoked by single-pulse test stimulation, but significantly inhibited the induction of LTP in a concentration-dependent manner (0.1-10 microM). The LTP-inhibiting effect of DOI (10 microM) was blocked by the 5-HT2,7 receptor antagonist ritanserin (10 microM), but not by the 5-HT1A receptor antagonist NAN-190 (10 microM) nor by the 5-HT3,4 receptor antagonist MDL72222 (10 microM). The inhibitory effect of DOI was also blocked by the phospholipase C inhibitor U73122, but not by its inactive analogue U73343. These results suggest that visual cortex LTP is inhibited by activation of the 5-HT2 receptor-phospholipase C system. In addition, the LTP-inhibiting effect of DOI was abolished by the presence of the GABAA receptor antagonist bicuculline (10 microM), suggesting that 5-HT2 receptor-mediated inhibition of visual cortex LTP is dependent on GABAergic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号