首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe the functionalization of a multilayered hydrogel layer on a Ti alloy with an antineoplastic agent, paclitaxel (PTX). The multilayered hydrogel was synthesized via layer-by-layer self-assembly (LbL) using selective intermolecular reactions between two water-soluble polymers, phospholipid polymer (PMBV) containing a phenylboronic acid unit and poly(vinyl alcohol) (PVA). Reversible covalent bonding between phenylboronic acid and the polyol provided the driving force for self-assembly. Poorly water-soluble PTX dissolves in PMBV aqueous solutions because PMBV is amphiphilic. Therefore, our multilayered hydrogel could be loaded with PTX at different locations to control the release profile and act as a drug reservoir. The amount of PTX incorporated in the hydrogel samples increased with the number of layers but was not directly proportional to the number of layers. However, as the step for making layers was repeated, the concentration of PTX in the PMBV layers increased. The different solubilities of PTX in PMBV and PVA aqueous solutions allow for the production of multilayered hydrogels loaded with PTX at different locations. In vitro experiments demonstrated that the location of PTX in the multilayered hydrogel influences the start and profile of PTX release. We expect that this rapid and facile LbL synthesis of multilayered hydrogels and technique for in situ loading with PTX, where the location of loading controls the release pattern, will find applications in biomedicine and pharmaceutics as a promising new technique.  相似文献   

2.
Konno T  Ishihara K 《Biomaterials》2007,28(10):1770-1777
Temporal and spatially controllable cell encapsulation based on a water-soluble phospholipid polymer is reported in this study. Phospholipid polymers, i.e., poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-vinylphenylboronic acid) (PMBV), were synthesized. A series of hydrogels was prepared between the water-soluble PMBV and other water-soluble polymers having multi-valent alcoholic groups, such as poly(vinyl alcohol) (PVA). The PMBV/PVA hydrogels were formed not only in water, but also in a cell culture medium, and dissociated by the excess addition of low molecular weight di-valent hydroxyl compounds, such as d-glucose. The PMBV/PVA hydrogel was applied as a cell-container which has three-dimensional matrices for the reversible encapsulation of living cells without any response in it. Uniform cell seeding can be achieved using the hydrogels due to the homogenous gel formation of PMBV and PVA in the cell culture medium. Fibroblast cells were encapsulated in the PMBV/PVA hydrogel and maintained for 1 week. After dissociation of the PMBV/PVA hydrogel, the cells were seeded on conventional tissue culture polystyrene. The cells adhered and proliferated as usual on the plate. That is, the PMBV/PVA hydrogel will be useful as a cell-container, which can maintain the cells without any significant adverse effect on the entrapped cells.  相似文献   

3.
A large number of lineage-committed progenitor cells are required for advanced regenerative medicine based on cell engineering. Due to their ability to differentiate into multiple cells lines, multipotent stem cells have emerged as a vital source for generating transplantable cells for use in regenerative medicine. Increment in differentiation efficiency of the mesenchymal stem cell was obtained by using hydrogel to adjust the proliferation cycle of encapsulated cells to signal sensitive phase. Three dimensional (3-D) polymer networks composed of poly(2-methacyloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-p-vinylphenylboronic acid (VPBA)) (PMBV) and poly(vinyl alcohol) (PVA) were prepared as a hydrogel. The proliferation of cells encapsulated in the PMBV/PVA hydrogel was highly sensitive to the storage modulus (G′) of the hydrogel. That is, when the G′ value of the hydrogel was higher than 1.0 kPa, the cell proliferation was ceased and the proliferation cycle of cells was converged to G1 phase, whereas when the G′ value was below 1.0 kPa, cell proliferation proceeded. By changing the G′ value of hydrogels under encapsulation the cells, proliferation cycle of encapsulated mesenchymal stem cells was regulated to G1 phase and thus signal sensitivity were increased. 3-D polymer networks as hydrogels with tunable physical properties can be effectively used to control proliferation and lineage-restricted differentiation of stem cells.  相似文献   

4.
Choi J  Konno T  Takai M  Ishihara K 《Biomaterials》2012,33(3):954-961
We fabricated multi-layered hydrogels on titanium alloy (Ti) surfaces by applying alternating layers of a water-soluble phospholipid polymer (PMBV) and polyvinyl alcohol (PVA). This was accomplished by a layer-by-layer (LbL) process that is based on the formation of reversible covalent bonds between the boronic acid subunits in the PMBV and the hydroxyl groups in the PVA. When placed in an aqueous medium, PMBV acquires a polymeric aggregate structure with hydrophobic domains that can effectively solubilize hydrophobic molecules such as the anticancer drug paclitaxel (PTX) used in this study. The PTX-containing PMBV layer acted as a reservoir in the multi-layered hydrogels. To obtain diverse release profiles, the PTX was loaded in either the top layer (top-type) or the bottom layer (bottom-type) of the hydrogels; additional layers of PMBV and PVA, without PTX, functioned as a diffusion-barrier. In cell culture experiments, top-type hydrogels demonstrated excessive suppression of human epidermal carcinoma A431 cell proliferation over 5 days due to the initial high concentration of released PTX. However, bottom-type hydrogels were able to maintain a constant cell number profile. The release of PTX from multi-layered hydrogels was governed by both diffusion through the diffusion-barrier and dissociation of the hydrogel through an exchange reaction of phenylboronic acid subunits with the low-molecular weight d-glucose in the cell culture medium. In the cell culture experiments, the cell cycle was arrested in S and G2/M phases, as expected following PTX-mediated growth inhibition; control hydrogels did not demonstrate any appreciable cell cycle arrest. We concluded that cell proliferation could be controlled by the concentration of PTX released from the multi-layered hydrogels prepared through the LbL process. This system when used to solubilize bioactive agents at an appropriate layer within the hydrogel has potential for localized and surface-mediated delivery of bioactive molecules from biomedical devices.  相似文献   

5.
Multilayered polymer hydrogels containing living cells were assembled for assessing the distance-dependent effects of soluble factors secreted by stroma cells on tumor cell cycle progression in vitro. A layer of tumor cells and a layer of stroma cells were separated with finely controlled spacing in a multilayered sandwich composed of a 2-methacryloyloxyethyl phosphorylcholine polymer and poly(vinyl alcohol) hydrogel. We demonstrated the utility of this tool for investigating intercellular communication between human cervical cancer HeLa cells and supportive stromal L929 fibroblast cells in co-culture. Time-lapse microscopic analyses of HeLa cells showed short distances (15 μm) between tumor cells and stroma cells induced a continuous increase in the percentage of HeLa cells in the S/G2/M phases of the cell cycle, while longer distances (70 μm) between the cells caused a slower increase followed by a sharp increase in the percentage of cells in S/G2/M phases. One possible explanation is gradient formation in the diffusion-dominant multilayer hydrogels by water-soluble factors such as those inducing growth, differentiation, and proliferation. This study provides insights into the potential effects of diffusion of soluble factors and related distance-dependent effects on cell behavior, which may contribute to the design of future co-culture systems.  相似文献   

6.
Polyion complex (PIC) gel of poly(Pro-Hyp-Gly) was successfully fabricated by simply mixing polyanion and polycation derivatives of poly(Pro-Hyp-Gly), a collagen-like polypeptide. The polyanion, succinylated poly(Pro-Hyp-Gly), and the polycation, arginylated poly(Pro-Hyp-Gly), contain carboxy (pKa = 5.2) and guanidinium (pKa = 12.4) groups, respectively. Mixing the polyanion and the polycation at physiological pH (pH = 7.4) resulted in PIC gel. The hydrogel formation was optimum at an equimolar ratio of carboxy to guanidinium groups, suggesting that ionic interaction is the main determinant for the hydrogel formation. The hydrogel was successfully used for simultaneous rat bone marrow stromal cell encapsulation. The encapsulated cells survived and proliferated within the hydrogel. In addition, the cells exhibited different morphology in the hydrogel compared with cells cultured on a tissue culture dish as a two-dimensional (2D) control. At day one, a round morphology and homogeneous single cell distribution were observed in the hydrogel. In contrast, the cells spread and formed a fibroblast-like morphology on the 2D control. After three days, the cells in the hydrogel maintained their morphology and some of them formed multicellular aggregates, which is similar to cell morphology in an in vivo microenvironment. These results suggest that the PIC gel of poly(Pro-Hyp-Gly) can serve as a cytocompatible three-dimensional scaffold for stem cell encapsulation, supporting their viability, proliferation, and in vivo-like behavior.  相似文献   

7.
Ding J  He R  Zhou G  Tang C  Yin C 《Acta biomaterialia》2012,8(10):3643-3651
A multilayered hydrogel film system based on hyaluronic acid-cysteamine (HA-Cym) and polyvinylalcohol (PVA) was fabricated. It contained a drug-impermeable backing layer, a supporting layer preventing direct contact between the loaded drug and the backing layer, a drug-loading layer and a mucoadhesive layer. Scanning electron microscopy demonstrated the presence of the distinct layers. The composition and preparation procedure of the films influenced their mucoadhesion, swelling, in vitro release of insulin and loaded insulin stability. Vacuum drying and crosslinked PVA with glutaraldehyde might reduce mucoadhesion, and they partially decreased the bioactivity of loaded insulin. Lyophilized hydrogel film with uncrosslinked PVA as a mucoadhesive layer possessed high mucoadhesion and showed no influence on the bioactivity of loaded insulin. The application of vacuum-dried PVA-crosslinked HA-Cym/PVA hydrogel film as a drug-impermeable backing layer would provide a controllable unidirectional insulin release. Therefore, such a multilayered hydrogel film system could be a promising mucoadhesive delivery system for controlled macromolecular drug release.  相似文献   

8.
Nanocomposite hydrogels are a class of materials that are generally composed of hydrophilic polymers and nanofillers. They can have various important properties such as self‐healing, conductivity, toughness, bioactivity, facile processing ability, and this enables manifold practical applications. However, development of a single nanocomposite hydrogel with all of the properties of interest is yet to be realized. Here, a double‐network (DN) polymer hydrogel consisting of poly(vinyl alcohol)‐poly(sodium 4‐styrene sulfonate)‐poly(2‐aminoethylenemethacrylate) polymers (PVA‐P(NaSS)‐P(AEMA)) is reported. The obtained DN hydrogels containing copper ions, (PVA‐P(NaSS)‐P(AEMA)@Cu2+) hydrogel and copper nanoparticles (PVA‐P(NaSS)‐P(AEMA)@Cu) hydrogels, are found to exhibit self‐healing, conducting, high mechanical, bioactive, and wound healing properties. The fabricated hydrogel may potentially be applied in the biomedical and electronics sector.  相似文献   

9.
The fracture energy required to separate layers of hydrogel films was investigated to evaluate the impact of bulk polymer diffusion on hydrogel/hydrogel adhesion and to obtain molecular information on the fracture energy in polymer mucoadhesion. Poly(ethylene glycol) (PEG) was incorporated in a hydrogel and was used as an adhesion promoter. The influence of PEG molecular weight and contact time on PEG diffusion across the hydrogel/hydrogel interface was investigated by using tensiometric studies and near-field FTIR microscopy. These experiments indicated that linear PEG diffusion enhanced the adhesion between the two hydrogel layers. The enhanced adhesion could not be explained by surface wetting phenomena alone. These results indicated that bulk diffusion of linear polymers such as PEG (adhesion promoter) incorporated into polymer networks (hydrogels) was an effective technique for enhancing gel/gel adhesion in various applications including polymer/mucus interactions in mucoadhesion and development of mucoadhesive controlled drug delivery systems.  相似文献   

10.
Abstract

Phlorotannins (PH) derived from brown algae have been shown to have biological effects. However, the application of PH in biomedical materials has not been investigated. Here, we investigated the effects of PH on normal human dermal fibroblast (NHDF) proliferation and fabricated a composite hydrogel consisting PH and poly (vinyl alcohol) (PVA) (PVA/PH) by a freezing-thawing method for wound healing applications. Cell proliferation was significantly higher in the PH-treated (0.01 and 0.02%) cells than in non-treated cells. Based on the mechanical properties, the PVA/PH hydrogel had a significantly increased swelling ratio and ultimate strain compared to the PVA hydrogel, but the ultimate tensile strength and tensile modulus were decreased. Additionally, cell attachment and proliferation on the composites were evaluated using NHDFs. The results showed that after 1 and 5 days, cell attachment and proliferation were significantly increased on the PVA/PH hydrogel compared with that on the PVA hydrogel. The findings from this study suggest that the PVA/PH hydrogel may be a candidate biomedical material for wound healing applications.  相似文献   

11.
Abstract

We summarize the development and evaluation of new type of phospholipid polymers as a solubilizer for poorly water-soluble compounds. That is, a water-soluble and amphiphilic poly(2-methacryloyloxyethyl phosphorylcholine-random-n-butyl methacrylate) contains 30 mol% hydrophilic 2-methacryloyloxyethyl phosphorylcholine units and its weight-averaged molecular weight is around 5.0 × 104. When the polymer is dissolved in an aqueous medium, a large portion of hydrophobic n-butyl methacrylate units assemble, forming polymer aggregates. To avoid severe biological reactions caused by conventional solubilizers, the phospholipid polymer can be applied for the solubilization of poorly water-soluble bioactive compounds. The polarity inside these polymer aggregate is the same as that of ethanol and n-butanol. Therefore, bioactive compounds, whose solubility is poor in water but good in these alcohols, can be entrapped in the polymer aggregate. The phospholipid polymer can penetrate the cell membrane by molecular diffusion, carrying inside the cell the bioactive compound, without exhibiting significant cytotoxicity. Several animal experiments have revealed that the pharmacological performance of various bioactive compound/phospholipid polymer complexes is excellent. Furthermore, functionalization of the polymer aggregate with biomolecules, such as antibodies and oligonucleotides, can be done, leading to selective capturing of the target molecules. These examples clearly indicate that water-soluble and amphiphilic phospholipid polymer is a candidate for preparing safer formulations and more effective pharmaceutical treatment with several bioactive compounds.  相似文献   

12.
The complicated synthesis procedure and limited preparation size of hydrogel inhibit its clinical application. Therefore, a facile preparation method for large-size hydrogel is required. In this study, a series of curcumin (Cur)/polyvinyl alcohol (PVA) hydrogel in a large size with different Cur concentrations is prepared by a facile physical-chemical crosslinking. The physicochemical properties, antibacterial performance and accelerating wound healing ability are evaluated with the aim of attaining a novel and effective wound dressing. The results show that the as-prepared hydrogel with the optimal Cur to PVA volume ratio of 1:5 (20% Cur/PVA) exhibits the best antibacterial abilities to E. coli (85.6%) and S. aureus (97%) than other hydrogels. When the volume ratio of Cur to PVA is 1:10 (10% Cur/PVA), the hydrogel can significantly accelerate the wound healing in rats, and successfully reconstruct intact and thickened epidermis during 14 day of healing of impaired wounds after histological examination. In one word, the present approach can shed new light on designing new type of hydrogels with promising applications in wound dressing.  相似文献   

13.
Poly(vinyl alcohol) (PVA) is a biocompatible, transparent hydrogel with physical strength that makes it promising as a material for an artificial cornea. In our previous study, type I collagen was immobilized onto PVA (PVA-COL) as a possible artificial cornea scaffold that can sustain a functional corneal epithelium. The cellular adhesiveness of PVA in vitro was improved by collagen immobilization; however, stable epithelialization was not achieved in vivo. To improve epithelialization in vivo, we created an amniotic membrane (AM)-immobilized polyvinyl alcohol hydrogel (PVA-AM) for use as an artificial cornea material. AM was attached to PVA-COL using a tissue adhesive consisting of collagen and citric acid derivative (CAD) as a crosslinker. Rabbit corneal epithelial cells were air-lift cultured with 3T3 feeder fibroblasts to form a stratified epithelial layer on PVA-AM. The rabbit corneal epithelial cells formed 3-5 layers of keratin-3-positive epithelium on PVA-AM. Occludin-positive cells were observed lining the superficial epithelium, the gap-junctional protein connexin43-positive cells was localized to the cell membrane of the basal epithelium, while both collagen IV were observed in the basement membrane. Epithelialization over implanted PVA-AM was complete within 2 weeks, with little inflammation or opacification of the hydrogel. Corneal epithelialization on PVA-AM in rabbit corneas improved over PVA-COL, suggesting the possibility of using PVA-AM as a biocompatible hybrid material for keratoprosthesis.  相似文献   

14.
The fusogenic activity of seven water-soluble polymers was investigated using L929 cells in a monolayer state. Among these polymers, only two, poly(ethylene glycol) (PEG) and EPAN 680 were capable of inducing the membrane fusion of L929 cells. EPAN 680 is an ABA type block copolymer composed of 80% ethylene oxide(A) and 20% propylene oxide(B) sequences with a total molecular weight of 8800. Evaluation of the polymer hydrophobicity indicated that there was no clear correlation between it and the fusogenic activity of the polymer, although highly hydrophobic polymers caused cell shrinkage without membrane fusion. Differential scanning calorimetry on these polymers strongly suggested that hydration of the polymers in culture medium had a large effect on their fusogenic activity. It was concluded that the assembly of cell membranes, stabilized by water molecules, was disturbed by strong interaction with the polymer molecules having a strong hydration power, resulting in membrane fusion.  相似文献   

15.
Chen R  Yue Z  Eccleston ME  Slater NK 《Biomaterials》2008,29(32):4333-4340
The effect of PEGylation on the aqueous solution properties and cell membrane disruptive activity of a pH-responsive pseudo-peptide, poly(l-lysine iso-phthalamide), has been investigated by dynamic light scattering, haemolysis and lactate dehydrogenase (LDH) assays. Intracellular trafficking of the polymers has been examined using confocal and fluorescence microscopy. With increasing degree of PEGylation, the modified polymers can form stabilised compact structures with reduced mean hydrodynamic diameters. Poly(l-lysine iso-phthalamide) with a low degree of PEGylation (17.4wt%) retained pH-dependent solution behaviour and showed enhanced kinetic membrane disruptive activity compared to the parent polymer. It facilitated trafficking of endocytosed materials into the cytoplasm of HeLa cells. At levels of PEGylation in excess of 25.6wt%, the modified polymers displayed a single particle size distribution unresponsive to pH, as well as a decrease in cell membrane lytic ability. The mechanism involved in membrane destabilisation was also investigated, and the potential applications of these modified polymers in drug delivery were discussed.  相似文献   

16.
A variety of differently structured PEG‐based polymers can form physically cross‐linked PEG hydrogels with α‐cyclodextrin. The polymer structures strongly influence the properties of the hydrogel and its formation. Four different copolymers of methoxy PEG methacrylate and methacrylic acid are used together with α‐cyclodextrin to study hydrogel formation speed and gel strength. The hydrogels are formed within 1–25 min, and the formation process is examined in situ by dynamic light scattering. The gel formation time is pH dependent due to the methacrylic acid present in the polymers. The gel strength examined by texture analyzer also depends on the composition and pH. With prior mechanical destruction, all hydrogels are dissolvable in an excess of water, being a useful feature for an in vivo usage. By analyzing the structures of the hydrogels with confocal light microscopy (laser scanning confocal microscopy) and scanning electron microscope (SEM) after freeze etching, the different hydrogel structures can be observed.  相似文献   

17.
A bag-shaped macrocapsule suitable for Langerhans islets entrapment and immunoisolation was constructed using a semipermeable hydrogel membrane of poly(vinyl alcohol) (PVA) cross-linked chemically and sterilized by a radiation method. Empty (not seeded with Langerhans islets), sealed, sterile macrocapsules were implanted into the intraperitoneal cavity of adult female Buffalo rats for periods of up to 6.5 months. Long-term in vivo performance of the macrocapsule membrane was evaluated on the basis of the permeability measurements of glucose and albumin. The results of experiments revealed the progressive, disadvantageous alterations of the PVA hydrogel membrane resulting in a decrease in the permeability of solutes. Histochemical examinations of the cellular enzyme activities in the implant-encapsulating tissue, regarding the acid and alkaline phosphatases, were performed to evaluate the activity of cells involved in the inflammatory response to the long-term macrocapsule implantation.  相似文献   

18.
Poly(vinyl alcohol) (PVA) hydrogels interacting with DNA mediated by hydrogen bonds (PVA/DNA hydrogel) were developed using ultra-high pressure (UHP) technology. The goal was to create a new method of gene delivery by controlled release of DNA. Mixed solutions of DNA and PVA at various concentrations were pressurized at 10 000 atmospheres at 37°C for 10 min. PVA/DNA hydrogels with good formability were produced at PVA concentrations of more than 5% w/v. The presence of DNA in the obtained hydrogels was confirmed by spectroscopic analysis and nucleic acid dye staining. DNA release from the hydrogels was investigated using PVA/DNA hydrogel samples of 5% and 10% w/v formed by UHP treatment or by conventional freeze–thaw methods. The DNA release curves from both types of samples showed a rapid phase in the initial 15 h followed by a sustained release phase. However, there was a difference in the amount of DNA released. Less DNA was released by the pressurized hydrogels than by the freeze–thaw hydrogels. Also, the cumulative amount of DNA released decreased as the PVA content in the hydrogels increased. These results indicate that DNA release from the hydrogels can be modulated by changing the preparation method and the PVA content. Furthermore, it was demonstrated that DNA release could be controlled by varying the amount and duration of pressurizing used to form the hydrogels. Intact fractions of plasmid DNA released from the hydrogels were separated by agarose gel electrophoretic analysis. These results suggest that, using controlled release, DNA from PVA/DNA hydrogels formed by UHP treatment can be transfected into cells.  相似文献   

19.
Mucoadhesive drug delivery systems may enable a prolonged and localized drug release at various sites of the gastrointestinal tract. In the present study, the mucoadhesive properties of flexible polymeric films based on PVP or PVA as film-forming polymers were assessed by measuring the detachment force from excised porcine duodenal mucosa using a tensile strength tester. The mucoadhesive films were comprised of an impermeable backing layer of cellulose acetate butyrate. Carbopol® 934P, Carbopol® 974NF, and Noveon? AA1 were incorporated as mucoadhesive excipients in concentrations of 0-22 wt% relative to the dry mass of the mucoadhesive layer and with various degrees of neutralization corresponding to pH 4.8, 5.5, 6.8, or 7.5. Films based on PVP were generally more mucoadhesive than corresponding formulations based on PVA. Maximum adhesion of PVP-films was observed at pH 5.5 and 6.8 depending on the type of the mucoadhesive polymer and its concentration. An optimal mucoadhesive polymer concentration range was found to be between 2 and 10 wt%. Higher polymer concentrations did not further enhance the mucoadhesive properties, and in some cases even decreased mucoadhesion. Film formulations based on PVAdemonstrated no satisfactory mucoadhesive strength.  相似文献   

20.
The dynamic rheological behaviour of gamma-irradiated 12.8 wt% poly(vinyl alcohol) (PVA), 12.8 wt% poly(vinyl pyrrolidone) (PVP), and a blend of 8 wt% PVA and 4.8 wt% PVP aqueous solutions have been studied pre- and post-gelation. The non-irradiated solutions displayed rheological behaviour typical of dilute to semi-dilute polymer solutions, with the complex viscosity being independent of the frequency and shear rate (i.e. Newtonian behaviour) over the range of frequencies tested and the loss modulus G"(ω) and storage modulus G'(ω) being nearly proportional to ω and ω2, respectively. After a set of doses of γ-radiation, the magnitudes of the dynamic moduli G'(ω) and G"(ω) increased as the absorbed dose increased, with notable differences between the two homopolymers and the blend. The stages of gelation were effectively monitored by means of dynamic rheological measurements, allowing the possible mechanisms of network formation to be elucidated. The doses required for gelation of the PVA, PVP, and blend samples, determined on the basis of the Winter and Chambon criteria for gelation, were found to be 12 kGy for the 12.8 wt% PVA, 4 kGy for the 12.8 wt% PVP,and 5 kGy for the 8 wt% PVA/4.8 wt% PVP solutions. The unexpected lower gelation dose demonstrated by the blend sample, compared with predictions based on the blend composition, and the associated gelation mechanism are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号