首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene was first identified as a cause of lethal congenital contracture syndrome (OMIM 607598), while a recent study reported six additional patients carrying ERBB3 variants which exhibited distinct clinical features with evident intestinal dysmotility (OMIM 243180 ). The potential connection between these phenotypes remains unknown, and the ERBB3-related phenotype spectrum needs to be better characterized. Here, we described a patient presenting with a multisystemic syndrome including skip segment Hirschsprung disease, bilateral clubfoot deformity, and cardiac defect. Trio-whole exome sequencing revealed a novel compound heterozygous variant (c.1914-7C>G; c.2942_2945del) in the patient's ERBB3 gene. RT-PCR and in vitro minigene analysis demonstrated that variant c.1914-7C>G caused aberrant mRNA splicing. Both variants resulted in premature termination codon and complete loss of ERBB3 function. erbb3b knockdown in zebrafish simultaneously caused a reduction in enteric neurons in the distal intestine, craniofacial cartilage defects, and micrognathia, which phenotypically mimics ERBB3-related intestinal dysmotility and some features of lethal congenital contracture syndrome in human patients. These findings provide further patient and animal evidence supporting that ERBB3 deficiency causes a complex syndrome involving multiple systems with phenotypic variability among distinct individuals.  相似文献   

2.
Arthrogryposis multiplex congenita (AMC) [also known as multiple joints contracture or Fetal Akinesia Deformation Sequence (FADS)] is etiologically a heterogeneous condition with an estimated incidence of approximately 1 in 3000 live births and much higher incidence when prenatally diagnosed cases are included. The condition can be acquired or secondary to fetal exposures and can also be caused by a variety of single-gene disorders affecting the brain, spinal cord, peripheral nerves, neuromuscular junction, muscle, and a variety of disorders affecting the connective tissues (Niles et al., Prenatal Diagnosis, 2019; 39:720–731). The introduction of next-generation gene sequencing uncovered many genes and causative variants of AMC but also identified genes that cause both dominant and recessive inherited conditions with the variability of clinical manifestations depending on the genes and variants. Molecular diagnosis in these cases is not only important for prognostication but also for the determination of recurrence risk and for providing reproductive options including preimplantation and prenatal diagnosis. TTN, the largest known gene in the human genome, has been known to be associated with autosomal dominant dilated cardiomyopathy. However, homozygote and compound heterozygote pathogenic variants with recessive inheritance have rarely been reported. We report the effect of recessive variants located within the fetal IC and/or N2BA isoforms in association with severe FADS in three families. All parents were healthy obligate carriers and none of them had cardiac or skeletal muscle abnormalities. This report solidifies FADS as an alternative phenotypic presentation associated with homozygote/compound heterozygous pathogenic variants in the TTN.  相似文献   

3.
Ana Ferreiro 《Human mutation》2014,35(9):1046-1059
The 364 exon TTN gene encodes titin (TTN), the largest known protein, which plays key structural, developmental, mechanical, and regulatory roles in cardiac and skeletal muscles. Prior to next‐generation sequencing (NGS), routine analysis of the whole TTN gene was impossible due to its giant size and complexity. Thus, only a few TTN mutations had been reported and the general incidence and spectrum of titinopathies was significantly underestimated. In the last months, due to the widespread use of NGS, TTN is emerging as a major gene in human‐inherited disease. So far, 127 TTN disease‐causing mutations have been reported in patients with at least 10 different conditions, including isolated cardiomyopathies, purely skeletal muscle phenotypes, or infantile diseases affecting both types of striated muscles. However, the identification of TTN variants in virtually every individual from control populations, as well as the multiplicity of TTN isoforms and reference sequences used, stress the difficulties in assessing the relevance, inheritance, and correlation with the phenotype of TTN sequence changes. In this review, we provide the first comprehensive update of the TTN mutations reported and discuss their distribution, molecular mechanisms, associated phenotypes, transmission pattern, and phenotype–genotype correlations, alongside with their implications for basic research and for human health.  相似文献   

4.
Arthrogryposis multiplex congenita (AMC) is defined as congenital, non-progressive contractures in more than two joints and in multiple body areas, resulting from reduced fetal mobility. So far, more than 400 causative genes for AMC have been identified. Some isolated AMC phenotypes arise as a result of mutations in genes encoding components required for motor neuron structure, function, and myelination, as in the case of ADCY6 encoding the enzyme adenylyl cyclase type 6. ADCY6 inactivation, due to biallelic variants, have been previously associated with the lethal congenital contracture syndrome 8 (LCCS8). So far, only four LCCS8 patients, from two families, have been reported. Here, we describe a new patient affected by a severe form of AMC, harboring two novel compound heterozygous variants in ADCY6. Our findings expand the clinical and mutational spectrum of LCCS8, showing a possible correlation between the impact of the ADCY6 missense variants reported to date, predicted by molecular modeling, and the severity of the phenotype.  相似文献   

5.
Fetal akinesia deformation sequence (FADS) is a clinically and genetically heterogeneous condition. Pathogenic variants in DOK7 are known to cause myasthenic syndrome, congenital, 10 (MIM#254300) and, rarely (reported in a single family) lethal FADS. Herein, we describe a biallelic variant c.1263dupC in DOK7, known to cause congenital myasthenic syndrome 10, causing lethal FADS in a consanguineous family. The present report illustrates wide phenotypic variability caused by biallelic pathogenic variants in DOK7. We also describe the second family with FADS due to pathogenic variants in DOK7.  相似文献   

6.
《Genetics in medicine》2020,22(12):2029-2040
PurposeHigh throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype–phenotype correlations in this cohort.MethodsWe analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families).ResultsOverall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362–364).ConclusionOur findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.  相似文献   

7.
8.
Biallelic GLDN mutations have recently been identified among infants with lethal congenital contracture syndrome 11 (LCCS11). GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report six infants and children from four unrelated families with biallelic GLDN mutations, four of whom survived beyond the neonatal period into infancy, childhood, and late adolescence with intensive care and chronic respiratory and nutritional support. Our findings expand the genotypic and phenotypic spectrum of LCCS11 and demonstrate that the condition may not necessarily be lethal in the neonatal period.  相似文献   

9.
10.
11.
Arthrogryposis multiplex congenita affects approximately 1 in 3,000 individuals of different ethnic backgrounds and displays an equal incidence in males and females. The underlying mechanism for congenital contracture of the joints is decreased fetal movement during intrauterine development. This disorder is associated with over 400 medical conditions and 350 known genes that display considerable variability in phenotypic expression. In this report, four fetal or perinatal autopsy cases of arthrogryposis were studied by gross morphology, microscopic histopathologic examination, and whole genome sequencing of postmortem DNA. Two stillborn sibling fetuses with arthrogryposis, pterygia, and amyoplasia had compound heterozygous pathogenic variants in NEB. A neonate with a histopathologic diagnosis of nemaline myopathy had a heterozygous de novo pathogenic variant in ACTA1. Another stillborn infant with pterygia and arthrogryposis had a heterozygous de novo likely pathogenic variant in BICD2. These cases demonstrate the utility of whole genome sequencing as the principal diagnostic method of lethal forms of skeletal muscle disorders that present with arthrogryposis and muscle amyoplasia/hypoplasia. Molecular diagnosis provides an opportunity for studying patterns of inheritance and for family counseling concerning future pregnancies.
  相似文献   

12.
《Genetics in medicine》2023,25(4):100012
PurposeTTN truncating variants (TTNtvs) represent the largest known genetic cause of dilated cardiomyopathies (DCMs), however their penetrance for DCM in general populations is low. More broadly, patients with cardiomyopathies (CMs) often exhibit other cardiac conditions, such as atrial fibrillation (Afib), which has also been linked to TTNtvs. This retrospective analysis aims to characterize the relationship between different cardiac conditions in those with TTNtvs and identify individuals with the highest risk of DCM.MethodsIn this work we leverage longitudinal electronic health record and exome sequencing data from approximately 450,000 individuals in 2 health systems to statistically confirm and pinpoint the genetic footprint of TTNtv-related diagnoses aside from CM, such as Afib, and determine whether vetting additional significantly associated phenotypes better stratifies CM risk across those with TTNtvs. We focused on TTNtvs in exons with a percentage spliced in >90% (hiPSI TTNtvs), a representation of constitutive cardiac expression.ResultsWhen controlling for CM and Afib, other cardiac conditions retained only nominal association with TTNtvs. A sliding window analysis of TTNtvs across the locus confirms that the association is specific to hiPSI exons for both CM and Afib, with no meaningful associations in percent spliced in ≤90% exons (loPSI TTNtvs). The combination of hiPSI TTNtv status and early Afib diagnosis (before age 60) found a subset of TTNtv individuals at high risk for CM. The prevalence of CM in this subset was 33%, a rate that was 3.5 fold higher than that in individuals with hiPSI TTNtvs (9% prevalence), 5-fold higher than that in individuals without TTNtvs with early Afib (6% prevalence), and 80-fold higher than that in the general population.ConclusionOur retrospective analyses revealed that those with hiPSI TTNtvs and early Afib (~1/2900) have a high prevalence of CM (33%), far exceeding that in other individuals with TTNtvs and in those without TTNtvs with an early Afib diagnosis. These results show that combining phenotypic information along with genomic population screening can identify patients at higher risk for progressing to symptomatic heart failure.  相似文献   

13.
We present a case of lethal fetal akinesia deformation sequence (FADS) caused by a frameshift variant in trans with a 148 kbp deletion encompassing 3-36 exons of AGRN. Pathogenic variants in AGRN have been described in families with a form of congenital myasthenic syndrome (CMS), manifesting in the early childhood with variable fatigable muscle weakness. To the best of our knowledge, this is the first case of FADS caused by defects in AGRN gene. FADS has been reported to be caused by pathogenic variants in genes previously associated with CMS including these involved in endplate development and maintenance: MuSK, DOK7, and RAPSN. FADS seems to be the most severe form of CMS. None of the reported in the literature CMS cases associated with AGRN had two null variants, like the case presented herein. This indicates a strong genotype-phenotype correlation.  相似文献   

14.
15.
Left ventricular non-compaction (LVNC) is a cardiomyopathy that may be of genetic origin; however, few data are available about the yield of mutation, the spectrum of genes and allelic variations. The aim of this study was to better characterize the genetic spectrum of isolated LVNC in a prospective cohort of 95 unrelated adult patients through the molecular investigation of 107 genes involved in cardiomyopathies and arrhythmias. Fifty-two pathogenic or probably pathogenic variants were identified in 40 patients (42%) including 31 patients (32.5%) with single variant and 9 patients with complex genotypes (9.5%). Mutated patients tended to have younger age at diagnosis than patients with no identified mutation. The most prevalent genes were TTN, then HCN4, MYH7, and RYR2. The distribution includes 13 genes previously reported in LVNC and 10 additional candidate genes. Our results show that LVNC is basically a genetic disease and support genetic counseling and cardiac screening in relatives. There is a large genetic heterogeneity, with predominant TTN null mutations and frequent complex genotypes. The gene spectrum is close to the one observed in dilated cardiomyopathy but with specific genes such as HCN4. We also identified new candidate genes that could be involved in this sub-phenotype of cardiomyopathy.  相似文献   

16.
The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation‐contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next‐generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1‐related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core‐rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35‐year‐old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.  相似文献   

17.
Intellectual disability (ID), a genetically and clinically heterogeneous disorder, affects 1%–3% of the general population and is a major health problem, especially in developing countries and in populations with a high frequency of consanguineous marriage. Using whole exome sequencing, a homozygous missense variation (c.3264G>C, p.W1088C) in a plausible disease causing gene, GPR126, was identified in two patients presenting with profound ID, severe speech impairment, microcephaly, seizures during infancy, and spasticity accompanied by cerebellar hypoplasia. The role of GPR126 in radial sorting and myelination in Schwann cells suggests a mechanism of pathogenesis for ID. Involvement of GPR126 in lethal congenital contracture syndrome 9 has been identified previously, but this is the first report of a plausible candidate gene, GPR126, in ID.  相似文献   

18.
Co‐occurring and mutually exclusive gene alteration events are helpful for understanding carcinogenesis but systematic screening for such events is quite limited. We conducted pairwise screening tests to identify “hit pairs” in colorectal cancer (CRC) by utilizing the cross‐omics data from The Cancer Genome Atlas (TCGA). Numerous hit pairs involving somatic mutations, copy number variations, and DNA methylation were found to occur nonrandomly in CRC, such as KRAS and HOXB6, SMAD4 and PMEPA1. Based on these hit pairs, we identified 32 synthetic lethal pairs and 7,527 co‐occurring pairs relating to drug response. Our further biological experiments showed that the co‐occurrence of mutant FCGBP and NUDT12 silencing (or mutant TMC3 and RPS6KA6 silencing) with small interfering RNA reduced cell viability. Moreover, novel hit pairs could influence prognosis. The patients who carried concurrent mutations of IRF5 and NEFH, SYNE1 and TTN, or MUC16 and NEFH had worse survival outcomes. Particularly, the presence of mutant SYNE1 and TTN pair not only affects prognosis, but also is related to CRC patients' response to drug treatment. Our “hit pair” genes may provide insights into colorectal carcinogenesis and help open new avenues for CRC therapy.  相似文献   

19.
A subset of a larger and heterogeneous class of disorders, the congenital myasthenic syndromes (CMS) are caused by pathogenic variants in genes encoding proteins that support the integrity and function of the neuromuscular junction (NMJ). A central component of the NMJ is the sodium‐dependent high‐affinity choline transporter 1 (CHT1), a solute carrier protein (gene symbol SLC5A7), responsible for the reuptake of choline into nerve termini has recently been implicated as one of several autosomal recessive causes of CMS. We report the identification and functional characterization of a novel pathogenic variant in SLC5A7, c.788C>T (p.Ser263Phe) in an El Salvadorian family with a lethal form of a congenital myasthenic syndrome characterized by fetal akinesia. This study expands the clinical phenotype and insight into a form of fetal akinesia related to CHT1 defects and proposes a genotype‐phenotype correlation for the lethal form of SLC5A7‐related disorder with potential implications for genetic counseling.  相似文献   

20.
Biallelic variants in CHST3 gene result in congenital dislocation of large joints, club feet, short stature, rhizomelia, kypho-scoliosis, platyspondyly, epiphyseal dysplasia, flared metaphysis, in addition to minor cardiac lesions and hearing loss. Herein, we describe 14 new patients from 11 unrelated Egyptian families with CHST3-related skeletal dysplasia. All patients had spondyloepiphyseal changes that were progressive with age in addition to bifid distal ends of humeri which can be considered a diagnostic key in patients with CHST3 variants. They also shared peculiar facies with broad forehead, broad nasal tip, long philtrum and short neck. Rare unusual associated findings included microdontia, teeth spacing, delayed eruption, prominent angulation of the lumbar-sacral junction and atrial septal defect. Mutational analysis revealed 10 different homozygous CHST3 (NM_004273.5) variants including 7 missense, two frameshift and one nonsense variant. Of them, the c.384_391dup (p.Pro131Argfs*88) was recurrent in two families. Eight of these variants were not described before. Our study presents the largest series of patients with CHST3-related skeletal dysplasia from the same ethnic group. Furthermore, it reinforces that lethal cardiac involvement is a critical clinical finding of the disorder. Therefore, we believe that our study expands the phenotypic and mutational spectrum, and also highlights the importance of performing echocardiography in patients harboring CHST3 variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号