首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The present study investigated the effect of morphine on synaptic transmission and long-term potentiation (LTP) in the dentate gyrus using rat hippocampal slice preparations. Field excitatory postsynaptic potential (fEPSP) and population spike (PS), evoked by stimulation of the perforant path, were recorded from the dentate molecular layer and the stratum granulosum, respectively. Following application of 10 microM morphine, PS amplitude increased gradually in 10 min and was eventually potentiated by approximately 50%. The phenomenon showed a concentration-dependent manner and was completely canceled by naloxone, a mu opioid receptor antagonist. Furthermore, morphine-induced PS augmentation was not detected in disinhibited hippocampal slices, which suggests that the inhibitory input to the dentate granule cells was required for the facilitatory effect of morphine. Neither fEPSP nor tetanus-induced LTP of PS was altered by morphine application. The data support the hypothesis that mu opioid receptor activity modulates inhibitory recurrent circuits in the dentate gyrus and thereby, indirectly plays a regulatory role for hippocampal excitatory neurotransmission.  相似文献   

2.
cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) are two major modulators of synaptic transmission in the CNS but little is known about how they affect synaptic transmission in the human CNS. In this study, we used forskolin, a PKA activator, and phorbol ester, a PKC activator, to examine the effects of these kinases on synaptic transmission in granule cells of the dentate gyrus in human hippocampal slices using whole-cell recording methods. We found that both forskolin and phorbol ester increased the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) but left the amplitude unaffected. Inactive forskolin and phorbol ester had no effect on sEPSCs in human dentate granule cells. Prior application of forskolin occluded the effects of phorbol ester on mEPSC frequency. Tetanic stimulation applied to the perforant path induced short-term depression in dentate gyrus granule cells. Both forskolin and phorbol ester significantly enhanced this short-term depression. Taken together, these results demonstrate that PKA and PKC are involved in up-regulation of excitatory synaptic transmission in human dentate granule cells, primarily by presynaptic mechanisms. In addition, the occlusion experiments suggest that the two kinases may share a common signal pathway.  相似文献   

3.
GPR54 and kisspeptin in reproduction   总被引:7,自引:0,他引:7  
Kisspeptins, the peptide products of the KiSS-1 gene, were identified in 2001 as natural ligands of the previously orphan G protein-coupled receptor, GPR54. They include, among others, metastin and kisspeptin-10. The known biological functions of kisspeptins were initially restricted to their ability to suppress tumour metastasis, hence the name of metastin. However, in late 2003, two groups independently reported that loss-of-function mutations of the GPR54 gene are linked to absence of puberty onset and hypogonadotrophic hypogonadism in humans--a phenotype that was reproduced in GPR54-null mice. Those seminal observations revealed a totally unexpected, fundamental role of the KiSS-1/GPR54 system in control of puberty and reproductive function and boosted an extraordinary interest for the characterization of these novel facets of kisspeptin physiology. Indeed, in the last 2 years, metastin and kisspeptin-10 have been demonstrated as very potent stimulators of the gonadotrophic axis, in a number of species and through different routes of administration. In addition, the hypothalamic KiSS-1/GPR54 system has been proven as an essential gatekeeper of GnRH neurons, involved in their activation at puberty and their regulation by gonadal steroids and (probably) metabolic factors. This review comprehensively examines the experimental evidence obtained to date supporting a pivotal role of kisspeptins and GPR54 in the control of reproduction.  相似文献   

4.
Metastin-like immunoreactivity in the rat medulla oblongata and spinal cord   总被引:1,自引:0,他引:1  
Metastin, the product of metastasis suppressor gene KiSS-1, is proposed to be the natural ligand for the G-protein-coupled receptor GPR54, known also as AXOR12. This immunohistochemical study, using a rabbit polyclonal antiserum against the human metastin fragment (45-54)-NH(2), showed that in rats metastin-like immunoreactivity (MTS-LI) was present in neurons of the nucleus of the solitary tract and caudoventrolateral reticular nucleus, and in cell processes of the spinal trigeminal tract and lateral reticular nucleus. MTS-LI was confined mainly to neurons and fibers at or caudal to the area postrema. In the spinal cord, MTS-LI cell processes formed a dense plexus in superficial layers I and II of the dorsal horn. The pattern of distribution of MTS-LI in the medulla and spinal cord suggests that this novel peptide may participate in autonomic and sensory neural signaling.  相似文献   

5.
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABA(A) receptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 microM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid-induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after > or = 1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABA(A) receptor-dependent recurrent inhibitory circuits and 10 mM [Ca(2+)](o) to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats (n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 +/- 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.  相似文献   

6.
N-Acetylaspartylglutamate (NAAG) is an agonist at the type 3 metabotropic glutamate receptor (mGluR3), which is coupled to a Gi/o protein. When activated, the mGluR3 receptor inhibits adenylyl cyclase and reduces the cAMP-mediated second-messenger cascade. Long-term potentiation (LTP) in the medial perforant path (MPP) of the hippocampal dentate gyrus requires increases in cAMP. The presence of mGluR3 receptors and NAAG in neurons of the dentate gyrus suggests that this peptide transmitter may inhibit LTP in the dentate gyrus. High-frequency stimulation (100 Hz; 2 s) of the MPP resulted in LTP of extracellularly recorded excitatory postsynaptic potentials at the MPP-granule cell synapse of rat hippocampal slices. Perfusion of the slice with NAAG (50 and 200 microM) blocked LTP. Neither 50 nor 200 microM NAAG produced N-methyl-D-aspartate receptor currents in the granule cells of the acute hippocampal slice. The group II mGluR antagonist ethyl glutamate (100 microM) and a structural analogue of NAAG, beta-NAAG (100 microM), prevented the blockade of LTP by NAAG. Paired-pulse depression of the excitatory postsynaptic potential at 20- and 80-ms interpulse intervals (IPI) was not affected by NAAG or beta-NAAG. beta-NAAG did not affect inositol trisphosphate production stimulated by the agonist glutamate in cells expressing the group I mGluR1alpha or mGluR5. beta-NAAG blocked the decrease in forskolin-stimulated cAMP by the group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) but not the group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid in cerebellar granule cells. In cells transfected with mGluR3, but not mGluR2, beta-NAAG blocked forskolin-stimulated cAMP responses to glutamate, NAAG, the nonspecific group I, II agonist trans-ACPD, and the group II agonist DCG-IV. We conclude that beta-NAAG is a selective mGluR antagonist capable of differentiating between mGluR2 and mGluR3 subtypes and that the mGluR3 receptor functions to regulate activity-dependent synaptic potentiation in the hippocampus.  相似文献   

7.
Limbic status epilepticus and preparation of hippocampal slice cultures both produce cell loss and denervation. This commonality led us to hypothesize that morphological and physiological alterations in hippocampal slice cultures may be similar to those observed in human limbic epilepsy and animal models. To test this hypothesis, we performed electrophysiological and morphological analyses in long-term (postnatal day 11; 40-60 days in vitro) organotypic hippocampal slice cultures. Electrophysiological analyses of dentate granule cell excitability revealed that granule cells in slice cultures were hyperexcitable compared with acute slices from normal rats. In physiological buffer, spontaneous electrographic granule cell seizures were seen in 22% of cultures; in the presence of a GABA(A) receptor antagonist, seizures were documented in 75% of cultures. Hilar stimulation evoked postsynaptic potentials (PSPs) and multiple population spikes in the granule cell layer, which were eliminated by glutamate receptor antagonists, demonstrating the requirement for excitatory synaptic transmission. By contrast, under identical recording conditions, acute hippocampal slices isolated from normal rats exhibited a lack of seizures, and hilar stimulation evoked an isolated population spike without PSPs. To examine the possibility that newly formed excitatory synaptic connections to the dentate gyrus contribute to granule cell hyperexcitability in slice cultures, anatomical labeling and electrophysiological recordings following knife cuts were performed. Anatomical labeling of individual dentate granule, CA3 and CA1 pyramidal cells with neurobiotin illustrated the presence of axonal projections that may provide reciprocal excitatory synaptic connections among these regions and contribute to granule cell hyperexcitability. Knife cuts severing connections between CA1 and the dentate gyrus/CA3c region reduced but did not abolish hilar-evoked excitatory PSPs, suggesting the presence of newly formed, functional synaptic connections to the granule cells from CA1 and CA3 as well as from neurons intrinsic to the dentate gyrus. Many of the electrophysiological and morphological abnormalities reported here for long-term hippocampal slice cultures bear striking similarities to both human and in vivo models, making this in vitro model a simple, powerful system to begin to elucidate the molecular and cellular mechanisms underlying synaptic rearrangements and epileptogenesis.  相似文献   

8.
The awakening of the gonadotrophic axis at puberty is the end-point of a complex cascade of sex developmental events that leads to the attainment of reproductive capacity. Recently, loss-of-function mutations of the gene encoding GPR54, the putative receptor for the KiSS-1-derived peptide metastin, have been linked to hypogonadotrophic hypogonadism, both in rodents and humans. However, the actual role of the KiSS-1/GPR54 system in the timing of puberty onset remains unexplored. We report herein that chronic central administration of KiSS-1 peptide to immature female rats induced the precocious activation of the gonadotrophic axis, as estimated by advanced vaginal opening, elevated uterus weight, and increased serum levels of luteinizing hormone (LH) and oestrogen. The central effect of KiSS-1 upon LH release appeared to be mediated via the hypothalamic LH-releasing hormone. In contrast, despite the well-documented permissive role of body fat stores and the adipocyte-derived hormone leptin in puberty maturation, acute activation of the gonadotrophic axis by KiSS-1 was persistently observed in pubertal animals under food deprivation, after central immunoneutralization of leptin, and in a model of leptin resistance. Overall, the present results, together with our recent data on maximum expression of KiSS-1 and GPR54 genes in the hypothalamus at puberty, provide novel evidence for a role of the KiSS-1 system as a downstream element in the hypothalamic network triggering the onset of puberty.  相似文献   

9.
We investigated whether adenosine neuromodulation is involved in a benzodiazepine (midazolam)-induced depression of excitatory synaptic transmissions in the CA1 and dentate gyrus (DG) regions in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs), evoked by electrical stimulation of the CA1-Schaffer collateral or the DG-perforant path, were recorded with extracellular microelectrodes from CA1-stratum radiatum or DG-stratum moleculare in oxygenated ACSF. The initial slope of the fEPSPs was analyzed for assessing the drug effects. Midazolam (1 microM) transiently depressed CA1- and DG-fEPSPs. The fEPSPs were depressed to approximately 75% of the control values, and then gradually recovered. The depression was not affected by bicuculline, a GABAA receptor antagonist, although it was completely antagonized by aminophylline, an adenosine receptor antagonist. Dipyridamole (5 microM), an adenosine uptake inhibitor, depressed the fEPSPs in a similar manner to midazolam. An adenosine deaminase inhibitor, EHNA, also transiently depressed the fEPSPs, but in a different manner. Exogenous adenosine persistently depressed the fEPSPs. The effects of the drugs were not significantly different in the CA1 and DG regions. The results suggest that midazolam (1 microM) depresses excitatory synaptic transmissions through the adenosine neuromodulatory system by inhibiting adenosine uptake in the CA1 and DG regions of the hippocampus.  相似文献   

10.
Platelet-activating factor (PAF), a bioactive lipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) derived from phospholipase A(2) and other pathways, has been implicated in neural plasticity and memory formation. Long-term potentiation (LTP) can be induced by the application of PAF and blocked by a PAF receptor (PAF-R) inhibitor in the hippocampal CA1 and dentate gyrus. To further investigate the role of PAF in synaptic plasticity, we compared LTP in dentate granule cells from hippocampal slices of adult mice deficient in the PAF-R and their age-matched wild-type littermates. Whole cell patch-clamp recordings were made in the current-clamp mode. LTP in the perforant path was induced by a high-frequency stimulation (HFS) and defined as >20% increase above baseline of the amplitude of excitatory postsynaptic potentials (EPSPs) from 26 to 30 min after HFS. HFS-induced enhancement of the EPSP amplitude was attenuated in cells from the PAF-R-deficient mice (163 +/- 14%, mean +/- SE; n = 32) when compared with that in wild-type mice (219 +/- 17%, n = 32). The incidence of LTP induction was also lower in the cells from the deficient mice (72%, 23 of 32 cells) than in the wild-type mice (91%, 29 of 32 cells). Using paired-pulse facilitation as a synaptic pathway discrimination, it appeared that there were differences in LTP magnitudes in the lateral perforant path but not in the medial perforant path between the two groups. BN52021 (5 microM), a PAF synaptosomal receptor antagonist, reduced LTP in the lateral path in the wild-type mice. However, neither BN52021, nor BN50730 (5 microM), a microsomal PAF-R antagonist, reduced LTP in the lateral perforant path in the receptor-deficient mice. These data provide evidence that PAF-R-deficient mice are a useful model to study LTP in the dentate gyrus and support the notion that PAF actively participates in hippocampal synaptic plasticity.  相似文献   

11.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

12.
The predominant excitatory synaptic input to the hippocampus arises from entorhinal cortical axons that synapse with dentate granule cells, which in turn synapse with CA3 pyramidal cells.Thus two highly excitable brain areas--the entorhinal cortex and the CA3 field--are separated by dentate granule cells, which have been proposed to function as a gate or filter. However, unlike rats, primates have "dentate" CA3 pyramidal cells with an apical dendrite that extends into the molecular layer of the dentate gyrus, where they could receive strong, monosynaptic, excitatory synaptic input from the entorhinal cortex. To test this possibility, the dentate gyrus molecular layer was stimulated while intracellular recordings were obtained from CA3 pyramidal cells in hippocampal slices from neurologically normal macaque monkeys. Stimulus intensity of the outer molecular layer of the dentate gyrus was standardized by the threshold intensity for evoking a dentate gyrus field potential population spike. Recorded proximal CA3 pyramidal cells were labeled with biocytin, processed with diaminobenzidine for visualization, and classified according to their dendritic morphology. In response to stimulation of the dentate gyrus molecular layer, action potential thresholds were similar in proximal CA3 pyramidal cells with different dendritic morphologies. These findings do not support the hypothesis that dentate CA3 pyramidal cells receive stronger synaptic input from the entorhinal cortex than do other proximal CA3 pyramidal cells.  相似文献   

13.
14.
The aim of this study was to explore the role of endogenous neurotrophins for inhibitory synaptic transmission in the dentate gyrus of adult mice. Heterozygous knockout (+/-) mice or neurotrophin scavenging proteins were used to reduce the levels of endogenous brain-derived neurotrophic factor and neurotrophin-3. Patch-clamp recordings from dentate granule cells in brain slices showed that the frequency, but not the kinetics or amplitude, of miniature inhibitory postsynaptic currents was modulated in brain-derived neurotrophic factor +/- compared to wild-type (+/+) mice. Furthermore, paired-pulse depression of evoked inhibitory synaptic responses was increased in brain-derived neurotrophic factor +/- mice. Similar results were obtained in brain slices from brain-derived neurotrophic factor +/+ mice incubated with tyrosine receptor kinase B-immunoglobulin G, which scavenges endogenous brain-derived neurotrophic factor. The increased inhibitory synaptic activity in brain-derived neurotrophic factor +/- mice was accompanied by decreased excitability of the granule cells. No differences in the frequency, amplitude or kinetics of miniature inhibitory postsynaptic currents were seen between neurotrophin-3 +/- and +/+ mice.From these results we suggest that endogenous brain-derived neurotrophic factor, but not neurotrophin-3, has acute modulatory effects on synaptic inhibition onto dentate granule cells. The site of action seems to be located presynaptically, i.e. brain-derived neurotrophic factor regulates the properties of inhibitory interneurons, leading to increased excitability of dentate granule cells. We propose that through this mechanism, brain-derived neurotrophic factor can change the gating/filtering properties of the dentate gyrus for incoming information from the entorhinal cortex to hippocampus. This will have consequences for the recruitment of hippocampal neural circuitries both under physiological and pathological conditions, such as epileptogenesis.  相似文献   

15.
MAP kinases (MAPK) are a family of serine/threonine (Ser/Thr) kinases that link cell surface signals to changes in enzyme activity and gene expression. They are the products of the newly described gene family referred to as extracellular signal regulated kinases (ERKs). Moreover, MAPKs phosphorylate tau in vitro at Ser/Thr Proline sites, generating a multiply phosphorylated tau protein that is similar to the hyperphosphorylated tau found in Alzheimer neurofibrillary tangles (NFTs). We studied MAPK immunoreactivity and in situ hybridization patterns of the two major genes that comprise MAPK activity, ERK1 and ERK2, in the human hippocampal formation. Our goal was to determine whether the pattern of ERK expression is consistent with the hypothesis that MAPKs contribute to NFT formation. ERK1 mRNA is present in small amounts and confined primarily to dentate gyrus granule cells. ERK2 mRNA, by contrast, gives a much stronger hybridization signal and is present in dentate gyrus granule cells and pyramidal cells throughout all hippocampal subfields and adjacent temporal neocortex. Quantitative measures of ERK2 mRNA reveal that NFT-bearing neurons contain approximately 15% less ERK2 mRNA than nearest neighbors that do not contain NFT. NFT-bearing neurons contain approximately 25% less polyA mRNA, suggesting a relative preservation of ERK2 mRNA even in metabolically compromised cells. MAPK immunoreactivity (which represents both ERK1 and ERK2) is seen in neuronal soma, dendrites, axons, and in reactive astrocytes. In Alzheimer's disease, neurons that contain NFTs are also MAPK immunoreactive, but neurons that contain the highest amounts of MAPK immunoreactivity are not necessarily vulnerable for NFT. MAPK immunoreactivity is present in the same neurons as NFT and in the same subcellular compartments as tau, supporting a role for MAPKs in tau phosphorylation in Alzheimer's disease. However, the presence of ERK immunoreactivity is not sufficient to predispose neurons to NFT formation.  相似文献   

16.
Kisspeptins, which are alternatively called as metastin since they were originally identified as products of metastasis suppressor gene KiSS-1, are the natural ligands for the G protein-coupled receptor 54 (GPR54). Kisspeptins are the most potent activators of hypothalamic-pituitary-gonadal (HPG) axis reported to date. The pulsatile pattern of GnRH release, which results in the intermittent release of gonadotropic hormones from the pituitary, has a critical importance for reproductive function but the factors responsible from this release pattern are not known. Therefore, the pattern of kisspeptin-induced intracellular signaling and the role of PKC in the intracellular signaling cascade were investigated by fluorescence calcium imaging using the immortalized GnRH-secreting GT1-7 hypothalamic neurons. Kisspeptin-10 caused a triphasic change characterized by an initial small increase followed by a significant decrease and increase in intracellular free calcium concentrations ([Ca(2+)](i)). The changes in [Ca(2+)](i) were significantly attenuated by pre-treatment with protein kinase C inhibitor. The compatibility of appeared mirrored-patterns of kisspeptin-10-induced changes in [Ca(2+)](i) concentrations in these neurons and GnRH secretion confirm the importance of intracellular calcium flux downstream from GPR54 through PKC signaling pathway.  相似文献   

17.
Guo J  Wu HW  Hu G  Han X  De W  Sun YJ 《Neuroscience》2006,143(3):827-836
In the present report, we investigated the association between the sustained activation of Src family tyrosine kinases (primarily Src kinase) with the biphasic phosphorylation of extracellular signal-regulated kinase (ERK) induced by ischemia in the rat hippocampal CA3/dentate gyrus subfield. Post-ischemia reperfusion resulted in the phosphorylation of ERK in a Ras-dependent manner; down-regulation of NMDA receptors or Src family protein kinases by ketamine or 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) potently antagonized the activation of ERK, indicating that NMDA receptors and Src family tyrosine kinases are essential for the up-regulation of ERK activity following ischemic stimuli. Additionally, an ischemia-induced association between RKIP and Raf-1 resulted in the inhibition of the ERK signaling cascade through an inhibition of Src-mediated Raf-1 phosphorylation at Tyr340/341 residues. This ischemia-induced inhibition of ERK was not associated with other downstream pathways involving Raf-1 phosphorylation at Ser 259 elicited by protein kinase B (Akt). Dissociation of Raf-1 from RKIP by 24 h reperfusion or (4S)-3-[(E)-but-2-enoyl]-4-benzyl-2-oxazolidinone (locostatin) influenced the second phase of ERK activation elicited by the Src-Raf cassette. We propose that, following ischemia, the Src family tyrosine kinases are critical for modulation of the Ras/Raf/MEK/ERK cascade, in which RKIP is involved in biphasic phosphorylation of ERK via a blockade of Src-Raf cascades.  相似文献   

18.
The functional significance of cyclooxygenases (COX-1 and -2), the key enzymes that convert arachidonic acid (AA) to prostaglandins (PGs) in brain, is unclear, although they have been implicated in cellular functions and in some neurologic disorders, including stroke, epilepsy, and Alzheimer's disease. Recent evidence that COX-2 is expressed in postsynaptic dendritic spines (which are specialized structures involved in synaptic signaling) and is regulated by synaptic activity implies participation of COX-2 in neuronal plasticity. However, direct evidence is lacking. Here we demonstrate that selective COX-2 inhibitors significantly reduced postsynaptic membrane excitability, back-propagating dendritic action potential-associated Ca2+ influx, and long-term potentiation (LTP) induction in hippocampal dentate granule neurons, while a COX-1 inhibitor is ineffective. All of these actions were effectively reversed by exogenous application of PGE2 but not of PGD2 or PGF(2alpha). Our results indicate that COX-2-generated PGE2 regulates membrane excitability and long-term synaptic plasticity in hippocampal perforant path-dentate gyrus synapses.  相似文献   

19.
Pre- and postsynaptic responses to activation of medial perforant path (MPP) axons were examined in hippocampal slices taken from rats reared for 3-4 wk in relatively complex (EC) or individual cage (IC) environments. Three types of extracellular field potentials were recorded in the infrapyramidal blade of the dentate gyrus: 1) granule cell population spikes (PSs), which reflect the number and synchrony of discharging granule cells (2), 2) population excitatory postsynaptic potentials (EPSPs), which reflect the amount of excitatory synaptic current flow into dendrites (28), and 3) presynaptic fiber volleys (FVs), which reflect the number of activated axons (28). Stimulation of the MPP evoked significantly larger PSs in slices taken from EC rats. There was no significant effect of rearing environment on PS/EPSP relationships. The slopes of EPSPs recorded at the site of synaptic activation in the dentate molecular layer and at the major current source in the dentate granule cell layer were significantly greater in slices taken from EC rats. The presynaptic FV was recorded at the site of synaptic activation in the molecular layer. FV amplitude did not differ significantly as a function of rearing environment. To examine possible differences in tissue impedance, granule cells were activated by stimulating granule cell axons in the dentate hilus and recording the antidromic PS in the granule cell layer. Antidromic PS amplitude was not significantly affected by rearing environment. The relative permanence of the experience-dependent alterations in synaptic transmission was assessed by comparing slices taken from rats that had been reared for 4 wk in complex environments followed by 3-4 wk in individual cages with those from rats reared for 7-8 wk in individual cages. There were no significant differences in MPP synaptic transmission between these groups of animals. The results suggest that experience in a relatively complex environment is associated with greater MPP synaptic transmission arising from an increased synaptic input to granule cells; the greater MPP synaptic transmission associated with behavioral experience can occur independent of behavioral state, influences from extrahippocampal brain regions and intrahippocampal inhibitory activity; and the experience-dependent synaptic alterations in the dentate gyrus are transient, in contrast to experience-dependent morphological alterations described in occipital cortex. The possible relationship of these alterations to the phenomenon of long-term enhancement is discussed.  相似文献   

20.
Platelet-activating factor (PAF) is an important inflammatory lipid mediator affecting neural plasticity. In the present study, we demonstrated how PAF affects synaptic efficacy through activation of protein kinases in the rat hippocampal CA1 region. In cultured hippocampal neurons, 10 to 1000 nM PAF stimulated autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphorylation of synapsin I and myristoylated alanine-rich protein kinase C substrate (MARCKS). In hippocampal CA1 slices, field excitatory postsynaptic potentials (fEPSPs) induced by stimulation of the Schaffer collateral/commissural pathways were significantly increased 10–50 min after exposure to 100 to 1000 nM PAF. Immunoblotting analysis showed that 100 nM PAF treatment for 10 or 50 min significantly and persistently increased CaMKII autophosphorylation in the hippocampal CA1 region. Increased protein kinase Cα (PKCα) autophosphorylation was also seen at the same time point after PAF exposure. By contrast, extracellular signal-regulated kinase (ERK) phosphorylation was slightly but significantly increased at 10 min after PAF exposure. Consistent with increased CaMKII autophosphorylation, AMPA-type glutamate receptor subunit 1 (GluR1) (Ser-831) phosphorylation as a CaMKII postsynaptic substrate significantly increased after 10 or 50 min of treatment, whereas synapsin I (Ser-603) phosphorylation as a presynaptic substrate increased at 10 min in the hippocampal CA1 region. Phosphorylation of MARCKS (Ser-152/156) and NMDA receptor subunit 1 (NR1) (Ser-896) as PKCα substrates also significantly increased after 10 min but had not further increased by 50 min in the CA1 region. Increased of fEPSPs induced by PAF treatment completely and/or partly inhibited by KN93 and/or U0126 treatment. These results suggest that PAF induces synaptic facilitation through activation of CaMKII, PKC and ERK in the hippocampal CA1 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号