首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
辐射损伤与细胞周期   总被引:2,自引:1,他引:1  
辐射后的细胞可能发生恶性转化,可能死亡,另有一些细胞对辐射却产生适应性或抗性,最终长期存活下来.近年来研究发现,此差异与辐射对细胞周期的影响密切相关.辐射可阻断细胞周期活动及延长细胞周期,其中G1期、S期和G2/M期等细胞周期检查点(checkpoint)起决定作用,它们分别通过不同的信号途径对辐射所致的损伤进行调控,产生不同的辐射生物学效应.对该领域的深入研究不仅为进一步阐释辐射致癌提供一定的理论依据,而且为临床放疗增敏剂的研制提供新的思路.  相似文献   

2.
辐射损伤与细胞周期   总被引:4,自引:0,他引:4  
辐射后的细胞可能发生恶性转化,可能死亡,另有一些细胞对辐射却产生适应性或抗性,最终长期存活下来。近年来研究发现,此差异与辐射对细胞周期的影响密切相关。辐射可阻断细胞周期活动及延长细胞周期,其中G1期、S期和G2/M期等细胞周期检查点(checkpoint)起决定作用,它们分别通过不同的信号途径对辐射所致的损伤进行调控,产生不同的辐射生物学效应。对该领域的深入研究不仅为进一步阐释辐射致癌提供一定的理论依据,而且为临床放疗增敏剂的研制提供新的思路。  相似文献   

3.
辐射诱导细胞发生G1期阻滞,其分子调控机制尚不十分清楚.近期文献报道,独立于p53基因之外的p16-Cyclins-CDKs(细胞周期素依赖性激酶)细胞周期负向调控通路在紫外线和电离辐射照后发生改变,提示此通路可能在辐射诱导的G1期阻滞中发挥至关重要的作用.  相似文献   

4.
p16负向调控通路与辐射诱导的G1期阻滞   总被引:1,自引:0,他引:1  
辐射诱导细胞发生G1期阻滞,其分子调控机制尚不十分清楚。近期献报道,独立于p53基因之外的p16-Cyclins-CDKs(细胞周期素依赖性激酶)细胞周期负向调控通路在紫外线和电离辐射照后发生改变,提示此通路可能在辐射诱导的G1期阻滞中发挥至关重要的作用。  相似文献   

5.
目的:探讨细胞周期紊乱和凋亡在X线辐射损伤后创伤愈合延迟中的作用。方法:选用局部软X线辐射损伤合并创伤大鼠模型,应用病理形态观察、流式细胞术等方法观察不同时相点创面组织的病理改变、细胞周期及细胞凋亡的变化。结果:组织病理观察表明,肉芽组织的结构不规则,胶原组织排列紊乱,胶原合成减少,创伤愈合延迟。在伤后3d--9d时间段内,辐射侧G0/G1期细胞增加,S期和G2/M期细胞减少,表明软X线局部照射后细胞发生了严重的G1期阻滞。在伤后13d--22d时间段内,辐射侧S期细胞逐渐增加,6d时达到峰值,大量的细胞停留在S期,S期显著延长。在3d--9d时间段内,辐射侧伤口组织细胞凋亡增加,6d时达到峰值,之后逐渐减少。在创伤愈合的整个过程中,辐射侧的细胞凋亡呈由低到高再到低的时相变化。对照例伤口组织细胞凋亡百分数在整个愈合过程中变化并不显著。结论:提示细胞周期紊乱和细胞凋亡增加可能是导致愈合延迟的重要机制。  相似文献   

6.
电离辐射对不同肿瘤细胞细胞周期的影响   总被引:11,自引:4,他引:7       下载免费PDF全文
目的 研究电离辐射对不同肿瘤细胞细胞周期的影响为肿瘤放疗及化疗提供科学依据。方法 处于细胞周期各时相的细胞百分数采用流式细胞术进行检测。结果 研究表明:电离辐射作用后,HelaS3和S180细胞发生了S和G2期阻滞,而DL-4细胞则发生G1和G2期阻滞,B16各时相细胞数无列出较高的辐射抗性。结论 电离辐射作用后,不同肿瘤细胞的辐射抗性、即辐射敏感性有较大差异。其细胞周期的变化规律亦不相同。  相似文献   

7.
目的:探讨HIV-1 Tat蛋白对细胞周期相关基因表达以及电离辐射诱发细胞周期阻滞的影响.方法:使用包含102个与DNA损伤修复和细胞周期相关的基因微阵列检测人横纹肌肉瘤细胞(TE671)及已转染tat基因的TE671细胞(TT2)基因表达谱的改变;使用流式细胞仪检测细胞周期变化;Western印迹检测蛋白表达变化.结果:在基因芯片的检测中发现,与DNA损伤修复及细胞周期调控相关的6个基因Cdc25C,KIF2C,Cdc20,DNA-PKcs,CTS1,Wee1在转染tat基因的细胞中表达下调;细胞周期检测发现TE671细胞和TT2细胞经4 Gy γ射线照射后表现出不同程度的G2/M期阻滞,但表达Tat的TT2细胞G2/M阻滞出现较TE671细胞晚,而在照射后48 h时TE671细胞G2/M期阻滞已恢复,但TT2细胞阻滞仍很显著.另外,TT2细胞S期阻滞时间延长.研究进一步发现细胞周期蛋白(cyclin)B1在TT2细胞中表达增强.结论:HIV-1Tat蛋白导致G2/M检验点功能紊乱,将影响细胞的辐射敏感性,本研究为了解AIDS合并肿瘤患者对放射治疗敏感性提供了重要实验数据.  相似文献   

8.
电离辐射诱导G2期阻滞的机制   总被引:1,自引:0,他引:1  
电离辐射损伤后,细胞通过若干关卡来调控细胞周期的进程,使细胞有时间进行DNA修复,确保染色体组的完整性和遗传稳定性,减少突变的发生。不同的电离辐射使不同细胞产生G1、G2和S期等不同时相的变化,但电离辐射后G2期阻滞的现象十分普遍。近年来,对G2期阻滞机制的研究多集中在Chk1、Chk2和p53上。  相似文献   

9.
目的 探讨6 0 Coγ射线照射对人卵巢癌细胞株A2 780及其顺铂耐药株A2 780 CP体外生长、凋亡及细胞周期的影响。方法 采用四甲基偶唑蓝 (MTT)比色法分析不同辐照剂量 (1~10Gy)对A2 780及A2 780 CP两种细胞株体外生长的影响 ,用流式细胞术 (FCM)比较两者辐照后凋亡及细胞周期的变化。结果  (1) 1~ 10Gy6 0 Coγ射线照射引起A2 780细胞株明显的生长抑制和凋亡 ,而A2 780 CP细胞则表现出明显的辐照抗性 .(2 ) 6Gy6 0 Coγ射线照射后 6~ 48hA2 780细胞呈现G1 期细胞阻滞和S期细胞比例下降 ,A2 780 CP细胞则呈G1 期细胞比例减少和S期细胞比例增加。结论卵巢癌耐药细胞具有辐射抗性和特征性的细胞周期变化 ,流式细胞术测定辐照诱导肿瘤细胞凋亡及细胞周期的变化可预测恶性肿瘤细胞的辐射敏感性。  相似文献   

10.
目的:探讨^60Coγ射线照射对人卵巢癌细胞株A2780及其顺铂耐药株A2780-CP体外生长、凋亡及细胞周期的影响。方法:采用四甲基偶唑蓝(MTT)比色法分析不同辐照剂量(1-10Gy)对A2780及A2780-CP两种细胞株体外生长的影响,用流式细胞术(FCM)比较两者辐照后凋亡及细胞周期的变化。结果:(1)1-10^60Coγ射线照射引起A2780细胞株明显的生长抑制和凋亡,而A2780-CP细胞则表现出明显的辐照抗性。(2)6Gy ^60Coγ射线照射后6-48hA1780细胞呈现G1期细胞阻滞和S期细胞比较下降,A2780-CP细胞则呈G1期细胞比例减少和S期细胞比例增加。结论卵癌耐药细胞具有辐射抗性和物征性的细胞周期变化,流式细胞术测定辐照诱导肿瘤细胞凋讯及细胞周期的变化可预测恶性肿瘤细胞的辐射敏性。  相似文献   

11.
p21基因是细胞周期的负向调控因子,在一定的因素诱导下,p21基因可有效地引起细胞周期G1期和G2期阻滞,从而在维持基因组稳定性中起重要作用。辐射及TGFβ1、TNFα、PTEN、IGF等因子均可诱导p21基因表达增高,而E1A、c-jun、Tbx2、PLD1和PLD2等因子则抑制p21基因表达。  相似文献   

12.
PURPOSE: To provide an update on the product of the ATM gene mutated in the human genetic disorder ataxia-telangiectasia (A-T). SUMMARY: The product of the ATM gene mutated in the human genetic disorder A-T is a 350 kDa protein that plays a central role in the regulation of a number of cellular processes. It is a member of the phosphatidylinositol 3-kinase superfamily, but is more likely a protein kinase similar to another member of that family, i.e. DNA-dependent protein kinase (DNA-PK). A-T cells and fibroblasts derived from the atm -/- mouse are hypersensitive to ionizing radiation and defective in cell cycle checkpoint control. At present the nature of the lesion in damaged DNA recognized by ATM remains uncertain, but it is evident that a small number of residual strand breaks remain unrepaired in A-T cells, which may well account for the radiosensitivity. On the other hand, considerable progress has been achieved in delineating the role of ATM in cell cycle checkpoint control. Defects are observed at all cell cycle checkpoints in A-T cells post-irradiation. At the G1 /S interface ATM has been shown to play a central role in radiation-induced activation of the tumour suppressor gene product p53. ATM binds to p53 in a complex fashion and activates the molecule in response to breaks in DNA by phosphorylating it at serine 15 close to the N-terminus and by controlling other phosphorylation and dephosphorylation changes on the molecule. This in turn leads to the induction of p21/WAF1 and other p53 effector proteins before inhibition of cyclin-dependent kinase activity and G1 arrest. Emerging evidence supports a direct role for ATM at other cell cycle checkpoints. Other proteins interacting with ATM include c-Abl a protein tyrosine kinase, beta-adaptin an endosomal protein and p21 a downstream effector of p53. The significance of these interactions is currently being investigated. ATM also plays an important role in the regulation and surveillance of meiotic progression. The localization of ATM to both the nucleus and other subcellular organelles implicates this molecule in a myriad of cellular processes. CONCLUSION: ATM is involved in DNA damage recognition and cell cycle control in response to ionizing radiation damage. There is evidence that ATM may also have a more general signalling role.  相似文献   

13.
Purpose: To provide an update on the product of the ATM gene mutated in the human genetic disorder ataxia-telangiectasia (A-T). Summary : The product of the ATM gene mutated in the human genetic disorder A-T is a 350kDa protein that plays a central role in the regulation of a number of cellular processes. It is a member of the phosphatidylinositol 3-kinase superfamily, but is more likely a protein kinase similar to another member of that family, i.e. DNA-dependent protein kinase (DNA-PK). A-T cells and fibroblasts derived from the atm /- mouse are hypersensitive to ionizing radiation and defective in cell cycle checkpoint control. At present the nature of the lesion in damaged DNA recognized by ATM remains uncertain, but it is evident that a small number of residual strand breaks remain unrepaired in A-T cells, which may well account for the radiosensitivity. On the other hand, considerable progress has been achieved in delineating the role of ATM in cell cycle checkpoint control. Defects are observed at all cell cycle checkpoints in A-T cells post-irradiation. At the G1/S interface ATM has been shown to play a central role in radiation-induced activation of the tumour suppressor gene product p53. ATM binds to p53 in a complex fashion and activates the molecule in response to breaks in DNA by phosphorylating it at serine 15 close to the N-terminus and by controlling other phosphorylation and dephosphorylation changes on the molecule. This in turn leads to the induction of p21/WAF1 and other p53 effector proteins before inhibition of cyclin-dependent kinase activity and G1 arrest. Emerging evidence supports a direct role for ATM at other cell cycle checkpoints. Other proteins interacting with ATM include c-Abl a protein tyrosine kinase, beta -adaptin an endosomal protein and p21 a downstream effector of p53. The significance of these interactions is currently being investigated. ATM also plays an important role in the regulation and surveillance of meiotic progression. The localization of ATM to both the nucleus and other subcellular organelles implicates this molecule in a myriad of cellular processes. Conclusion: ATM is involved in DNA damage recognition and cell cycle control in response to ionizing radiation damage. There is evidence that ATM may also have a more general signalling role.  相似文献   

14.
 目的 探讨干预FoxM1表达对食管癌细胞增殖、细胞周期及凋亡的影响。方法 选择FoxM1高表达食管癌细胞株,构建FoxM1-shRNA干扰质粒转染食管癌细胞,观察干预FoxM1表达对食管癌细胞增殖、细胞周期及凋亡的影响。结果 成功转染后细胞中FoxM1蛋白水平表达明显降低(t=13.17, P<0.01),细胞增殖明显受抑并呈时间依赖性,72 h抑制效果最显著(68.0%±6.4%,P<0.05);干预组细胞增殖周期发生G1期阻滞(59.14%±1.69% vs 40.51%±1.45%,t=14.23,P<0.01)、细胞凋亡增加(2.48%±0.49% vs 35.37%±0.56%,t=76.56,P<0.01)。结论 干预FoxM1表达使细胞周期发生G1期阻滞并能促进细胞凋亡,从而抑制TE1细胞增殖,FoxM1可能是食管癌基因治疗潜在的有效靶点。  相似文献   

15.
16.
PURPOSE: To determine radiosensitivity as a function of cell age (the age-response) in three human tumour cell lines, and investigate the dependence of the age-response on G1 arrest and on cell-age heterogeneity in synchronized cell populations. MATERIALS AND METHODS: Variation in radiosensitivity throughout the cell cycle and G1 arrest was measured in mitotically selected populations of synchronized human tumour cells. In order to examine the effects of desynchronization and cell age heterogeneity on the measured age-response, a mathematical model was developed based on an existing kinetic model of the cell cycle. The model was used to describe the age-response for mitotically selected populations of cells, which was then compared with experimentally measured age responses. RESULTS: Three different human tumour cell lines had qualitatively similar age-responses, with periods of radiosensitivity in mitosis and in late G1 phase/early S phase, and periods of radioresistance in early/mid G1 phase and late S/G2 phase. Radiosensitivity appeared to increase in G1 phase before the onset of DNA synthesis. One of the cell lines displayed a prolonged G1 arrest after irradiation in G1 phase. Model results demonstrated that the measured age-responses were consistent with a simple model in which the cell cycle was divided into four regions. Radiosensitivity was assumed to be constant within each region, and changed abruptly at the borders between regions. CONCLUSIONS: Human tumour cell lines can exhibit qualitatively similar age-responses despite having markedly different G1 checkpoint responses. This suggests that modulation of the G1 arrest response may not prove to be a useful clinical strategy because it may not lead to significant cell age specific changes in radiosensitivity. The mathematical model of the radiation response of mitotically selected synchronized cells was a useful way to quantitatively describe cell age heterogeneity in these populations, and demonstrated the important impact of this heterogeneity on measured age-responses.  相似文献   

17.
Purpose: Although the significance of cell cycle checkpoints in overcoming low-dose hyper-radiosensitivity (HRS) has been proposed, the underlying mechanism of HRS in human hepatocellular cells remains unclear. Therefore, the aim of this study was to characterize HRS inhuman hepatocellular HepG2 cells and to explore the molecular mechanism(s) mediating this response.

Materials and methods: HepG2 cells were exposed to various single doses of γ radiation (from 0?Gy to 4?Gy), and then were assayed at subsequent time-points. Survival curves were then generated using a linear-quadratic (LQ) equation and a modified induced repair model (MIRM). The percentage of cells in the G1, G2/M, and S phases of the cell cycle were also examined using propidium iodide (PI) staining and flow cytometry. Levels of total cell division cyclin 25C (Cdc25C) and phosphorylated Cdc25C were examined by Western blotting.

Results: Low-dose γ radiation (<0.3?Gy) induced HRS in HepG2 cells, while doses of 0.3, 0.5, and 2.0?Gy γ radiation significantly arrested HepG2 cells in the G2/M phase. While total Cdc25C levels remained unchanged after irradiation, levels of phosphorylated Cdc25C markedly increased 6, 16, and 24?h after treatment with 0.5 or 2.0?Gy radiation, and they peaked after 16?h. The latter observation is consistent with the G2/M arrest that was detected following irradiation.

Conclusions: These findings indicate that low-dose HRS in HepG2 cells may be associated with Cdc25C-mediated G2/M cell cycle checkpoint control.  相似文献   

18.
在肿瘤干细胞和增殖性肿瘤细胞中,广泛存在错配修复(MMR)系统的功能缺失。对于接受化疗的肿瘤,若MMR缺失,可导致细胞绕过细胞周期的G2/S期循环阻滞,产生对化疗药物的抗性。在I临床上,即使是06-甲基鸟嘌呤-DNA甲基转移酶阴性的胶质瘤细胞也会因MMR的缺失,对替莫唑胺产生抗性。对于接受放射治疗的肿瘤,MMR缺失的作用表现为相互矛盾的两个方面:首先,MMR缺失可导致肿瘤细胞对辐射挠陛的提高,细胞不出现凋亡和自吞噬;另一方面,预先给予放射增敏剂5-碘-2'-脱氧尿苷(IUdR)等药物后,MMR的缺失会导致DNA中掺杂大量未被修复的IUdR等基团,从而提高肿瘤细胞的辐射敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号