首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loads needed to elicit a positive pivot shift test in a knee with an anterior cruciate ligament (ACL) rupture have not been quantified. The coupled anterior tibial translation (ATT), coupled internal tibial rotation (ITR), and the in situ force in the ACL in response to a valgus torque, an inherent component of the pivot shift test, were measured in 10 human cadaveric knee specimens. Using a robotic/universal force-moment sensor testing system, valgus torques ranging from 0.0 to 10.0 Nm were applied in nine increments on the intact and ACL-deficient knee in flexion ranging from 0 degrees to 90 degrees. At 15 degrees of knee flexion, the coupled ATT and ITR were significantly increased in the ACL-deficient knee when compared to the intact knee. Coupled ATT increased a maximum of 291% (6.7 mm, p<0.05), while coupled ITR increased a maximum of 85% (5.1 degrees, p<0.05). At 30 degrees, the increases in coupled ATT and ITR were significant at valgus loads of 3.3 Nm and greater with a maximum increase in coupled ATT of 137% (6.3 mm, p<0.05) and a maximum increase in coupled ITR of 38% (3.6 degrees, p<0.05). At 45 degrees, coupled ATT increased significantly (maximum of 69%, 4.4 mm, p<0.05), but only at torques > or =6.7 Nm. The in situ force in the ACL was less than 20 N for all flexion angles when a torque between 3.3 and 5.0 Nm was applied. Low valgus torque elicited tibial subluxation in the ACL-deficient knee with low in situ ACL forces, similar to a positive pivot shift test. Thus, application of a valgus torque may be suitable to evaluate ACL-deficient and ACL-reconstructed knees, since subluxation can be achieved with minimal harm to the ACL graft. This work is important in understanding one load component needed for the pivot shift examination; further studies quantifying other load components are essential for better comprehension of the in vivo pivot shift examination.  相似文献   

2.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/ MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30 degrees and 60 degrees of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60 degrees of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

3.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

4.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

5.
《Arthroscopy》2000,16(6):633-639
Purpose: Although it is well known that the anterior cruciate ligament (ACL) is a primary restraint of the knee under anterior tibial load, the role of the ACL in resisting internal tibial torque and the pivot shift test is controversial. The objective of this study was to determine the effect of these 2 external loading conditions on the kinematics of the intact and ACL-deficient knee and the in situ force in the ACL. Type of Study: This study was a biomechanical study that used cadaveric knees with the intact knee of the specimen serving as a control. Materials and Methods: Twelve human cadaveric knees were tested using a robotic/universal force-moment sensor testing system. This system applied (1) a 10–Newton meter (Nm) internal tibial torque and (2) a combined 10-Nm valgus and 10-Nm internal tibial torque (simulated pivot shift test) to the intact and the ACL-deficient knee. Results: In the ACL-deficient knee, the isolated internal tibial torque significantly increased coupled anterior tibial translation over that of the intact knee by 94%, 48%, and 19% at full extension, 15°, and 30° of flexion, respectively (P <.05). In the case of the simulated pivot shift test, there were similar increases in anterior tibial translation, i.e., 103%, 61%, and 32%, respectively (P <.05). Furthermore, the anterior tibial translation under the simulated pivot shift test was significantly greater than under an isolated internal tibial torque (P <.05). Under the simulated pivot shift test, the in situ forces in the ACL were 83 ± 16 N at full extension and 93 ± 23 N at 15° of knee flexion. These forces were also significantly higher when compared with those for an isolated internal tibial torque (P <.05). Conclusion: Our data indicate that the ACL plays an important role in restraining coupled anterior tibial translation in response to the simulated pivot shift test as well as under an isolated internal tibial torque, especially when the knee is near extension. These findings are also consistent with the clinical observation of anterior tibial subluxation during the pivot shift test with the knee near extension.Arthroscopy: The Journal of Arthroscopic and Related surgery, Vol 16, No 6 (September), 2000: pp 633–639  相似文献   

6.
BACKGROUND: The objective of this study was to evaluate the effectiveness of reconstructions of the anterior cruciate ligament to resist anterior tibial and rotational loads. We hypothesized that current reconstruction techniques, which are designed mainly to provide resistance to anterior tibial loads, are less effective in limiting knee instability in response to combined rotational loads. METHODS: Twelve fresh-frozen young human cadaveric knees (from individuals with a mean age [and standard deviation] of 37 +/- 13 years at the time of death) were tested with use of a robotic/universal force-moment sensor testing system. The loading conditions included (1) a 134-N anterior tibial load with the knee at full extension and at 15 degrees, 30 degrees, and 90 degrees of flexion, and (2) a combined rotational load of 10 N-m of valgus torque and 10 N-m of internal tibial torque with the knee at 15 degrees and 30 degrees of flexion. The kinematics of the knees with an intact and a deficient anterior cruciate ligament, as well as the in situ force in the intact anterior cruciate ligament, were determined in response to both loads. Each knee then underwent reconstruction of the anterior cruciate ligament with use of a quadruple semitendinosus-gracilis tendon graft and was tested. A second reconstruction was performed with a bone-patellar tendon-bone graft, and the same knee was tested again. The kinematics of the reconstructed knees and the in situ forces in both grafts were determined. RESULTS: The results demonstrated that both reconstructions were successful in limiting anterior tibial translation under anterior tibial loads. Furthermore, the mean in situ forces in the grafts under a 134-N anterior tibial load were restored to within 78% to 100% of that in the intact knee. However, in response to a combined rotational load, reconstruction with either of the two grafts was not as effective in reducing anterior tibial translation. This insufficiency was further revealed by the lower in situ forces in the grafts, which ranged from 45% to 65% of that in the intact knee. CONCLUSIONS: In current reconstruction procedures, the graft is placed close to the central axis of the tibia and femur, which makes it inadequate for resisting rotational loads. Our findings suggest that improved reconstruction procedures that restore the anatomy of the anterior cruciate ligament may be needed.  相似文献   

7.
The anterior cruciate ligament (ACL) can be anatomically divided into anteromedial (AM) and posterolateral (PL) bundles. Current ACL reconstruction techniques focus primarily on reproducing the AM bundle, but are insufficient in response to rotatory loads. The objective of this study was to determine the distribution of in situ force between the two bundles when the knee is subjected to anterior tibial and rotatory loads. Ten cadaveric knees (50+/-10 years) were tested using a robotic/universal force-moment sensor (UFS) testing system. Two external loading conditions were applied: a 134 N anterior tibial load at full knee extension and 15 degrees, 30 degrees, 60 degrees, and 90 degrees of flexion and a combined rotatory load of 10 Nm valgus and 5 Nm internal tibial torque at 15 degrees and 30 degrees of flexion. The resulting 6 degrees of freedom kinematics of the knee and the in situ forces in the ACL and its two bundles were determined. Under an anterior tibial load, the in situ force in the PL bundle was the highest at full extension (67+/-30 N) and decreased with increasing flexion. The in situ force in the AM bundle was lower than in the PL bundle at full extension, but increased with increasing flexion, reaching a maximum (90+/-17 N) at 60 degrees of flexion and then decreasing at 90 degrees. Under a combined rotatory load, the in situ force of the PL bundle was higher at 15 degrees (21+/-11 N) and lower at 30 degrees of flexion (14+/-6 N). The in situ force in the AM bundle was similar at 15 degrees and 30 degrees of knee flexion (30+/-15 vs. 35+/-16 N, respectively). Comparing these two external loading conditions demonstrated the importance of the PL bundle, especially when the knee is near full extension. These findings provide a better understanding of the function of the two bundles of the ACL and could serve as a basis for future considerations of surgical reconstruction in the replacement of the ACL.  相似文献   

8.
The role of the anterolateral capsule complex in knee rotatory stability remains controversial. Therefore, the objective of this study was to determine the in situ forces in the anterior cruciate ligament (ACL), the anterolateral capsule, the lateral collateral ligament (LCL), and the forces transmitted between each region of the anterolateral capsule in response to a simulated pivot shift test. A robotic testing system applied a simulated pivot shift test continuously from full extension to 90° of flexion to intact cadaveric knees (n = 7). To determine the magnitude of the in situ forces, kinematics of the intact knee were replayed in position control mode after the following procedures were performed: (i) ACL transection; (ii) capsule separation; (iii) anterolateral capsule transection; and (iii) LCL transection. A repeated measures ANOVA was performed to compare in situ forces between each knee state (*p < 0.05). The in situ force in the ACL was significantly greater than the forces transmitted between each region of the anterolateral capsule at 5° and 15° of flexion but significantly lower at 60°, 75°, and 90° of flexion. This study demonstrated that the ACL is the primary rotatory stabilizer at low flexion angles during a simulated pivot shift test in the intact knee, but the anterolateral capsule plays an important secondary role at flexion angles greater than 60°. Furthermore, the contribution of the “anterolateral ligament” to rotatory knee stability in this study was negligible during a simulated pivot shift test. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:847–853, 2018.
  相似文献   

9.
《Acta orthopaedica》2013,84(2):267-274
Background?Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods?10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130?N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results?ACL reconstruction restored anterior tibial translation to within 2.6?mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation?Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

10.
Background Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods 10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130 N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results ACL reconstruction restored anterior tibial translation to within 2.6 mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

11.
Despite the numerous long-term success reports of posterior stabilized (PS) total knee arthroplasty (TKA), recent retrieval studies of various PS TKA designs revealed wear and deformation on the anterior side of the tibial post. This study investigated the mechanisms of anterior impingement of the post with the femoral component. Seven cadaveric knees were tested to study kinematics and tibial post biomechanics during simulated heel strike using an in vitro robotic testing system. Intact knee kinematics and in situ anterior cruciate ligament (ACL) forces were determined at hyperextension (0 degree to -9 degrees) and low flexion angles (0 degrees to 30 degrees) under the applied loads. The same knee was reconstructed using a PS TKA. The kinematics and the tibial post contact forces of the TKA were measured under the same loading condition. The ACL in the intact knee carried load and contributed to knee stability at low flexion angles and hyperextension. After TKA, substantial in situ contact forces (252.4 +/- 173 N at 9 degrees of hyperextension) occurred in the tibial post, indicating anterior impingement with the femoral component. Consequently, the TKA showed less posterior femoral translation compared to the intact knee after the impingement. At 9 degrees of hyperextension, the medial condyle of the intact knee translated 0.1 +/- 1.1 mm whereas the medial condyle of the TKA knee translated 5.6 +/- 6.9 mm anteriorly. The lateral condyle of the intact knee translated 1.5 +/- 1.0 mm anteriorly whereas the lateral condyle of the TKA knee translated 2.1 +/- 5.8 mm anteriorly. The data demonstrated that anterior tibial post impingement functions as a substitute for the ACL during hyperextension, contributing to anterior stability. However, anterior post impingement may result in additional polyethylene wear and tibial post failure. Transmitted impingement forces might cause backside wear and component loosening. Understanding the advantages and disadvantages of the tibial post function at low flexion angles may help to further improve component design and surgical techniques and thus enhance knee stability and component longevity after TKA.  相似文献   

12.
《Arthroscopy》2001,17(7):708-716
Purpose: Although anterior cruciate ligament (ACL) reconstruction with multistrand autogenous hamstring tendons has been widely performed using a single femoral socket (SS), it is currently advocated to individually reconstruct 2 bundles of the ACL using 2 femoral sockets (TS). However, the difference in biomechanical characteristics between them is unknown. The objective of this study was to clarify their biomechanical differences. Type of Study: This is a cross-over trial using cadaveric knees. Methods: Seven intact human cadaveric knees were mounted in a robotic simulator developed in our laboratory. By applying anterior and posterior tibial load up to ± 100 N at 0°, 15°, 30°, 60°, and 90° of flexion, tibial displacement and load were recorded. After cutting the ACL, the knees underwent ACL reconstruction using TS, followed by that using SS, with 44 or 88 N of initial grafts tension at 20° of flexion. The above-mentioned tests were performed on each reconstructed knee. Results: The tibial displacement in the TS technique was significantly smaller than that in the SS at smaller flexion angles in response to anterior and posterior tibial load of ± 100 N, and the in situ force in the former was significantly greater than that in the latter at smaller flexion angles. Furthermore, in the TS technique, the posterolateral graft acted dominantly in extension, while the anteromedial graft mainly resisted against anterior tibial load in flexion. However, in the SS technique, the anteriorly located graft functioned more predominantly than the posteriorly located graft at all flexion angles. Conclusions: The ACL reconstruction via TS using quadrupled hamstring tendons provides better anterior-posterior stability compared with the conventional reconstruction using a single socket.Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 17, No 7 (September), 2001: pp 708–716  相似文献   

13.
BACKGROUND: Clinical results of dual cruciate-ligament reconstructions are often poor, with a failure to restore normal anterior-posterior laxity. This could be the result of improper graft tensioning at the time of surgery and stretch-out of one or both grafts from excessive tissue forces. The purpose of this study was to measure anterior-posterior laxities and graft forces in knees before and after reconstructions of both cruciate ligaments performed with a specific graft-tensioning protocol. METHODS: Eleven fresh-frozen cadaveric knee specimens underwent anterior-posterior laxity testing and installation of load cells to record forces in the native cruciate ligaments as the knees were passively extended from 120 degrees to -5 degrees with no applied tibial force, with 100 N of applied anterior and posterior tibial force, and with 5 N-m of applied internal and external tibial torque. Both cruciate ligaments were reconstructed with a bone-patellar tendon-bone allograft. Only isolated cruciate deficiencies were studied. We determined the nominal levels of anterior and posterior cruciate graft tension that restored anterior-posterior laxities to within 2 mm of those of the intact knee and restored anterior cruciate graft forces to within 20 N of those of the native anterior cruciate ligament during passive knee extension. Both grafts were tensioned at 30 degrees of knee flexion, with the posterior cruciate ligament tensioned first. Measurements of anterior-posterior knee laxity and graft forces were repeated with both grafts at their nominal tension levels and with one graft fixed at its nominal tension level and the opposing graft tensioned to 40 N above its nominal level. RESULTS: The anterior and posterior cruciate graft tensions were found to be interrelated; applying tension to one graft changed the tension of the other (fixed) graft and displaced the tibia relative to the femur. The posterior cruciate graft had to be tensioned first to consistently achieve the nominal combination of mean graft forces at 30 degrees of flexion. At these levels, mean forces in the anterior cruciate graft were restored to those of the intact anterior cruciate ligament under nearly all test conditions. However, the mean posterior cruciate graft forces were significantly higher than the intact posterior cruciate ligament forces at full extension under all test conditions. Anterior-posterior laxity was restored between 0 degrees and 90 degrees of flexion with both grafts at their nominal force levels. Overtensioning of the anterior cruciate graft by 40 N significantly increased its mean force levels during passive knee extension between 110 degrees and -5 degrees of flexion, but it did not significantly change anterior-posterior laxity between 0 degrees and 90 degrees of flexion. In contrast, overtensioning of the posterior cruciate graft by 40 N significantly increased posterior cruciate graft forces during passive knee extension at flexion angles of <5 degrees and >95 degrees and significantly decreased anterior-posterior laxities at all flexion angles except full extension. CONCLUSIONS: It was not possible to find levels of graft tension that restored anterior-posterior laxities at all flexion positions and restored forces in both grafts to those of their native cruciate counterparts during passive motion. Our graft-tensioning protocol represented a compromise between these competing objectives. This protocol aimed to restore anterior-posterior laxities and anterior cruciate graft forces to normal levels. The major shortcoming of this tensioning protocol was the dramatically higher posterior cruciate graft forces produced near full extension under all test conditions.  相似文献   

14.
Application of axial tibial force to the knee at a fixed flexion angle has been shown to generate ACL force. However, direct measurements of ACL force under an applied axial tibial force have not been reported during a passive flexion–extension cycle. We hypothesized that ACL forces and knee kinematics during knee extension would be significantly different than those during knee flexion, and that ACL removal would significantly increase all kinematic measurements. A 500 N axial tibial force was applied to intact knees during knee flexion–extension between 0° and 50°. Contact force on the sloping lateral tibial plateau produced a coupled internal + valgus rotation of the tibia, anterior tibial displacement, and elevated ACL forces. ACL forces during knee extension were significantly greater than those during knee flexion between 5° and 50°. During knee extension, ACL removal significantly increased anterior tibial displacement between 0° and 50°, valgus rotation between 5° and 50°, and internal tibial rotation between 5° and 15°. With the ACL removed, kinematic measurements during knee extension were significantly greater than those during knee flexion between 5° and 45°. The direction of knee flexion–extension movement is an important variable in determining ACL forces and knee kinematics produced by axial tibial force. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:89–95, 2014.  相似文献   

15.
16.
The anterior cruciate ligament (ACL) is the major contributor to limit excessive anterior tibial translation (ATT) when the knee is subjected to an anterior tibial load. However, the importance of the medial and lateral structures of the knee can also play a significant role in resisting anterior tibial loads, especially in the event of an ACL injury. Therefore, the objective of this study was to determine quantitatively the increase in the in-situ forces in the medial collateral ligament (MCL) and posterolateral structures (PLS) of the knee associated with ACL deficiency. Eight fresh-frozen cadaveric human knees were subjected to a 134-N anterior tibial load at full extension and at 15°, 30°, 60°, and 90° of knee flexion. The resulting 5 degrees of freedom kinematics were measured for the intact and the ACL-deficient knees. A robotic/universal force-moment sensor testing system was used for this purpose, as well as to determine the in-situ force in the MCL and PLS in the intact and ACL-deficient knees. For the intact knee, the in-situ forces in both the MCL and PLS were less than 20 N for all five flexion angles tested. But in the ACL-deficient knee, the in-situ forces in the MCL and PLS, respectively, were approximately two and five times as large as those in the intact knee (P < 0.05). The results of this study demonstrate that, although both the MCL and PLS play only a minor role in resisting anterior tibial loads in the intact knee, they become significant after ACL injury. Received: December 3, 1999 / Accepted: July 19, 2000  相似文献   

17.
Introduction  Recently, several publications investigated the rotational instability of the human knee joint under pivot shift examinations and reported the internal tibial rotation as measurement for instrumented knee laxity measurements. We hypothesize that ACL deficiency leads to increased internal tibial rotation under a simulated pivot shift test. Furthermore, it was hypothesized that anatomic single bundle ACL reconstruction significantly reduces the internal tibial rotation under a simulated pivot shift test when compared to the ACL-deficient knee. Methods  In seven human cadaveric knees, the kinematics of the intact knee, ACL-deficient knee, and anatomic single bundle ACL reconstructed knee were determined in response to a 134 N anterior tibial load and a combined rotatory load of 10 N m valgus and 4 N m internal tibial rotation using a robotic/UFS testing system. Statistical analyses were performed using a two-way ANOVA test. Results  Single bundle ACL reconstruction reduced the anterior tibial translation under a simulated KT-1000 test significantly compared to the ACL-deficient knee (P < 0.05). After reconstruction, there was a statistical significant difference to the intact knee at 30° of knee flexion. Under a simulated pivot shift test, anatomic single bundle ACL reconstruction could restore the intact knee kinematics. Internal tibial rotation under a simulated pivot shift showed no significant difference in the ACL-intact, ACL-deficient and ACL-reconstructed knee. Conclusion  In conclusion, ACL deficiency does not increase the internal tibial rotation under a simulated pivot shift test. For objective measurements of the rotational instability of the knee using instrumented knee laxity devices under pivot shift mechanisms, the anterior tibial translation should be rather evaluated than the internal tibial rotation. This study was supported in part by a grant of the German Speaking Association of Arthroscopy (AGA).  相似文献   

18.
Incidence and mechanism of the pivot shift. An in vitro study.   总被引:5,自引:0,他引:5  
The aim of this study was to determine the incidence and mechanism of the pivot shift phenomenon in the normal and anterior cruciate ligament transected knee in vitro. Fifteen knees were tested under a range of valgus moments and iliotibial tract tensions when intact and after anterior cruciate ligament transection. Knee kinematics were measured and described in terms of tibial rotation as the knee flexed. Eight knees pivoted after anterior cruciate ligament transection. The mean pivot shift motion was an external tibial rotation of 17 degrees (+/- 11 degrees standard deviation) over a range of 27 degrees (+/- 24 degrees) knee flexion, at a mean flexion angle of 56 degrees (+/- 27 degrees). Clinically, this corresponds to a reduction of an anteriorly subluxed lateral tibial plateau as the knee flexes. When intact, pivoting and nonpivoting knees had similar anteroposterior laxity, but after anterior cruciate ligament transection, the pivoting group had significantly greater laxity. The loading required to elicit the pivot shift was critical and variable between knees, which raises questions about comparing clinicians' techniques and results in assessing the buckling instability attributable to anterior cruciate ligament injury.  相似文献   

19.
The objectives of this study were to determine the effects of hamstrings and quadriceps muscle loads on knee kinematics and in situ forces in the posterior cruciate ligament of the knee and to evaluate how the effects of these muscle loads change with knee flexion. Nine human cadaveric knees were studied with a robotic manipulator/universal force-moment sensor testing system. The knees were subjected to an isolated hamstrings load (40 N to both the biceps and the semimembranosus), a combined hamstrings and quadriceps load (the hamstrings load and a 200-N quadriceps load), and an isolated quadriceps load of 200 N. Each load was applied with the knee at full extension and at 30, 60, 90, and 120 degrees of flexion. Without muscle loads, in situ forces in the posterior cruciate ligament were small, ranging from 6+/-5 N at 30 degrees of flexion to 15+/-3 N at 90 degrees. Under an isolated hamstrings load, the in situ force in the posterior cruciate ligament increased significantly throughout all angles of knee flexion, from 13+/-6 N at full extension to 86+/-19 N at 90 degrees. A posterior tibial translation ranging from 1.3+/-0.6 to 2.5+/-0.5 mm was also observed from full extension to 30 degrees of flexion under the hamstrings load. With a combined hamstrings and quadriceps load, tibial translation was 2.2+/-0.7 mm posteriorly at 120 degrees of flexion ut was as high as 4.6+/-1.7 mm anteriorly at 30 degrees. The in situ force in the posterior cruciate ligament decreased significantly under this loading condition compared with under an isolated hamstrings load, ranging from 6+/-7 to 58+/-13 N from 30 to 120 degrees of flexion. With an isolated quadriceps load of 200 N, the in situ forces in the posterior cruciate ligament ranged from 4+/-3 N at 60 degrees of flexion to 34+/-12 N at 120 degrees. Our findings support the notion that, compared with an isolated hamstrings load, combined hamstrings and quadriceps loads significantly reduce the in situ force in the posterior cruciate ligament. These data are in direct contrast to those for the anterior cruciate ligament. Furthermore, we have demonstrated that the effects of muscle loads depend significantly on the angle of knee flexion.  相似文献   

20.
《Arthroscopy》2003,19(3):297-304
Purpose: To study how well an anterior cruciate ligament (ACL) graft fixed at the 10 and 11 o'clock positions can restore knee function in response to both externally applied anterior tibial and combined rotatory loads by comparing the biomechanical results with each other and with the intact knee. Type of Study: Biomechanical experiment using human cadaveric specimens. Methods: Ten human cadaveric knees (age, 41±13 years) were reconstructed by placing a bone–patellar tendon–bone graft at the 10 and 11 o'clock positions, in a randomized order, and then tested using a robotic/universal force-moment sensor testing system. Two external loading conditions were applied: (1) 134 N anterior tibial load with the knee at full extension, 15°, 30°, 60°, and 90° of flexion, and (2) a combined rotatory load of 10 N-m valgus and 5 N-m internal tibial torque with the knee at 15° and 30° of flexion. The resulting kinematics of the reconstructed knee and in situ forces in the ACL graft were determined for each femoral tunnel position. Results: In response to a 134-N anterior tibial load, anterior tibial translation (ATT) for both femoral tunnel positions was not significantly different from the intact knee except at 90° of knee flexion as well as at 60° of knee flexion for the 10 o'clock position. There was no significant difference in the ATT between the 10 and 11 o'clock positions, except at 90° of knee flexion. Under a combined rotatory load, however, the coupled ATT for the 11 o'clock position was approximately 130% of that for the intact knee at 15° and 30° of flexion. For the 10 o'clock position, the coupled ATT was not significantly different from the intact knee at 15° of flexion and approximately 120% of that for the intact knee at 30° of flexion. Coupled ATT for the 10 o'clock position was significantly smaller than for the 11 o'clock position at 15° and 30° of flexion. The in situ force in the ACL graft was also significantly higher for the 10 o'clock position than the 11 o'clock position at 30° of flexion in response to the same loading condition (70 ± 18 N v 60 ± 15 N, respectively). Conclusions: The 10 o'clock position more effectively resists rotatory loads when compared with the 11 o'clock position as evidenced by smaller ATT and higher in situ force in the graft. Despite the fact that ACL grafts placed at the 10 or 11 o'clock positions are equally effective under an anterior tibial load, neither femoral tunnel position was able to fully restore knee stability to the level of the intact knee.Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 19, No 3 (March), 2003: pp 297–304  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号