首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
(3R)-O-beta-D-Glucopyranosyloxy-5-phenylvaleric acid (1), (3R)-O-beta-D-glucopyranosyloxy-5-phenylvaleric acid n-butyl ester (2), and a new dihydrochalcone diglycoside 4'-O-[beta-D-glucopyranosyl-(1-->6)-glucopyranosyl]oxy-2'-hydroxy-3', 6'-dimethoxydihydrochalcone (3), together with six known flavonoid glycosides [kaempferol-3-O-beta-D-glucopyranoside (= astragalin) (4), kaempferol-3-O-beta-D-galactopyranoside (5), quercetin-3-O-beta-D-glucopyranoside (= isoquercitrin) (6), quercetin-3-O-beta-D-galactopyranoside (= hyperoside) (7), quercetin-3-O-(2'-O-galloyl)-beta-D-glucopyranoside (8), and quercetin-3-O-beta-D-glucuronopyranoside (9)] were isolated from the aerial parts of Polygonum salicifolium. The structure elucidation of the isolated compounds was performed by spectroscopic (UV, IR, ESI-MS, 1D- and 2D-NMR), chemical (methylation, enzymatic hydrolysis, partial synthesis), and chromatographic methods (HPLC, Chiralcel OD). The flavonoid glycosides (4-9) demonstrated scavenging properties toward the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in TLC autographic assays.  相似文献   

2.
Two new furostanol saponins, (25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-2alpha,3beta,22alpha,26-tetraol 3-O-{beta-D-galactopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside} (1) and (25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-3beta,22alpha,26-triol 3-O-{beta-D-galactopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside} (2), and their O-methyl derivatives (3 and 4), and a new megastigmane glucoside, (6S,7E,9xi)-6,9,10-trihydroxy-4,7-megastigmadien-3-one 10-O-beta-D-glucopyranoside (6), along with one known spirostanol saponin, gitonin (5), and four known megastigmane glucosides were isolated from the aerial parts of Tribulus parvispinus. Their structures were established by detailed spectroscopic analysis. The cytotoxic activities of 1-6 against U937, MCF7, and HepG2 cells were evaluated. Compounds 2 (IC(50) 0.5 microM) and 5 (IC(50) 0.1 microM) showed the highest activity against U937 cells.  相似文献   

3.
Two new spirostanol saponins from Allium tuberosum.   总被引:3,自引:0,他引:3  
Two new spirostanol saponins, tuberosides D and E, have been isolated from the seeds of Allium tuberosum. On the basis of spectral data and chemical reactions, their structures were established as (25S)-5alpha-spirostane-2alpha,3beta-diol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-O-[alpha-L-rhamnopyranosyl-(1-->4 )]-O-beta-D-glucopyranoside and (25S)-5alpha-spirostan-2alpha, 3beta-diol 3-O-beta-D-glucopyranosyl-(1-->2)-O-[alpha-L-rhamnopyranosyl-(1-->4)] -O-beta-D-glucopyranoside, respectively.  相似文献   

4.
Phytochemical investigation of the stem bark extract of Boswellia papyrifera afforded two new stilbene glycosides, trans-4',5-dihydroxy-3-methoxystilbene-5-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->6)]-beta-D-glucopyranoside (1), trans-4',5-dihydroxy-3-methoxystilbene-5-O-[alpha-L-rhamnopyranosyl-(1-->6)]-beta-D-glucopyranoside (2), and a new triterpene, 3alpha-acetoxy-27-hydroxylup-20(29)-en-24-oic acid (3), along with five known compounds, 11-keto-beta-boswellic acid (4), beta-elemonic acid (7), 3alpha-acetoxy-11-keto-beta-boswellic acid (8), beta-boswellic acid (9), and beta-sitosterol (10). The stilbene glycosides exhibited significant inhibition of phosphodiesterase I and xanthine oxidase. The triterpenes (3-9) exhibited prolyl endopeptidase inhibitory activities.  相似文献   

5.
Assay-guided fractionation of the ethanol extract of the twigs and leaves of Miconia myriantha yielded two new compounds, mattucinol-7-O-[4' ',6' '-O-(S)-hexahydroxydiphenoyl]-beta-D-glucopyranoside (1) and mattucinol-7-O-[4' ',6' '-di-O-galloyl]-beta-D-glucopyranoside (2), along with mattucinol-7-O-beta-D-glucopyranoside (3), ellagic acid (4), 3,3'-di-O-methyl ellagic acid-4-O-beta-D-xylopyranoside, and gallic acid. Complete (1)H and (13)C NMR assignments of compound 1, which possesses a hexahydroxydiphenoyl unit, were achieved using the HMBC technique optimized for small couplings to enhance the four-bond and two-bond H/C correlations. Compounds 1 and 4 showed inhibitory effects against Candida albicans secreted aspartic proteases, with IC(50) of 8.4 and 10.5 microM, respectively.  相似文献   

6.
Three genuine saponins, named kinmoonosides A-C (1-3), have been isolated, together with a new monoterpenoid (4), from a methanolic extract of the fruits of Acacia concinna. The structures of kinmoonosides A-C were elucidated on the basis of spectral analysis as 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6R, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinovopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (1); 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6S, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinobopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (2); and 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl- 2,7-octadienoyl]acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (3), respectively. The new monoterpenoid 4 was determined as 4-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl-2, 7-octadienoyl]-D-quinovopyranose. Compounds 1-3 showed significant cytotoxicity against human HT-1080 fibrosarcoma cells.  相似文献   

7.
Chemical constituents of the aerial parts of Schnabelia tetradonta   总被引:2,自引:0,他引:2  
A phytochemical study on the ethanol extract of the aerial parts of Schnabelia tetradonta led to the isolation of five new compounds, 1-5, together with seven known compounds. The structures of the new compounds were elucidated on the basis of spectral data interpretation as 2alpha,3alpha,23,29-tetrahydroxyolean-12-en-28-oic acid (1), 3-O-beta-d-glucuronopyranosyl-2beta,3beta,16beta-trihydroxy-28-norolean-12-en-15-on-23-oic acid (2), 21-O-beta-d-glucopyranosyl-3beta,21alpha,30-trihydroxyolean-13(18)-en-24-oic acid (3), 6-C-beta-l-arabinopyranosyl-8-C-alpha-l-arabinopyranosylapigenin (4), and 4-acetylaminoethylphenyl 1-O-[6-O-(Z)-p-methoxycinnamoyl-beta-d-glucopyranosyl(1-->2)]-[beta-d-glucopyranosyl(1-->3)]-alpha-l-rhamnopyranoside (5), respectively.  相似文献   

8.
Four new flavonol 3-O-glycosides were isolated from the leaves of Astragalus caprinus. Their structures were elucidated by spectroscopic methods as rhamnocitrin-3-O-[3-hydroxy-3-methylglutaroyl(1-->6)][beta-D-apiofuranosyl(1-->2)]-beta-D-galactopyranoside (1), rhamnetin-3-O-[3-hydroxy-3-methylglutaroyl(1-->6)][beta-D-apiofuranosyl(1-->2)]-beta-D-galactopyranoside (2), kaempferol-3-O-[beta-D-xylopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->6)]-beta-D-galactopyranoside (3), and quercetin-3-O-[beta-D-xylopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->6)][beta-D-apiofuranosyl(1-->2)]-beta-D-galactopyranoside (4).  相似文献   

9.
Two new dammarane saponins identified as jujubogenin 3-O-alpha-l-arabinofuranosyl(1-->2)-[beta-d-glucopyranosyl(1-->6) beta-d-glucopyranosyl(1-->3)]-alpha-l-arabinopyranoside (2) and jujubogenin 3-O-alpha-l-arabinofuranosyl(1-->2)-[6-O-[3-hydroxy-3-methylglutaryl]-beta-d-glucopyranosyl(1-->3)]-alpha-l-arabinopyranoside (3) and a new lupane saponin, 3beta-hydroxylup-20(29)-en-27,28-dioic acid 28-O-beta-d-glucopyranosyl(1-->2)-[beta-d-xylopyranosyl(1-->3)]-beta-d-xylopyranosyl(1-->2)-beta-d-glucopyranoside ester (5), along with the known jujubogenin 3-O-alpha-l-arabinofuranosyl(1-->2)-[beta-d-glucopyranosyl(1-->3)]-alpha-l-arabinopyranoside (1) and 3beta-hydroxylup-20(29)-ene-27,28-dioic acid (4), were isolated from the methanol extract of the stems of Anomospermum grandifolium. The structures of the new compounds were established by spectral analysis. Antimicrobial activity screening of compounds 1-3 revealed antifungal properties against C. albicans ATCC 3153 for compounds 2 and 3. The antibacterial and antifungal activities of the petroleum ether, chloroform, and methanol extracts of A. grandifolium stems were also evaluated.  相似文献   

10.
The structures of madhucosides A (1) and B (2), isolated from the bark of Madhuca indica, were established as 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1--> 3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid and 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid, respectively. These two compounds showed significant inhibitory effects on both superoxide release from polymorphonuclear cells in a NBT reduction assay and hypochlorous acid generation from neutrophils assessed in a luminol-enhanced chemiluminescence assay.  相似文献   

11.
A phytochemical investigation of Turnera diffusa afforded 35 compounds, comprised of flavonoids, terpenoids, saccharides, phenolics, and cyanogenic derivatives, including five new compounds (1-5) and a new natural product (6). These compounds were characterized as luteolin 8-C-E-propenoic acid (1), luteolin 8-C-beta-[6-deoxy-2-O-(alpha-l-rhamnopyranosyl)-xylo-hexopyranos-3-uloside] (2), apigenin 7-O-(6' '-O-p-Z-coumaroyl-beta-d-glucopyranoside) (3), apigenin 7-O-(4' '-O-p-Z-coumaroylglucoside) (4), syringetin 3-O-[beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside] (5), and laricitin 3-O-[beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside] (6). Their structures were determined by spectroscopic and chemical methods.  相似文献   

12.
Saponins of Allium elburzense   总被引:1,自引:0,他引:1  
A phytochemical investigation of the bulbs of Allium elburzense has been undertaken, leading to the isolation of 13 furostanol and spirostanol saponins, eight of which are new, namely, elburzensosides A1/A2 (1a/1b), B1/B2 (2a/2b), C1/C2 (3a/3b), and D1/D2 (4a/4b). On the basis of spectroscopic analysis, mainly 2D NMR and mass spectrometry, and chemical methods, the structures of the new compounds were determined as furost-2alpha,3beta,5alpha,6beta,22alpha-pentol 3-O-beta-D-glucopyranosyl 26-O-beta-D-glucopyranoside (1a), furost-2alpha,3beta,5alpha,6beta,22alpha-pentol 3-O-[beta-D-glucopyranosyl-(1-->4)-O-beta-D-glucopyranosyl] 26-O-beta-D-glucopyranoside (2a), furost-2alpha,3beta,5alpha,22alpha-tetrol 3-O-beta-D-glucopyranosyl 26-O-beta-D-glucopyranoside (3a), and furost-2alpha,3beta,5alpha,22alpha-tetrol 3-O-[beta-D-xylopyranosyl-(1-->3)-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyranosyl] 26-O-beta-D-glucopyranoside (4a), and the corresponding epimers at position 22 (1b-4b). Along with these compounds we have isolated the corresponding 22-O-methyl derivatives that we consider extraction artifacts. All the new elburzensosides A1/A2-D1/D2 possess as a common structural feature an OH-5alphathat is rare among furostanol saponins. The reported compounds have been isolated in large amounts, and this makes A. elburzense a prolific producer of saponins of the furostanol and spirostanol types.  相似文献   

13.
The acetone extract of Dicranopteris dichotoma afforded two new tetranorclerodanes, 18-hydroxyaylthonic acid (1) and 18-oxo-aylthonic acid (2), and four new clerodane-type diterpene glycosides, (6S,13S)-6-O-[6-O-acetyl-beta-d-glucopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl]cleroda-3,14-dien-13-ol (3), (6S,13S)-6-O-[4-O-acetyl-beta-d-glucopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl]cleroda-3,14-dien-13-ol (4), 6-O-[6-O-acetyl-beta-d-glucopyranos-yl-(1-->4)-alpha-l-rhamnopyranosyl]-(13E)-cleroda-3,13-dien-15-ol (5), and 6-O-[beta-d-glucopyranosyl]-(1-->4)-alpha-l-rhamnopyranosyl-(13E)-cleroda-3,13-dien-15-ol (6), together with two known compounds, aylthonic acid (7) and (6S,13S)-cleroda-3,14-diene-6,13-diol (8). The structures of these new compounds were established by a combination of 1D and 2D NMR techniques, MS, and acid hydrolysis. Compound 8 showed modest anti-HIV-1 activity.  相似文献   

14.
Triterpenoid saponins from the roots of Pulsatilla koreana   总被引:5,自引:0,他引:5  
Six new saponins, five lupanes (1-5) and one oleanane (6), along with 11 known saponins, were isolated from the roots of Pulsatilla koreana. The structures of the new saponins were found to be 23-hydroxy-3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (1), 23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (2), 3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (4), 23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1-->4)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (5), and hederagenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside (6). Their structures were determined on the basis of 1D and 2D NMR ((13)C NMR, (1)H NMR, (1)H-(1)H COSY, HMQC, and HMBC) methods, FABMS, and hydrolysis. All isolated compounds were evaluated for their cytotoxic activity against A-549 human lung carcinoma cells.  相似文献   

15.
Flavonoid, iridoid, and lignan glycosides from Putoria calabrica   总被引:1,自引:0,他引:1  
From the aerial parts of Putoria calabrica, two new flavonol triglycosides were isolated and their structures were elucidated as quercetin-3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside]-7-O-beta-D-glucopyranoside (1, calabricoside A) and quercetin-3-O-[4' "-O-caffeoyl-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside]-7-O-beta-D-glucopyranoside (2, calabricoside B). Additionally, seven iridoid and three lignan glycosides were isolated and characterized. Radical scavenging activities of all compounds were determined by quantifying their effects on luminol-enhanced chemiluminescence in formyl-methionyl-leucyl-phenylalanine (FMLP) stimulated human polymorphonuclear neutrophils (PMNs). Calabricoside A and B showed strong radical scavenging activity with IC(50) values of 0.25 and 0.3 microM, respectively.  相似文献   

16.
Four new triterpenoid glycosides were isolated from the root bark of Mussaenda macrophylla. Their structures were determined as 3-O-beta-D-glucopyranosyl-28-O-alpha-L-rhamnopyranosyl-16alpha- hydrox y-23-deoxyprotobassic acid (1), 28-O-beta-D-glucopyranosyl-16alpha-hydroxy-23-deoxyprotobassic+ ++ acid (2), 3-O-beta-D-glucopyranosyl-28-O-alpha-L-rhamnopyranosyl-16alpha- hydrox yprotobassic acid (3), and 3-O-?[beta-D-glucopyranosyl-(1-->6)]-O-alpha-L-rhamnopyranosyl-(1-->2 )-O-beta-D-glucopyranosyl-(1-->2)?-O-beta-D-glucopyranosyl-(1-->3)-O- beta-D-glucopyranosyl-cycloarta-22,24-dien-27-oic acid (mussaendoside W, 4). Four known triterpenoids [3-O-acetyloleanolic acid (5), 3-O-acetyldaturadiol (6), rotundic acid (7), and 16alpha-hydroxyprotobassic acid (8)] were also isolated. The structures of 1-4 were determined by several spectroscopic techniques including 2D NMR methods. Compounds 1-6 showed inhibitory activity against a periodontopathic bacterium, Porphyromonas gingivalis, but were inactive against the cariogenic organism, Streptococcus mutans.  相似文献   

17.
Five new oleanane-type glycosides (1-5), along with two known triterpene saponins, were isolated from the roots of Pulsatilla patens var. multifida (Ranunculaceae). The structures of the new triterpene saponins were elucidated as 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl hederagenin 28-O-beta-D-glucopyranosyl ester (1), hederagenin 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranoside (2), 3-O-beta-D-glucopyranosyl bayogenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (3), 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (4), and 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranosyl hederagenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (5). Structure elucidation was accomplished by 1D and 2D NMR (HMQC, HMBC, and ROESY) methods, FABMS, and hydrolysis.  相似文献   

18.
Antioxidant flavan-3-ols and flavonol glycosides from Maytenus aquifolium   总被引:1,自引:0,他引:1  
TLC autographic assay revealed, in the EtOAc extract obtained from leaves and root bark of Maytenus aquifolium (Celastraceae), the presence of fi ve compounds exhibiting antioxidant properties towards beta-carotene. They were isolated and identified as epigallocatechin (1), (+) ouratea-catechin (2), proanthocyanidin (3), kaempferol 3-O-alpha-L-rhamnopyranosyl (1-->6)-O-[beta-D-glucopyranosyl (1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl (4) and quercetin 3-O-alpha-L-rhamnopyranosyl (1-->6)-O-[beta-D-glucopyranosyl (1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl (5). The isolates were investigated for their redox properties using cyclic voltammetry and for their radical scavenging abilities through spectrophotometric assay on the reduction of 2,2-diphenyl-pycryl hydrazyl (DPPH). These results were correlated to the inhibition of beta-carotene bleaching on TLC autographic assay and to structural features of the flavonoids.  相似文献   

19.
Nine new phenolic compounds, 3S-hydrangenol 40-O-R-L-rhamnopyranoysl-(1-->3)-β-D-glucopyranoside (1), thunberginol F 7-O-β-D-glucopyranoside (2), 2-hydroxy-6-[2-(4-hydroxyphenyl)-2-oxo-ethyl]benzoic acid (3), 2-hydroxy-6-[2-(3,4-dihydroxyphenyl)-2-oxo-ethyl]benzoic acid (4), 2-hydroxy-6-[2-(3,4-dihydroxyphenyl-5-methoxy)-2-oxoethyl]benzoic acid (5), hydrangeic acid 40-O-β-D-glucopyranoside (6), E-3-(3,4-dihydroxybenzylidene)-5-(3,4-dihydroxyphenyl)dihydrofuran-2-one (7), Z-3-(3,4-dihydroxybenzylidene)-5-(3,4-dihydroxyphenyl)-2(3H)-furanone (8), and 4-[β-D-glucopyranosyl)hydroxy]-pinoresinol (9), and nine known compounds were isolated from the roots of Scorzonera judaica. Structures of 1-9 were elucidated by mass spectrometry, extensive 1D and 2D NMR spectroscopy, and CD spectroscopy.All compounds were evaluated for cytotoxic activity.  相似文献   

20.
猪毛菜化学成分研究   总被引:12,自引:6,他引:12  
目的:研究藜科Chenopodiaceae猪毛菜属植物猪毛菜Salsola collina全草的化学成分。方法:利用硅胶、凝胶等色谱方法进行分离,通过理化方法及IR,MS,1H和13C-NMR等光谱分析方法确定化合物结构。结果:从猪毛菜干燥全草中分离得到11个化合物,分别为阿魏酸(1),对羟基苯丙烯酸(2),水杨酸(3),小麦黄素(4),selagin(5),acanthoside D(6),小麦黄素-7- O-β-D-吡喃葡萄糖苷(7),小麦黄素-4′-O-β-D-芹糖苷(8),异鼠李素-7-O-β-D-吡喃葡萄糖苷(9),异鼠李素-3-O-β-D-吡喃葡萄糖苷(10),异鼠李素-3-O-α-L-吡喃阿拉伯糖(1→6)-β-D-吡喃葡萄糖苷(11)。结论:其中化合物1,2,3,5,6和9为首次从该属植物中分离得到。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号