首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Positive end-expiratory pressure (PEEP) is commonly applied to the ventilated lung to try to improve oxygenation during one-lung ventilation but is an unreliable therapy and occasionally causes arterial oxygen partial pressure (PaO(2)) to decrease further. The current study examined whether the effects of PEEP on oxygenation depend on the static compliance curve of the lung to which it is applied. METHODS: Forty-two adults undergoing thoracic surgery were studied during stable, open-chest, one-lung ventilation. Arterial blood gases were measured during two-lung ventilation and one-lung ventilation before, during, and after the application of 5 cm H(2)O PEEP to the ventilated lung. The plateau end-expiratory pressure and static compliance curve of the ventilated lung were measured with and without applied PEEP, and the lower inflection point was determined from the compliance curve. RESULTS: Mean (+/- SD) PaO(2) values, with a fraction of inspired oxygen of 1.0, were not different during one-lung ventilation before (192 +/- 91 mmHg), during (190 +/- 90), or after ( 205 +/- 79) the addition of 5 cm H(2)O PEEP. The mean plateau end-expiratory pressure increased from 4.2 to 6.8 cm H(2)O with the application of 5 cm H(2)O PEEP and decreased to 4.5 cm H(2)O when 5 cm H(2)O PEEP was removed. Six patients showed a clinically useful (> 20%) increase in PaO(2) with 5 cm H(2)O PEEP, and nine patients had a greater than 20% decrease in PaO(2). The change in PaO(2) with the application of 5 cm H(2)O PEEP correlated in an inverse fashion with the change in the gradient between the end-expiratory pressure and the pressure at the lower inflection point (r = 0.76). The subgroup of patients with a PaO(2) during two-lung ventilation that was less than the mean (365 mmHg) and an end-expiratory pressure during one-lung ventilation without applied PEEP less than the mean were more likely to have an increase in PaO(2) when 5 cm H(2)O PEEP was applied. CONCLUSIONS: The effects of the application of external 5 cm H(2)O PEEP on oxygenation during one-lung ventilation correspond to individual changes in the relation between the plateau end-expiratory pressure and the inflection point of the static compliance curve. When the application of PEEP causes the end-expiratory pressure to increase from a low level toward the inflection point, oxygenation is likely to improve. Conversely, if the addition of PEEP causes an increased inflation of the ventilated lung that raises the equilibrium end-expiratory pressure beyond the inflection point, oxygenation is likely to deteriorate.  相似文献   

2.
This study was undertaken to examine the effect of sevoflurane on right ventricular junction, the safety of sevoflurane for onelung ventilation and the effects of PEEP (positive end-expiratory pressure) to the dependent lung in this model using 12 openchest sheep. Haemodynamic variables, including cardiac output, mean arterial blood pressure, right ventricular pressure and pulmonary arterial pressure, and right ventricular segment shortening (sonomicrometry) were measured. First, animals received 2.0, 3.0 or 4.0% sevoflurane for 20 min each, respectively, during two-lung ventilation to measure the dose-dependent haemodynamic effects of sevoflurane. Then one-lung ventilation was performed with a randomized sequence of 0 (ZEEP), 5 and 10 cm H2O PEEP to the dependent lung under 2.0% sevoflurane anaesthesia after one-hour stabilization. A decrease in systolic segment shortening along with increases in both the end-diastolic and end-systolic lengths of the right ventricle were observed at 3.0 and 4.0% sevoflurane, while global right ventricular function remained substantially unchanged during twolung ventilation. During one-lung ventilation the PaO2 was greater with 5 cm H2O PEEP 198 mmHg (± 25 SEM) than with ZEEP 138 mmHg (± 22) or with 10 cm H2O PEEP 153 mmHg (± 23) (P < 0.05). No differences in haemodynamic variables or segment shortening between ZEEP and PEEPs during one-lung ventilation were observed. We conclude that although sevoflurane causes a dose-dependent depression of right ventricular function, sevoflurane anaesthesia can be safely applied to one-lung ventilation, and that 5 cm H2O PEEP to the dependent lung can improve arterial oxygenation without causing changes in right ventricular function.  相似文献   

3.
BACKGROUND AND OBJECTIVE: The aim of this study was to test the efficacy of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation, taking into consideration underlying lung function in order to select responders to PEEP. METHODS: Forty-six patients undergoing open-chest thoracic surgical procedures were studied in an operating room of a university hospital. Patients were randomized to receive zero end-expiratory pressure (ZEEP) or 10 cmH2O of PEEP to the dependent lung during one-lung ventilation in lateral decubitus. The patients were stratified according to preoperative forced expiratory volume in 1 s (FEV1) as an indicator of lung function (below or above 72%). Oxygenation was measured in the supine position, in the lateral decubitus with an open chest, and after 20 min of ZEEP or PEEP. The respiratory system pressure-volume curve of the dependent hemithorax was measured in supine and open-chest lateral decubitus positions with a super-syringe. RESULTS: Application of 10 cmH2O of PEEP resulted in a significant increase in PaO2 (P < 0.05). This did not occur in ZEEP group, considered as a time matched control. PEEP improved oxygenation only in patients with high FEV1 (from 11.6+/-4.8 to 15.3+/-7.1 kPa, P < 0.05). There was no significant change in the low FEV1 group. Dependent hemithorax compliance decreased in lateral decubitus, more in patients with high FEV1 (P < 0.05). PEEP improved compliance to a greater extent in patients with high FEV1 (from 33.6+/-3.6 to 48.4+/-3.9 mLcmH2O(-1), P < 0.05). CONCLUSIONS: During one-lung ventilation in lateral decubitus, PEEP applied to the dependent lung significantly improves oxygenation and respiratory mechanics in patients with rather normal lungs as assessed by high FEV1.  相似文献   

4.
BACKGROUND AND OBJECTIVE: This prospective, randomized, controlled study evaluated the effects on oxygenation by applying a selective and patient-specific value of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation. METHODS: Fifty patients undergoing thoracic surgery under combined epidural/general anaesthesia were randomly allocated to receive zero PEEP (Group ZEEP, n = 22), or the preventive application of PEEP, optimized on the best thoracopulmonary compliance (Group PEEP, n = 28). Patients' lungs were mechanically ventilated with the same setting during two- and one-lung ventilation (FiO2 = 0.5; VT = 9mL kg(-1), inspiratory :expiratory time = 1 : 1, inspiratory pause = 10%). RESULTS: Lung-chest wall compliance decreased in both groups during one-lung ventilation, but patients of Group PEEP had 10% higher values than patients with no end-expiratory pressure (ZEEP) applied--Group ZEEP (P < 0.05). During closed chest one-lung ventilation, the PaO2 : FiO2 ratio was lower in Group PEEP (232 +/- 88) than in Group ZEEP (339 +/- 97) (P < 0.05); but no further differences were reported throughout the study. No differences were reported between the two groups in the need for 100% oxygen ventilation (10 patients of Group ZEEP (45%) and 14 patients of Group PEEP (50%) (P = 0.78)) or re-inflation of the operated lung during surgery (two patients of Group ZEEP (9%) and three patients of Group PEEP (10%) (P = 0.78)). Postanaesthesia care unit discharge required 48 min (25th-75th percentiles: 32-58 min) in Group PEEP and 45 min (30-57 min) in Group ZEEP (P = 0.60). CONCLUSIONS: The selective application of PEEP to the dependent, non-operated lung increases the lung-chest wall compliance during one-lung ventilation, but does not improve patient oxygenation.  相似文献   

5.
Tusman G  Böhm SH  Sipmann FS  Maisch S 《Anesthesia and analgesia》2004,98(6):1604-9, table of contents
Atelectasis in the dependent lung during one-lung ventilation (OLV) impairs arterial oxygenation and increases dead space. We studied the effect of an alveolar recruitment strategy (ARS) on gas exchange and lung efficiency during OLV by using the single-breath test of CO(2) (SBT-CO(2)). Twelve patients undergoing thoracic surgery were studied at three points in time: (a) during two-lung ventilation and (b) during OLV before and (c) after an ARS. The ARS was applied selectively to the dependent lung and consisted of an increase in peak inspiratory pressure up to 40 cm H(2)O combined with a peak end-expiratory pressure level of 20 cm H(2)O for 10 consecutive breaths. The ARS took approximately 3 min. Arterial blood gases, SBT-CO(2), and metabolic and hemodynamic variables were recorded at the end of each study period. Arterial oxygenation and dead space were better during two-lung ventilation compared with OLV. PaO(2) increased during OLV after lung recruitment (244 +/- 89 mm Hg) when compared with OLV without recruitment (144 +/- 73 mm Hg; P < 0.001). The SBT-CO(2) analysis showed a significant decrease in dead-space variables and an increase in the variables related to the efficiency of ventilation during OLV after an ARS when compared with OLV alone. In conclusion, ARS improves gas exchange and ventilation efficiency during OLV. IMPLICATIONS: In this article, we showed how a pulmonary ventilatory maneuver performed in the dependent lung during one-lung ventilation anesthesia improved arterial oxygenation and dead space.  相似文献   

6.
Abnormalities in gas exchange that occur during anesthesia are mostly caused by atelectasis, and these alterations are more pronounced in morbidly obese than in normal weight subjects. Sustained lung insufflation is capable of recruiting the collapsed areas and improving oxygenation in healthy patients of normal weight. We tested the effect of this ventilatory strategy on arterial oxygenation (Pao2) in patients undergoing laparoscopic bariatric surgery. After pneumoperitoneum was accomplished, the recruitment group received up to 4 sustained lung inflations with peak inspiratory pressures up to 50 cm H2O, which was followed by ventilation with 12 cm H2O positive end-expiratory pressure (PEEP). The patient's lungs in the control group were ventilated in a standard fashion with PEEP of 4 cm H2O. Variables related to gas exchange, respiratory mechanics, and hemodynamics were compared between recruitment and control groups. We found that alveolar recruitment effectively increased intraoperative Pao2 and temporarily increased respiratory system dynamic compliance (both P < 0.01). The effects of alveolar recruitment on oxygenation lasted as long as the trachea was intubated, and lungs were ventilated with high PEEP, but soon after tracheal extubation, all the beneficial effects on oxygenation disappeared. The mean number of vasopressor treatments given during surgery was larger in the recruitment group compared with the control group (3.0 versus 0.8; P = 0.04). In conclusion, our data suggest that the use of alveolar recruitment may be an effective mode of improving intraoperative oxygenation in morbidly obese patients. Our results showed the effect to be short lived and associated with more frequent intraoperative use of vasopressors.  相似文献   

7.
BACKGROUND: Lung protective ventilation using low end-inspiratory pressures and tidal volumes (VT) has been shown to impair alveolar recruitment and to promote derecruitment in acute lung injury. The aim of the present study was to compare the effects of two different end-inspiratory pressure levels on alveolar recruitment, alveolar derecruitment and potential overdistention at incremental levels of positive end-expiratory pressure. METHODS: Sixteen adult sheep were randomized to be ventilated with a peak inspiratory pressure of either 35 cm H2O (P35, low VT) or 45 cm H2O (P45, high VT) after saline washout-induced lung injury. Positive end-expiratory pressure (PEEP) was increased in a stepwise manner from zero (ZEEP) to 7, 14 and 21 cm of H2O in hourly intervals. Tidal volume, initially set to 12 ml kg(-1), was reduced according to the pressure limits. Computed tomographic scans during end-expiratory and end-inspiratory hold were performed along with hemodynamic and respiratory measurements at each level of PEEP. RESULTS: Tidal volumes for the two groups (P35/P45) were: 7.7 +/- 0.9/11.2 +/- 1.3 ml kg(-1) (ZEEP), 7.9 +/- 2.1/11.3 +/- 1.3 ml kg(-1) (PEEP 7 cm H2O), 8.3 +/- 2.5/11.6 +/- 1.4 ml kg(-1) (PEEP 14 cm H2O) and 6.5 +/- 1.7/11.0 +/- 1.6 ml kg(-1) (PEEP 21 cm H2O); P < 0.001 for differences between the two groups. Absolute nonaerated lung volumes during end-expiration and end-inspiration showed no difference between the two groups for given levels of PEEP, while tidal-induced changes in nonaerated lung volume (termed cyclic alveolar instability, CAI) were larger in the P45 group at low levels of PEEP. The decrease in nonaerated lung volume was significant for PEEP 14 and 21 cm H2O in both groups compared with ZEEP (P < 0.005). Over-inflated lung volumes, although small, were significantly higher in the P45 group. Significant respiratory acidosis was noted in the P35 group despite increases in the respiratory rate. CONCLUSION: Limiting peak inspiratory pressure and VT does not impair alveolar recruitment or promote derecruitment when using sufficient levels of PEEP.  相似文献   

8.
Positive end-expiratory pressure (PEEP) applied during induction of anesthesia prevents atelectasis formation and increases the duration of nonhypoxic apnea in nonobese patients. PEEP also prevents atelectasis formation in morbidly obese patients. Because morbidly obese patients have difficult airway management more often and because arterial desaturation develops rapidly, we studied the clinical benefit of PEEP applied during anesthesia induction. Thirty morbidly obese patients were randomly allocated to one of two groups. In the PEEP group, patients breathed 100% O(2) through a continuous positive airway pressure device (10 cm H(2)O) for 5 min. After induction of anesthesia, they were mechanically ventilated with PEEP (10 cm H(2)O) for another 5 min until tracheal intubation. In the control group, the sequence was the same but without any continuous positive airway pressure or PEEP. We measured apnea duration until Spo(2) reached 90% and we performed arterial blood gases analyses just before apnea and at 92% Spo(2). Nonhypoxic apnea duration was longer in the PEEP group compared with the control group (188 +/- 46 versus 127 +/- 43 s; P = 0.002). Pao(2) was higher before apnea in the PEEP group (P = 0.038). Application of positive airway pressure during induction of general anesthesia in morbidly obese patients increases nonhypoxic apnea duration by 50%.  相似文献   

9.
Background: Recent studies have questioned the importance of the gravitational model of pulmonary perfusion. Because low levels of positive end-expiratory pressure (PEEP) are commonly used during anesthesia, the authors studied the distribution of pulmonary blood flow with low levels of PEEP using a high spatial resolution technique. They hypothesized that if hydrostatic factors were important in the distribution of pulmonary blood flow, PEEP would redistribute flow to more dependent lung regions.

Methods: The effects of zero cm H2 O PEEP and 5 cm H2 O PEEP on pulmonary gas exchange were studied using the multiple inert gas elimination technique; the distribution of pulmonary blood flow, using fluorescent-labeled microspheres, was also investigated in mechanically ventilated, pentobarbital-anesthetized dogs. The lungs were removed, cleared of blood, dried at total lung capacity, and then cubed to obtain approximately 1,000 small pieces of lung ([approximately] 1.7 cm3).

Results: Positive end-expiratory pressure increased the partial pressure of oxygen by 6 +/- 2 mmHg (P < 0.05) and reduced all measures of ventilation and perfusion heterogeneity (P < 0.05). By reducing flow to nondependent ventral lung regions and increasing flow to dependent dorsal lung regions, PEEP increased (P < 0.05) the dorsal-to-ventral gradient. Redistribution of blood flow with PEEP accounted for 7 +/- 3%, whereas structural factors accounted for 93 +/- 3% of the total variance in blood flow.  相似文献   


10.
Many studies have confirmed that applying positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation (OLV) improves oxygenation. Our purpose was to investigate the best time and level of PEEP application. Thirty patients undergoing thoracic surgery were randomised into three groups. After 20 minutes of two-lung ventilation (TLV) in the lateral position, all patients received OLV for one hour During OLV, 0, 5, 10 cmH2O PEEP were applied in order in group A, with each level sustained for 20 minutes. Group B had 5 cmH2O PEEP applied and maintained for one hour Patients in group C received PEEP with levels set in the opposite order to that of group A. The ventilation model was then converted to TLV. PaO2, PaCO2 and respiratory mechanical variables were compared at five different time points among groups, 20 minutes after TLV (T1), 20 (T2), 40 (T3) and 60 minutes (T4) after OLV and 20 minutes after conversion to TLV (T5). We found that PaO2 was lower in group A than the other two groups at T2 (P <0.05). PaO2 decreased significantly at T5 compared with T1 (P <0.05) in group A only. When PEEP was set to 10 cmH2O, the airway pressure increased significantly (P <0.05). These findings indicate that PEEP applied at the initial time of OLV improves oxygenation most beneficially. Five cmH2O PEEP may produce this beneficial effect without the increase in airway pressure associated with 10 cmH2O PEEP.  相似文献   

11.
BACKGROUND: Although the use of external positive end-expiratory pressure (PEEP) is recommended for patients with intrinsic PEEP, no simple method exists for bedside titration. We hypothesized that the occlusion pressure, measured from airway pressure during the phase of ventilator triggering (P0.1t), could help to indicate the effects of PEEP on the work of breathing (WOB). METHODS: Twenty patients under assisted ventilation with chronic obstructive pulmonary disease were studied with 0, 5, and 10 cm H2O of PEEP while ventilated with a fixed level of pressure support. RESULTS: PEEP 5 significantly reduced intrinsic PEEP (mean +/- SD, 5.2 +/- 2.4 cm H2O at PEEP 0 to 3.6 +/- 1.9 at PEEP 5; P < 0.001), WOB per min (12. 6 +/- 6.7 J/min to 9.1 +/- 5.9 J/min; P = 0.003), WOB per liter (1.2 +/- 0.4 J/l to 0.8 +/- 0.4 J/l; P < 0.001), pressure time product of the diaphragm (216 +/- 86 cm H2O. s-1. min-1 to 155 +/- 179 cm H2O. s-1. min-1; P = 0.001) and P0.1t (3.3 +/- 1.5 cm H2O to 2.3 +/- 1.4 cm H2O; P = 0.002). At PEEP 10, no further significant reduction in muscle effort nor in P0.1t (2.5 +/- 2.1 cm H2O) occurred, and transpulmonary pressure indicated an increase in end-expiratory lung volume. Significant correlations were found between WOB per min and P0.1t at the three levels of PEEP (P < 0.001), and between the changes in P0.1t versus the changes in WOB per min (P < 0.005), indicating that P0.1t and WOB changed in the same direction. A decrease in P0.1 with PEEP indicated a decrease in intrinsic PEEP with a specificity of 71% and a sensitivity of 88% and a decrease in WOB with a specificity of 86% and a sensitivity of 91%. CONCLUSION: These results show that P0.1t may help to assess the effects of PEEP in patients with intrinsic PEEP.  相似文献   

12.
Background: A lung-protective ventilatory strategy with low tidal volume (VT) has been proposed for use in acute respiratory distress syndrome (ARDS). Alveolar derecruitment may occur during the use of a lung-protective ventilatory strategy and may be prevented by recruiting maneuvers. This study examined the hypothesis that the effectiveness of a recruiting maneuver to improve oxygenation in patients with ARDS would be influenced by the elastic properties of the lung and chest wall.

Methods: Twenty-two patients with ARDS were studied during use of the ARDSNet lung-protective ventilatory strategy: VT was set at 6 ml/kg predicted body weight and positive end-expiratory pressure (PEEP) and inspiratory oxygen fraction (Fio2) were set to obtain an arterial oxygen saturation of 90-95% and/or an arterial oxygen partial pressure (Pao2) of 60- 80 mmHg (baseline). Measurements of Pao2/Fio2, static volume-pressure curve, recruited volume (vertical shift of the volume-pressure curve), and chest wall and lung elastance (EstW and EstL: esophageal pressure) were obtained on zero end-expiratory pressure, at baseline, and at 2 and 20 min after application of a recruiting maneuver (40 cm H2O of continuous positive airway pressure for 40 s). Cardiac output (transesophageal Doppler) and mean arterial pressure were measured immediately before, during, and immediately after the recruiting maneuver. Patients were classified a priori as responders and nonresponders on the basis of the occurrence or nonoccurrence of a 50% increase in Pao2/Fio2 after the recruiting maneuver.

Results: Recruiting maneuvers increased Pao2/Fio2 by 20 +/- 3% in nonresponders (n = 11) and by 175 +/- 23% (n = 11; mean +/- standard deviation) in responders. On zero end-expiratory pressure, EstL (28.4 +/- 2.2 vs. 24.2 +/- 2.9 cm H2O/l) and EstW (10.4 +/- 1.8 vs. 5.6 +/- 0.8 cm H2O/l) were higher in nonresponders than in responders (P < 0.01). Nonresponders had been ventilated for a longer period of time than responders (7 +/- 1 vs. 1 +/- 0.3 days;P < 0.001). Cardiac output and mean arterial pressure decreased by 31 +/- 2 and 19 +/- 3% in nonresponders and by 2 +/- 1 and 2 +/- 1% in responders (P < 0.01).  相似文献   


13.
BACKGROUND: The most appropriate method of determining positive end-expiratory pressure (PEEP) level during a lung protective ventilatory strategy has not been established. METHODS: In a lavage-injured sheep acute respiratory distress syndrome model, the authors compared the effects of three approaches to determining PEEP level after a recruitment maneuver: (1) 2 cm H(2)O above the lower inflection point on the inflation pressure-volume curve, (2) at the point of maximum curvature on the deflation pressure-volume curve, and (3) at the PEEP level that maintained target arterial oxygen partial pressure at a fraction of inspired oxygen of 0.5. RESULTS: Positive end-expiratory pressure set 2 cm H(2)O above the lower inflection point resulted in the least injury over the course of the study. PEEP based on adequate arterial oxygen partial pressure/fraction of inspired oxygen ratios had to be increased over time and resulted in higher mRNA levels for interleukin-8 and interleukin-1beta and greater tissue inflammation when compared with the other approaches. PEEP at the point of maximum curvature could not maintain eucapneia even at an increased ventilatory rate. CONCLUSION: Although generating higher plateau pressures, PEEP levels based on pressure-volume curve analysis were more effective in maintaining gas exchange and minimizing injury than PEEP based on adequate oxygenation. PEEP at 2 cm H(2)O above the lower inflection point was most effective.  相似文献   

14.
Background: Although the use of external positive end-expiratory pressure (PEEP) is recommended for patients with intrinsic PEEP, no simple method exists for bedside titration. We hypothesized that the occlusion pressure, measured from airway pressure during the phase of ventilator triggering (P0.1t), could help to indicate the effects of PEEP on the work of breathing (WOB).

Methods: Twenty patients under assisted ventilation with chronic obstructive pulmonary disease were studied with 0, 5, and 10 cm H2O of PEEP while ventilated with a fixed level of pressure support.

Results: PEEP 5 significantly reduced intrinsic PEEP (mean +/- SD, 5.2 +/- 2.4 cm H2O at PEEP 0 to 3.6 +/- 1.9 at PEEP 5;P < 0.001), WOB per min (12.6 +/- 6.7 J/min to 9.1 +/- 5.9 J/min;P = 0.003), WOB per liter (1.2 +/- 0.4 J/l to 0.8 +/- 0.4 J/l;P < 0.001), pressure time product of the diaphragm (216 +/- 86 cm H2O [middle dot] s-1 [middle dot] min-1 to 155 +/- 179 cm H2O [middle dot] s-1 [middle dot] min-1;P = 0.001) and P0.1t (3.3 +/- 1.5 cm H2O to 2.3 +/- 1.4 cm H2O;P = 0.002). At PEEP 10, no further significant reduction in muscle effort nor in P0.1t (2.5 +/- 2.1 cm H2O) occurred, and transpulmonary pressure indicated an increase in end-expiratory lung volume. Significant correlations were found between WOB per min and P0.1t at the three levels of PEEP (P < 0.001), and between the changes in P0.1tversus the changes in WOB per min (P < 0.005), indicating that P0.1t and WOB changed in the same direction. A decrease in P0.1 with PEEP indicated a decrease in intrinsic PEEP with a specificity of 71% and a sensitivity of 88% and a decrease in WOB with a specificity of 86% and a sensitivity of 91%.  相似文献   


15.
We examined the effect of the inhalational anesthetics halothane (H) and isoflurane (IF) on arterial oxygenation during one-lung ventilation. Twenty consenting patients who required thoracotomy and one-lung ventilation were initially anesthetized only with the intravenous agents, diazepam, fentanyl, pancuronium, metocurine, and infusions of either ketamine or methohexital. A double lumen endotracheal tube was inserted, and each patient's lungs were mechanically ventilated (two-lung ventilation, step 1) with 100% O2 while the patient was in the lateral decubitus position. After the pleura was opened, the nondependent lung was collapsed while the dependent lung continued to be ventilated with 100% O2. After serial PaO2 measurements indicated achievement of stable one-lung ventilation conditions (step 2), intravenous anesthetic agents were discontinued, and either H (n = 10) or IF (n = 10) was administered (step 3) so that PETH = 7.70 +/- 0.61 mm Hg and PETIF = 9.89 +/- 1.08 mm Hg for more than 15 min; at the end of step 3, PaH/PETH = 0.82 (n = 5), PaIF/PETIF = 0.75 (n = 5), PvH/PETH = 0.64 (n = 3), and PvIF/PETIF = 0.68 (n = 3). The inhalational anesthetics were then discontinued, and intravenous agents were reinstituted, allowing PETH and PETIF to decrease below 0.50 mm Hg (step 4). Two-lung ventilation was resumed at the end of the surgical procedure (step 5). PaO2 decreased from 441 +/- 64 to 252 +/- 70 mm Hg when one-lung ventilation was achieved (steps 1-2), and PaO2 increased from 258 +/- 72 to 395 +/- 65 mm Hg when two-lung ventilation was resumed (steps 4-5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Increased functional residual capacity (FRC) and compliance are two desirable, but seldom measured, effects of positive end-expiratory pressure (PEEP) in mechanically ventilated patients. To assess how these variables reflect the morphological lung perturbations during the evolution of acute lung injury and the morphological changes from altered PEEP, we correlated measurements of FRC and respiratory system mechanics to the degree of lung aeration and consolidation on computed tomography (CT). We used a porcine oleic acid model with FRC determinations by sulfur hexafluoride washin-washout and respiratory system mechanics measured during an inspiratory hold maneuver. Within the first hour, during constant volume-controlled ventilation with PEEP 5 cm H(2)O, FRC decreased by 45% +/- 15% (P = 0.005) and compliance decreased by 35% +/- 12% (P = 0.005). Resistance increased by 60% +/- 62% (P = 0.005). Only the FRC changes correlated significantly to the decreased aeration (R(2) = 0.56; P = 0.01) and the increased consolidation (R(2) = 0.43; P = 0.04) on CT. When the PEEP was changed to either 10 or 0 cm H(2)O, there were larger changes in FRC than in compliance. We conclude that, in our model, FRC was a more sensitive indicator of PEEP-induced aeration and recruitment of lung tissue and that FRC may be a useful adjunct to PaO(2) monitoring. IMPLICATIONS: Lung injury was quantified on computed tomography and related to monitored values of functional residual capacity and mechanical properties of the respiratory system. We found the functional residual capacity to be a more sensitive marker of the lung perturbations than the compliance. It might be of value to include functional residual capacity in the monitoring of acute lung injury.  相似文献   

17.
Background: Using an in vivo animal model of surfactant deficiency, the authors compared the effect of different ventilation strategies on oxygenation and inflammatory mediator release from the lung parenchyma.

Methods: In adult rats that were mechanically ventilated with 100% oxygen, acute lung injury was induced by repeated lung lavage to obtain an arterial oxygen partial pressure < 85 mmHg (peak pressure/positive end-expiratory pressure [PEEP] = 26/6 cm H2O). Animals were then randomly assigned to receive either exogenous surfactant therapy, partial liquid ventilation, ventilation with high PEEP (16 cm H2O), ventilation with low PEEP (8 cm H2O), or ventilation with an increase in peak inspiratory pressure (to 32 cm H2O; PEEP = 6 cm H2O). Two groups of healthy nonlavaged rats were ventilated at a peak pressure/PEEP of 32/6 and 32/0 cm H2O, respectively. Blood gases were measured. Prostacyclin (PGI2) and tumor necrosis factor-[alpha] (TNF-[alpha]) concentrations in serum and bronchoalveolar lavage fluid (BALF) as well as protein concentration in BALF were determined after 90 and 240 min and compared with mechanically ventilated and spontaneously breathing controls.

Results: Surfactant, partial liquid ventilation, and high PEEP improved oxygenation and reduced BALF protein levels. Ventilation with high PEEP at high mean airway pressure levels increased BALF PGI2 levels, whereas there was no difference in BALF TNF-[alpha] levels between groups. Serum PGI2 and TNF-[alpha] levels did not increase as a result of mechanical ventilation when compared with those of spontaneously breathing controls.  相似文献   


18.
The aim of this study was to determine the optimal positive end-expiratory pressure (PEEP) required during extracorporeal lung membrane support (interventional lung assist [iLA]; Novalung GmbH, Hechingen, Germany). Twenty healthy pigs were initially (4 h) mechanically ventilated with a tidal volume (V(T)) of 10 mL/Kg, respiratory rate (RR) of 20 breaths/min, PEEP of 5 cm H(2)O, and fraction of inspired O(2) (FiO(2)) of 1.0. Thereafter, the iLAs were placed arteriovenously transfemorally and settings reduced to reach near static ventilation (V(T) < or = 2 mL/Kg, RR 4 breaths/min, PEEP of 5, FiO(2) 1.0). Then, animals were assigned to four study groups evaluating 5 cm H(2)O increasing levels of PEEP for 8 h. Gas exchanges with PEEP < or = 10 cm H(2)O were significantly worse than those with PEEP > 12 cm H(2)O, and this without hemodynamical imbalance. This study suggests that the iLA may provide adequate gas exchange during static ventilation only with PEEP levels > 10 cm H(2)O, and this without pulmonary or systemic hemodynamic imbalance.  相似文献   

19.
目的 探讨单肺通气利用动态肺顺应性设定呼气末正压通气(positive end-expiratory pressure,PEEP)的优势及可行性. 方法 选择预行右侧肺叶切除患者80例,完全随机分为A组和B组,每组40例:A组,单肺通气实施肺膨胀(sustained inflation,SI)复张后加用20 cmH2O(1 cmH2O=0.098 kPa)的PEEP并递减滴定,随后以得到最大肺顺应性的PEEP值通气,直到恢复双肺通气;B组,通气PEEP值固定为5 cmH2O,其他通气方法同A组.记录患者血气、呼吸等参数. 结果 两组设定的PEEP值[A组(9.2±1.2) cmH2O,B组5 cmH2O]差异有统计学意义(P<0.05);在单肺通气1 h(T3)、手术结束(T4)时,两组动脉血氧分压(partial pressure of oxygen,PaO2)比较,差异有统计学意义(P<0.05);B组的PaO2在T3~T4逐步降低,差异有统计学意义(P<0.05),而A组则维持较好(P>0.05);T3、T4时刻A组的动态肺顺应性[(30.8±5.9)、(30.7±6.4) ml/cmH2O]与B组[(26.6±5.5)、(26.4±5.2) ml/cmH2O]比较,差异有统计学意义(P<0.05). 结论 胸腔镜肺叶切除术中的单肺通气,利用动态肺顺应性设定的PEEP值通气能够得到更好的氧合及呼吸参数,并且维持较好.  相似文献   

20.
BACKGROUND: Using an in vivo animal model of surfactant deficiency, the authors compared the effect of different ventilation strategies on oxygenation and inflammatory mediator release from the lung parenchyma. METHODS: In adult rats that were mechanically ventilated with 100% oxygen, acute lung injury was induced by repeated lung lavage to obtain an arterial oxygen partial pressure < 85 mmHg (peak pressure/positive end-expiratory pressure [PEEP] = 26/6 cm H2O). Animals were then randomly assigned to receive either exogenous surfactant therapy, partial liquid ventilation, ventilation with high PEEP (16 cm H2O), ventilation with low PEEP (8 cm H2O), or ventilation with an increase in peak inspiratory pressure (to 32 cm H2O; PEEP = 6 cm H2O). Two groups of healthy nonlavaged rats were ventilated at a peak pressure/PEEP of 32/6 and 32/0 cm H2O, respectively. Blood gases were measured. Prostacyclin (PGI2) and tumor necrosis factor-alpha (TNF-alpha) concentrations in serum and bronchoalveolar lavage fluid (BALF) as well as protein concentration in BALF were determined after 90 and 240 min and compared with mechanically ventilated and spontaneously breathing controls. RESULTS: Surfactant, partial liquid ventilation, and high PEEP improved oxygenation and reduced BALF protein levels. Ventilation with high PEEP at high mean airway pressure levels increased BALF PGI2 levels, whereas there was no difference in BALF TNF-alpha levels between groups. Serum PGI2 and TNF-alpha levels did not increase as a result of mechanical ventilation when compared with those of spontaneously breathing controls. CONCLUSIONS: Although alveolar protein concentration and oxygenation markedly differed with different ventilation strategies in this model of acute lung injury, there were no indications of ventilation-induced systemic PGI2 and TNF-alpha release, nor of pulmonary TNF-alpha release. Mechanical ventilation at high mean airway pressure levels increased PGI2 levels in the bronchoalveolar lavage-accessible space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号