首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
How does nearby motion affect the perceived speed of a target region? When a central drifting Gabor patch is surrounded by translating noise, its speed can be misperceived over a fourfold range. Typically, when a surround moves in the same direction, perceived centre speed is reduced; for opposite-direction surrounds it increases. Measuring this illusion for a variety of surround properties reveals that the motion context effects are a saturating function of surround speed (Experiment I) and contrast (Experiment II). Our analyses indicate that the effects are consistent with a subtractive process, rather than with speed being averaged over area. In Experiment III we exploit known properties of the motion system to ask where these surround effects impact. Using 2D plaid stimuli, we find that surround-induced shifts in perceived speed of one plaid component produce substantial shifts in perceived plaid direction. This indicates that surrounds exert their influence early in processing, before pattern motion direction is computed. These findings relate to ongoing investigations of surround suppression for direction discrimination, and are consistent with single-cell findings of direction-tuned suppressive and facilitatory interactions in primary visual cortex (V1).  相似文献   

2.
The sum of two differently orientated moving sinusoidal gratings of similar spatial frequency, contrast, and velocity appears as a single coherent "plaid" pattern. The visual system is thought to analyse the motion of plaids in two stages, first analysing the motion of the (1-D) components, and then calculating a speed and direction which is consistent with those 1-D motions. We find that the direction of motion of a plaid (components 1.6 c/deg orientated +60 degrees and -60 degrees) can be discriminated at velocities so low that the direction of motion of its components is not discriminable. This finding is not consistent with the "two-stage" hypothesis in the form that it is usually expressed. We suggest that mechanisms sensitive to the motion of local elements in the pattern, such as edges, could also contribute to the first stage of the analysis of plaid motion.  相似文献   

3.
Pavan A  Mather G 《Vision research》2008,48(21):2260-2268
Motion perception influences perceived position. It has been shown that first-order (luminance defined) motion shifts perceived position across a wide range of spatial and temporal frequencies. On the other hand, second-order (contrast defined) motion shifts perceived position over a narrow range of temporal frequencies, regardless of spatial frequency [Bressler, D. W., & Whitney, D. (2006). Second-order motion shifts perceived position. Vision Research, 46(6-7), 1120-1128]. These results suggest the presence of distinct position assignment mechanisms for first- and second-order motion. We investigated whether the first- and second-order systems independently encode and assign the position of a moving stimulus. To measure motion induced position shift we presented two horizontally offset Gabors placed above and below a central fixation point, with sine wave carriers drifting in opposite directions. Subjects judged the position of the top Gabor relative to the bottom one. We used both first-order Gabors (sinusoidal luminance modulation of a dynamic noise carrier enveloped by a static Gaussian) and second-order Gabors (sinusoidal contrast modulation of a dynamic noise carrier enveloped by a static Gaussian). Results showed a strong position shift in the direction of the carrier motion when both Gabors were first-order, a weak position shift when both Gabors were second-order, and no appreciable position shift when one Gabor was first-order and the other was second-order (cross-order motion). The absence of a position shift using cross-order motion supports the hypothesis that the two motion systems independently encode and assign the position of a moving object. These results are consistent with those of experiments investigating global spatial interactions between static first-order and second-order Gabor patches, indicating a commonality in the underlying spatial integration processes.  相似文献   

4.
In the motion-induced position shift (MIPS), the position of a moving pattern tapered by a stationary envelope is perceived to shift in the direction of the motion. It was found that plaid motion also elicited a MIPS in the direction of global motion and this global MIPS could not be predicted by the average of the local MIPSs due to component motions. We also used a pseudo plaid pattern and again observed a global MIPS that could not be predicted by the local MIPSs due to the components of the pseudo plaid pattern. We suggest the possibility that the receptive-field positions of global motion detectors shift in the direction opposite to global motion, resulting in a positional displacement in activation via population coding.  相似文献   

5.
It has been shown that the perceived direction of a plaid with components of unequal contrast is biased towards the direction of the higher-contrast component [Stone, L. S., Watson, A. B., & Mulligan, J. B. (1990). Effect of contrast on the perceived direction of a moving plaid. Vision Research 30, 1049-1067]. It was proposed that this effect is due to the influence of contrast on the perceived speed of the plaid components. This led to the conclusion that perceived plaid direction is computed by the intersection of constraints (IOC) of the perceived speed of the components rather than their physical speeds. We tested this proposal at a wider range of component speeds (2-16deg/s) than used previously, across which the effect of contrast on perceived speed is seen to reverse. We find that across this range, perceived plaid direction cannot be predicted either by a model which takes the IOC of physical or perceived component speed. Our results are consistent with an explanation of 2D motion perception proposed by [Bowns, L. (1996). Evidence for a feature tracking explanation of why Type II plaids move in the vector sum direction at short durations. Vision Research, 36, 3685-3694.] in which the motion of the zero-crossing edges of the features in the stimulus contribute to the perceived direction of motion.  相似文献   

6.
The motion aftereffect (MAE) to drifting bivectorial stimuli, such as plaids, is usually univectorial and in a direction opposite to the pattern direction of the plaid. This is true for plaids that are perceived as coherent, but also for other plaids which are seen as transparent for most or all of the adaptation period. The underlying mechanisms of this MAE are still not well understood. In order to assess these mechanisms further, we measured static and dynamic MAEs and their interocular transfer (IOT). Adaptation stimuli were plaids with small (coherent) and large (transparent) angles between the directions of the component gratings and a horizontal grating, which were adjusted in spatial frequency and drift velocity so that the pattern speed and vertical periodicity remained constant. Test stimuli were horizontal static or counterphasing gratings with the same periodicity as the adaptation stimuli. MAE duration was measured for monocular, binocular and IOT conditions. All static MAEs were smallest for the transparent plaid and largest for the grating, while all dynamic MAEs were constant across adaptation stimuli. IOT was twice as big for dynamic MAEs as for static MAEs, and did not vary with the adaptation stimuli. Other adaptation stimuli were plaids that differed in intersection luminance, contrast or spatial frequency, resulting in different amounts of perceived coherence. MAEs and IOT did not vary with perceived coherence. The results suggest that the MAE for bivectorial stimuli consists of low-level adaptation (dependent on local component properties, small IOT), as well as high-level adaptation (dependent on global integrated pattern properties, large IOT), which can be measured independently with static and dynamic test stimuli.  相似文献   

7.
Across three experiments, this study investigated the visual processing of moving stereoscopic plaid patterns (plaids created with cyclopean components defined by moving binocular disparity embedded in a dynamic random-dot stereogram). Results showed that adaptation to a moving stereoscopic plaid or its components affected the perceived coherence of a luminance test plaid, and vice versa. Cross-domain adaptation suggests that stereoscopic and luminance motion signals feed into a common pattern-motion mechanism, consistent with the idea that stereoscopic motion signals are computed early in the motion processing stream.  相似文献   

8.
The sum of two differently orientated moving sinusoidal gratings of similar spatial frequency, contrast, and velocity appears as a single coherent "plaid" pattern. The visual system is thought to analyse the motion of plaids in two stages, first analysing the motion of the (1-D) components, and then calculating a speed and direction which is consistent with those 1-D motions. We studied the apparent direction of motion of plaids made by adding two components that had the same spatial frequency and contrast, and were symmetrically oriented about the vertical axis. The gratings moved in jumps, and we studied the effect of varying the size of the jump, the angle between the component gratings, and the temporal interval between the jumps, on the perceived direction of motion. When the size of the jumps was increased to 3/8 of their spatial period, the perceived direction of motion of the plaid pattern reversed, although if one component were presented alone, its direction of movement did not reverse. Reversed motion of this type was consistently obtained if the angle between the components was greater than about 140 degrees, if the interval between jumps was at least 25 msec, and if the spatial frequency of the component gratings was less than about 4 c/deg. When the angle between the components was smaller, or the time between jumps was greater, most observers saw normal motion in the direction predicted by the two-stage hypothesis. When the spatial frequency was raised, observers saw no consistent motion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effect of contrast on the perceived direction of a moving plaid   总被引:1,自引:0,他引:1  
We performed a series of experiments examining the effect of contrast on the perception of moving plaids. This was done to test the hypothesis put forth by Adelson and Movshon (1982) that the human visual system determines the direction of a moving plaid in a two-staged process: decomposition into component motion followed by application of the intersection of constraints rule. Although there is recent evidence that the first tenet of their hypothesis is correct, i.e. that plaid motion is initially decomposed into the motion of the individual grating components (Movshon, Adelson, Gizzi & Newsome, 1986; Welch, 1989), the nature of the second-stage combination rule has not as yet been established. We found that when the gratings within the plaid are of different contrast, the perceived direction is not predicted by the intersection of constraints rule. There is a strong (up to 20 deg) bias in the direction of the higher-contrast grating. A revised model, which incorporates a contrast-dependent weighting of perceived grating speed as observed for 1-D patterns (Thompson, 1982), can quantitatively predict most of our results. We discuss our results in the context of various models of human visual motion processing and of physiological responses of neurons in the primate visual system.  相似文献   

10.
B Farell 《Vision research》1999,39(16):2633-2647
An isoluminant color grating usually appears to move more slowly than a luminance grating that has the same physical speed. Yet a grating defined by both color and luminance is seen as perceptually unified and moving at a single intermediate speed. In experiments measuring perceived speed and direction, it was found that color- and luminance-based motion signals are combined differently in the perception of 1-D motion than they are in the perception of 2-D motion. Adding color to a moving 1-D luminance pattern, a grating, slows its perceived speed. Adding color to a moving 2-D luminance pattern, a plaid made of orthogonal gratings, leaves its perceived speed unchanged. Analogous results occur for the perception of the direction of 2-D motion. The visual system appears to discount color when analyzing the motion of luminance-bearing 2-D patterns. This strategy has adaptive advantages, making the sensing of object motion more veridical without sacrificing the ability to see motion at isoluminance.  相似文献   

11.
When an image feature moves with sufficient speed it should become smeared across space, due to temporal integration in the visual system, effectively creating a spatial motion pattern that is oriented in the direction of the motion. Recent psychophysical evidence shows that such "motion streak signals" exist in the human visual system. In this study, we report neurophysiological evidence that these motion streak signals also exist in the primary visual cortex of cat and monkey. Single neuron responses were recorded for two kinds of moving stimuli: single spots presented at different velocities and drifting plaid patterns presented at different spatial and temporal frequencies. Measurements were made for motion perpendicular to the spatial orientation of the receptive field ("perpendicular motion") and for motion parallel to the spatial orientation of the receptive field ("parallel motion"). For moving spot stimuli, as the speed increases, the ratio of the responses to parallel versus perpendicular motion increases, and above some critical speed, the response to parallel motion exceeds the response to perpendicular motion. For moving plaid patterns, the average temporal tuning function is approximately the same for both parallel motion and perpendicular motion; in contrast, the spatial tuning function is quite different for parallel motion and perpendicular motion (band pass for the former and low pass for the latter). In general, the responses to spots and plaids are consistent with the conventional model of cortical neurons with one rather surprising exception: Many cortical neurons appear to be direction selective for parallel motion. We propose a simple explanation for "parallel motion direction selectivity" and discuss its implications for the motion streak hypothesis. Taken as a whole, we find that the measured response properties of cortical neurons to moving spot and plaid patterns agree with the recent psychophysics and support the hypothesis that motion streak signals are present in V1.  相似文献   

12.
Hupé JM  Rubin N 《Vision research》2004,44(5):489-500
Plaids are ambiguous stimuli that can be perceived either as a coherent pattern moving rigidly or as two gratings sliding over each other. Here we report a new factor that affects the relative strength of coherency versus transparency: the global direction of motion of the plaid. Plaids moving in oblique directions are perceived as sliding more frequently than plaids moving in cardinal directions. We term this the oblique plaid effect. There is also a difference between the two cardinal directions: for most observers, plaids moving in horizontal directions cohere more than plaids moving in vertical directions. Two measures were used to quantify the relative strength of coherency vs. transparency: C/[C+T] and RTtransp. Those measures were derived from dynamics data obtained in long-duration trials (>1 min) where observers continually indicated their percept. The perception of plaids is bi-stable: over time it alternates between coherency and transparency, and the dynamics data reveal the relative strength of the two interpretations [Vision Research 43 (2003) 531]. C/[C+T] is the relative cumulative time spent perceiving coherency; RTtransp is the time between stimulus onset and the first report of transparency. The dynamics-based measures quantify the relative strength of coherency over a wider range of parameters than brief-presentation 2AFC methods, and exposed an oblique plaid effect in the entire range tested. There was no interaction between the effect of the global direction of motion and the effect of gratings' orientations. Thus, the oblique plaid effect is due to anisotropies inherent to motion mechanisms, not a bi-product of orientation anisotropies. The strong effect of a plaid's global direction on its tendency to cohere imposes new and important constraints on models of motion integration and transparency. Models that rely solely on relative differences in directions and/or orientations in the stimulus cannot predict our results. Instead, models should take into account anisotropies in the neuronal populations that represent the coherent percept (integrated motion) and those that represent the transparent percept (segmented motion). Furthermore, the oblique plaid effect could be used to test whether neuronal populations supposed to be involved in plaid perception display tuning biases in favor of cardinal directions.  相似文献   

13.
Sensory adaptation is a useful tool to identify the links between perceptual effects and neural mechanisms. Even though motion adaptation is one of the earliest and most documented aftereffects, few studies have investigated the perception of direction and speed of the aftereffect at the same time, that is the perceived velocity. Using a novel experimental paradigm, we simultaneously recorded the perceived direction and speed of leftward or rightward moving random dots before and after adaptation. For the adapting stimulus, we chose a horizontally-oriented broadband grating moving upward behind a circular aperture. Because of the aperture problem, the interpretation of this stimulus is ambiguous, being consistent with multiple velocities, and yet it is systematically perceived as moving at a single direction and speed. Here we ask whether the visual system adapts to the multiple velocities of the adaptor or to just the single perceived velocity. Our results show a strong repulsion aftereffect, away from the adapting velocity (downward and slower), that increases gradually for faster test stimuli as long as these stimuli include some velocities that match some of the ambiguous ones of the adaptor. In summary, the visual system seems to adapt to the multiple velocities of an ambiguous stimulus even though a single velocity is perceived. Our findings can be well described by a computational model that assumes a joint encoding of direction and speed and that includes an extended adaptation component that can represent all the possible velocities of the ambiguous stimulus.  相似文献   

14.
A plaid pattern made by adding two gratings of the same spatial frequency, one moving 45 deg above the horizontal, and the other moving 45 deg below the horizontal, appears to move horizontally when the speeds of the two components are equal. If the apparent speed of the upward-moving component is reduced by a motion after-effect (MAE), the plaid appears to move obliquely downwards, unless the actual speed of the downward-moving component is reduced to match the (reduced) apparent speed of the upward moving component. This is consistent with the hypothesis that the visual system computes the motion of a plaid pattern in two stages, first estimating the motions of the components, and then combining them according to the intersection of constraints. An alternative explanation: that the vertical component of the plaid's motion is caused by an MAE in a horizontally oriented distortion product generated by non-linear transduction or transmission of the plaid, is ruled out by the finding that the adapting stimulus causes only a very weak vertical MAE.  相似文献   

15.
The processing of motion information by the visual system can be decomposed into two general stages; point-by-point local motion extraction, followed by global motion extraction through the pooling of the local motion signals. The direction aftereffect (DAE) is a well known phenomenon in which prior adaptation to a unidirectional moving pattern results in an exaggerated perceived direction difference between the adapted direction and a subsequently viewed stimulus moving in a different direction. The experiments in this paper sought to identify where the adaptation underlying the DAE occurs within the motion processing hierarchy. We found that the DAE exhibits interocular transfer, thus demonstrating that the underlying adapted neural mechanisms are binocularly driven and must, therefore, reside in the visual cortex. The remaining experiments measured the speed tuning of the DAE, and used the derived function to test a number of local and global models of the phenomenon. Our data provide compelling evidence that the DAE is driven by the adaptation of motion-sensitive neurons at the local-processing stage of motion encoding. This is in contrast to earlier research showing that direction repulsion, which can be viewed as a simultaneous presentation counterpart to the DAE, is a global motion process. This leads us to conclude that the DAE and direction repulsion reflect interactions between motion-sensitive neural mechanisms at different levels of the motion-processing hierarchy.  相似文献   

16.
A growing amount of evidence suggests that viewing a photograph depicting motion activates the same direction-selective neurons involved in the perception of real motion. It has been shown that prolonged exposure (adaptation) to photographs depicting directional motion can induce motion adaptation and consequently motion aftereffect. The present study investigated whether adapting to photographs depicting humans, animals, and vehicles that move leftward or rightward also generates a positional aftereffect (the motion-induced position shift - MIPS), in which the perceived spatial position of a target pattern is shifted in the opposite direction to that of adaptation. Results showed that adapting to still photographs depicting objects that move in a particular direction shifts the perceived position of subsequently presented stationary objects opposite to the depicted adaptation direction and that this effect depends on the retinotopic location of the adapting stimulus. These results suggest that the implied motion could activate the same direction-selective and speed-tuned mechanisms that produce positional aftereffect when viewing real motion.  相似文献   

17.
Tsui SY  Khuu SK  Hayes A 《Vision research》2007,47(3):402-410
When the sinusoidal grating of a "Gabor pattern" is drifted, the apparent position of the pattern shifts in the direction of motion [De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving Gabors. Vision Research, 31, 1619-1626]. We investigated the underlying cause of this illusion by determining whether the effect is a consequence of the internal motion shifting the perceived position of the whole pattern, or a consequence of a shift in the perceived location of the centroid (centre of mass) of the Gabor envelope. While each of these two possible distortions can account for a perceived positional offset, they give different predictions for the apparent size of the stimulus. A simple shift in perceived position results in no change in apparent size, while a centroid shift will likely result in either a decrease or an increase in the pattern's apparent size, depending on whether the trailing or leading edge of the Gabor stimulus is most affected by motion. We examined whether there is a change in the apparent size of Gabor patterns containing a range of grating motion speeds. We found that the perceived size of the pattern increased in the presence of motion as a function of speed, and is thus consistent with a centroid-shift explanation. We verified that this size change is a consequence of an increase in contrast at the leading edge, since the leading edge appears elongated relative to the trailing edge. We furthermore showed that the apparent-position shifts due to motion can be negated by displacing the centroid in the opposite direction to the motion.  相似文献   

18.
We describe a theoretical and computational model of the perception of plaid pattern motion which fully accounts for the majority of cases in which misperception of the direction of motion of Type II plaids has been observed [Yo, C., & Wilson, H. (1992). Perceived direction of moving two-dimensional patterns depends on duration, contrast, and eccentricity. Vision Research 32, 135-147]. The model consists of two stages: in the first stage local motion detectors signal both the one-dimensional (1-D) and two-dimensional (2-D) motion of the high luminance features (blobs) in the plaid pattern; in the second stage these local motion signals are combined using a recursive Bayesian least squares estimation process. We demonstrate both theoretically and using simulations of the computational model that the estimated direction of the plaid motion for Type II plaids is initially dominated by the 1-D motion of the longer edges of the elongated blobs, which is in a direction close to the vector sum direction of the component gratings. The recursive estimation process which combines the local motion signals in the second stage of the model results in a dynamic shift in the estimated plaid direction towards the direction of the 2-D motion of the blobs, which corresponds to the veridical plaid direction.  相似文献   

19.
During adaptation to a moving pattern, perceived speed decreases. Thus we know that the adapted visual system does not simply code the absolute speed of a stimulus. We hypothesised that adaptation to a moving stimulus serves to optimise coding of changes in speed at the expense of maintaining an accurate representation of absolute speed. In this case we would expect discrimination of speeds around the adapted level to be preserved or enhanced by motion adaptation. Speed discrimination thresholds were measured for sinusoidal gratings (1.25 cpd; 12.5 Hz; 40% contrast) with and without prior adaptation to moving, static, and flickering stimuli. After adaptation to motion in the same direction as the test, seven of eight subjects showed a reduction of perceived speed in the adapted region, and seven showed enhanced discrimination. Similar effects were found for adaptation to motion in the opposite direction to the test and to counter-phase flicker, suggesting that adaptation is driven by temporal modulation rather than by motion per se. We conclude that motion adaptation preserves or enhances differential speed sensitivity at the expense of an accurate representation of absolute speed.  相似文献   

20.
《Vision research》1996,36(16):2475-2488
It has been reported that equiluminant plaid patterns constructed from component gratings modulated along different axes of a cardinal colour space fail to create a coherent impression of two-dimensional motion Krauskopf and Farell (1990). Nature, 348, 328–331. In this paper we assess whether this lack of interaction between cardinal axes is a general finding or is instead dependent upon specific stimulus parameters. Type I and Type II plaids were made from sinusoidal components (1 cpd) each modulated along axes in a cardinal colour space and presented at equivalent perceived contrasts. The spatial angular difference between the two components was varied from 5 to 90 deg whilst keeping the Intersection of Constraints (I.O.C.) solution of the pattern constant. Observers were required to indicate the perceived direction of motion of the pattern in a single interval direction-identification task. We find that: (i) When plaids were made from components modulated along the same cardinal axis, coherent “pattern” motion was perceived at all angular differences. As the angular difference between the components decreased in a Type II plaid, the perceived direction of motion moved closer to the I.O.C. solution and away from that predicted by the vector sum. (ii) A plaid made from components modulated along red-green and blue-yellow cardinal axes (cross-cardinal axis) did not cohere at high angular differences (>30 deg) but had a perceived direction of the fastest moving component. At lower angular differences, however, pattern motion was detected and approached the I.O.C. solution in much the same way as a same-cardinal axis Type II plaid. (iii) A plaid made from a luminance grating and a cardinal chromatic grating (red-green or blue-yellow) failed to cohere under all conditions, demonstrating that there is no interaction between luminance and chromatic cardinal axes. These results indicate that there are conditions under which red-green and blue-yellow cardinal components interact for the purposes of motion detection. Copyright © 1996 Elsevier Science Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号