首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have learned various data on the role of purinoceptors (P2X4, P2X7, P2Y6 and P2Y12) expressed in spinal microglia and several factors that presumably activate microglia in neuropathic pain after peripheral nerve injury. Purinergic receptor-mediated spinal microglial functions make a critical contribution to pathologically enhanced pain processing in the dorsal horn. Microglial purinoceptors might be promising targets for treating neuropathic pain. A predicted therapeutic benefit of interfering with microglial purinergic receptors may be that normal pain sensitivity would be unaffected since expression or activity of most of these receptors are upregulated or enhanced predominantly in activated microglia in the spinal cord where damaged sensory fibers project.  相似文献   

2.
Kobayashi K  Yamanaka H  Yanamoto F  Okubo M  Noguchi K 《Glia》2012,60(10):1529-1539
A prominent signaling pathway in the development of neuropathic pain involves ATP acting on microglial purinergic receptors. Among the P2Y metabotropic receptors, we reported before that the P2Y12 receptor is upregulated in microglia following nerve injury and involved in the phosphorylation of p38 MAPK, and in the development of pain behavior. In this study, we examined the expression of P2Y6, P2Y13, and P2Y14 receptors in the spinal cord and whether these receptors are involved in the pathogenesis of neuropathic pain following peripheral nerve injury. We found that spared nerve injury induced a dramatic increase of not only P2Y12, but also P2Y6, 13, and 14 receptor mRNA expression in spinal microglia. The increase continued for at least 2 weeks after injury. To determine whether p38 MAPK can induce the expression of P2Y receptors, we administered intrathecally the p38 MAPK inhibitor SB203580 and found that it significantly suppressed P2Y6, P2Y13, and P2Y14 but not P2Y12 mRNAs. Intrathecal injection of the specific P2Y6 antagonist MRS2578, specific P2Y13 antagonist MRS2211 or P2Y14 antisense LNA, attenuated mechanical pain hypersensitivity. Themixture of three antagonists for P2Y6, 12, and 13 showed a longer suppressive effect on pain behavior than the individual treatments. Our data demonstrate that ATP and other nucleotides may stimulate activated microglia with the upregulation of P2Y6, P2Y12, P2Y13, and P2Y14 receptors following nerve injury and these receptors are involved in the development of neuropathic pain. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Nasu-Tada K  Koizumi S  Tsuda M  Kunifusa E  Inoue K 《Glia》2006,53(7):769-775
We have recently demonstrated that the P2X4 receptor, an ATP-gated cation channel, in spinal microglia is a key molecule that mediates the mechanical allodynia induced by peripheral nerve injury. Although microglial P2X4 receptor expression is increased after peripheral nerve injury, the molecular mechanism(s) underlying its upregulation remains largely unknown. Fibronectin is a member of the extracellular matrix molecules and is actively produced in response to injury and diseases in the CNS. Here, we describe the influence of fibronectin on P2X4 receptor expression in microglia and the upregulation of fibronectin after peripheral nerve injury. Microglia that were cultured on fibronectin-coated dishes showed a marked increase in P2X4 receptor expression, both at the mRNA and protein levels, as compared to those cultured on control dishes. Fibronectin also enhanced the microglial Ca2+ responses mediated by P2X4 receptors. Moreover, Western blot examination of the spinal cord from a rat with spinal nerve injury indicated that fibronectin was upregulated on the ipsilateral side. Interestingly, intrathecal injection of ATP-stimulated microglia to the rat lumber spinal cord revealed that microglia cultured on fibronectin-coated dishes was more effective in the induction of allodynia than microglia cultured on control dishes. Taken together, our results suggest that spinal fibronectin is elevated after the peripheral nerve injury and it may be involved in the upregulation of the P2X4 receptor in microglia, which leads to the induction of neuropathic pain.  相似文献   

4.
Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosine 5′‐diphosphate (2Me‐SADP) induced mechanical hypersensitivity and p38 mitogen‐activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho‐associated coiled‐coil‐containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me‐SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury‐induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury‐induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me‐SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1‐positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015;63:216–228  相似文献   

5.
The mechanisms underlying neuropathic pain are poorly understood. However, several studies have implied a role for reactive microglia located in the dorsal horn in neuropathic pain. To clarify the roles of activated microglia in neuropathic pain, we investigated the interactions among microglia and other neural components in the dorsal horn using electron microscopy. Microglia were more abundantly localized in layers II–III of the dorsal horn than in other areas, and some of them adhered to and engulfed both injured and uninjured myelinated axons. This microglial engulfment was rarely observed in the normal dorsal horn, and the number of microglia attached to myelinated axons was markedly increased on postoperative day 7 on the operated side. However, after blocking the P2Y12 ATP receptor in microglia by intrathecal administration of its antagonist, AR‐C69931MX, the increase in the number of microglia attached to myelinated axons, as well as the development of tactile allodynia, were markedly suppressed, although the number of activated microglia did not change remarkably. These results indicate that engulfment of myelinated axons by activated microglia via P2Y12 signaling in the dorsal horn may be a critical event in the pathogenesis of neuropathic pain. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
ATP‐gated P2X4 receptor channels expressed in spinal microglia actively participate in central sensitization, making their functional regulation a key process in chronic pain pathologies. P2Y6 metabotropic Gq‐coupled receptors, also expressed in microglia, are involved in the initial response to nerve injury, triggering phagocytosis upon activation by UDP. It has been reported recently that expression of both P2X4 and P2Y6 is upregulated in activated microglia following nerve injury. We show here, in resting as well as LPS‐activated primary microglia, that P2Y6 decreases P2X4‐mediated calcium entry and inhibits the dilation of P2X4 channels into a large‐conductance pore measured with a YO‐PRO‐1 uptake assay. Furthermore, P2Y6 activation modulates the ATP‐dependent migration of microglia, a process likely involved in their shift from migratory to phagocytic phenotype. Reconstituting the P2X4‐P2Y6 interaction in recombinant systems shows that P2Y6 activation decreases P2X4 current amplitude, activation and desensitization rates, and reduces P2X4 channel permeability to the large cation NMDG+. Phospholipase C‐mediated hydrolysis of the phosphoinositide PI(4,5)P2, a necessary cofactor for P2X4 channel function, underlies this inhibitory crosstalk. As extracellular levels of both ATP and UDP are increased in the spinal cord following nerve injury, the control of P2X4 activity by P2Y6 might play a critical role in regulating neuropathic pain‐inducing microglial responses. GLIA 2013;61:2038–2049  相似文献   

7.
The role of microglia and their contribution to the development and maintenance of pain states has emerged as an attractive field of study. Sensitization of central nociceptors and interneurons is thought to be responsible for the symptoms of chronic neuropathic pain states. Microglia interact with these neurons at the site of injury or disease as well as remotely. Microglia can be activated by phagocytosis or through the activation of a number of constitutively expressed cell surface molecules. Once activated, microglia participate in both innate and adaptive immune responses and remain active indefinitely. Activated microglia contribute to pain states through the production of pro-inflammatory cytokines, chemokines and extracellular proteases. Activated microglia also exhibit a modulated cell surface receptor and ion channel profile. The activation of several intracellular pathways in microglia has also been implicated in pain states. Attenuation of microglia activity is being presented as a viable therapeutic approach with regard to not only the reduction of pain symptoms but also in preventing the development of chronic pain states.  相似文献   

8.
9.
We have previously shown that activation of the ATP-gated ion channel subtype P2X(4) receptors (P2X(4)Rs) in the spinal cord, the expression of which is upregulated in microglia after nerve injury, is necessary for producing neuropathic pain. The upregulation of P2X(4)Rs in microglia is, therefore, a key process in neuropathic pain, but the mechanism remains unknown. Here, we find a fibronectin/integrin-dependent mechanism in the upregulation of P2X(4)Rs. Microglia cultured on dishes coated with fibronectin, an extracellular matrix molecule, expressed a higher level of P2X(4)R protein when compared with those cultured on control dishes. The increase was suppressed by echistatin, a peptide that selectively blocks beta(1) and beta(3)-containing integrins, and with a function-blocking antibody of beta(1) integrin. In in vivo studies, the upregulation of P2X(4)Rs in the spinal cord after spinal nerve injury was significantly suppressed by intrathecal administration of echistatin. Tactile allodynia in response to nerve injury and intrathecal administration of ATP- and fibronectin-stimulated microglia was inhibited by echistatin. Furthermore, intrathecal administration of fibronectin in normal rats increased the level of P2X(4)R protein in the spinal cord and produced tactile allodynia. Moreover, the fibronectin-induced allodynia was not observed in mice lacking P2X(4)R. Taken together with the results of our previous study showing an increase in the spinal fibronectin level after nerve injury, the present results suggest that the fibronectin/integrin system participates in the upregulation of P2X(4)R expression after nerve injury and subsequent neuropathic pain.  相似文献   

10.
Kazuhide Inoue  Makoto Tsuda 《Glia》2009,57(14):1469-1479
In contrast to physiological pain, pathological pain is not dependent on the presence of tissue‐damaging stimuli. One type of pathological pain—neuropathic pain—is often a consequence of nerve injury or of diseases such as diabetes, AIDS, or cancer. Neuropathic pain can be agonizing, can persist over long periods, and, unfortunately, is often resistant to known painkillers. There is a rapidly growing body of evidence indicating that microglia, the CNS immune cells, have causal roles in the pathogenesis of pain hypersensitivity following nerve injury. We will review recent advances in our understanding of the mechanisms producing neuropathic pain, focusing on the roles of microglia‐expressed molecules, including cell surface receptors, intracellular signaling molecules, and diffusible factors involved in nerve injury‐induced pain behaviors and hyperexcitability of dorsal horn neurons. Elucidating how spinal microglia cause neuropathic pain may provide us with exciting insights into pain mechanisms and clues for developing new drugs for the treatment of neuropathic pain. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Cyclooxygenase (COX) enzyme synthesizes prostaglandins (PGs) from arachidonic acid and exists as two major isozymes, COX‐1 and COX‐2. The crucial role of prostaglandins in the pathogenesis of inflammatory pain in peripheral tissue and the spinal cord has been established; however its expression dynamics after peripheral nerve injury and its role in neuropathic pain are not clear. In this study, we examined the detailed expression patterns of genes for COX, PGD2 and thromboxane A2 synthases and their receptors in the spinal cord. Furthermore, we explored the altered gene expression of these molecules using the spared nerve injury (SNI) model. We also examined whether these molecules have a role in the development or maintenance of neuropathic pain. We found a number of interesting results in this study, the first was that COX‐1 was constitutively expressed in the spinal cord and up‐regulated in microglia located in laminae I‐II after nerve injury. Second, COX‐2 mRNA expression was induced in blood vessels after nerve injury. Third, TXA2 synthase and hematopoietic PGD synthase mRNAs were dramatically increased in the microglia after nerve injury. Finally, we found that intrathecal injection of a COX‐1 inhibitor and DP2 receptor antagonist significantly attenuated the mechanical allodynia. Our findings indicate that PGD2 produced by microglia is COX‐1 dependent, and that neurons in the spinal cord can receive PGD2 from microglia following peripheral nerve injury. We believe that PGD2 signaling via DP2 signaling pathway from microglia to neurons is one of the triggering factors for mechanical allodynia in this neuropathic pain model.  相似文献   

12.
The ability of adenosine 5'-triphosphate (ATP) to evoke acute pain has been known for many years, but its role in nociceptive signaling is only now becoming clear. ATP acts via P2X and P2Y receptors, and of particular importance here is the P2X(3) receptor. It is expressed selectively at high levels in nociceptive sensory neurons, where it forms functional receptors on its own and in combination with the P2X(2) receptor. Recent reports using gene knockout methods; antisense oligonucleotide and small, interfering RNA technologies; and a novel, selective P2X(3) antagonist, A-317491, show that P2X(3) receptors are involved in chronic inflammatory and neuropathic pain. The mRNA for other P2X subunits is also found in sensory neurons, and there is evidence for functional P2X(1/5) or P2X(2/6) heteromers in some of these. These data support the possibility that P2X receptors, particularly the P2X(3) subtype, could be targeted in the search for new, effective analgesics.  相似文献   

13.
ATP, P2X receptors and pain pathways   总被引:4,自引:0,他引:4  
A role for ATP in nociception and pain induction was proposed on the basis of human psychophysical experiments shortly after the formulation of the purinergic hypothesis. Following the pharmacological definition of distinct P2X and P2Y purinergic receptor subtypes by Burnstock and his collaborators, molecular cloning studies have identified the gene products that underlie the effects of ATP on peripheral sensory neurons. One particular receptor, P2X(3), is of particular interest in the context of pain pathways, because it is relatively selectively expressed at high levels by nociceptive sensory neurons. Evidence that this receptor may play a role in the excitation of sensory neurons has recently been complemented by studies that suggest an additional presynaptic role in the regulation of glutamate release from primary afferent neurons in the dorsal horn of the spinal cord. In this brief review, we discuss the present state of knowledge of the role of ATP in pain induction through its action on peripheral P2X receptors.  相似文献   

14.
Microglia respond rapidly to injury, increasing their synthesis and release of inflammatory mediators, many of which contribute to the maintenance of persistent pain following CNS or PNS injury. We have recently shown that the lysosomal cysteine protease Cathepsin S (CatS) expressed by spinal microglia is vital for the full expression of neuropathic pain. Here we evaluated the mechanisms by which CatS release occurs from primary microglia in culture. Stimulation of microglia with lipopolysaccharide (LPS) or adenosine tri‐phosphate (ATP) alone was insufficient to induce release of enzymatically active CatS in extracellular media. However, following priming with LPS, ATP at 1 mM but not 50 μM resulted in significant release of CatS in the media and maturation of CatS protein in cell extracts. The enzymatic activity measured in media at neutral pH was specific for CatS as it was completely prevented by the CatS inhibitor LHVS. ATP‐induced release of CatS required potassium efflux and both extracellular calcium influx and mobilization of intracellular calcium. Pharmacological modulation of ATP‐induced release of CatS enzymatic activity revealed that this was dependent on activation of the P2X7 receptor and intracellular phospholipase C and phospholipase A2. In addition, ATP‐induced CatS release involved p38 mitogen activated protein kinase (MAPK) phosphorylation, but not ERK and PI3K signalling pathways. Thus, as high concentration of extracellular ATP promotes release of active CatS from microglia via P2X7 receptor activation, we suggest that the inhibition of CatS release is one of the mechanisms responsible for P2X7 antagonist efficacy in neuropathic pain. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Following spinal cord injury (SCI), neuropathic, chronic pain is a major cause of disability. Recently, glial P2X4 receptor (P2X4R) has been identified as a major contributor to the development of neuropathic pain after peripheral nerve injury. Here we report analysis of P2X4R expression following rat SCI. Significant lesional accumulation of P2X4R+ cells was detected as early as 24 h after SCI, reaching maximum cell numbers on Day 7. Thereafter cell numbers declined but persisted at significantly elevated, sub-maximal levels (>70%) until 1 month post injury. Double-immunolabeling identified the majority of lesional P2X4R+ cells as activated microglia/macrophages and surviving neurons/neurites. Increase of P2X4R+, beta-APP+ hypertrophic neurites correlated with proximity to the lesion. Further, P2X4R+ cells coexpressed the intracellular regulators of signalling cascades, COX-1 (>20%), COX-2 (>5%), RhoA (>60%) and RhoB (>10%).  相似文献   

16.
Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Such pain can be experienced after nerve injury or as part of diseases that affect peripheral nerve function, such as diabetes and AIDS; it can also be a component of pain in other conditions, such as cancer. Following peripheral nerve injury, microglia in the spinal cord become activated. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of nerve injury-induced pain hypersensitivity because P2X(4) purinoceptors and p38 mitogen-activated protein kinase, which are present in activated microglia, are required molecular mediators. It is important to establish how these molecules are activated in spinal microglia following nerve injury and how they cause signaling to neurons in the dorsal horn pain transmission network. Answers to these questions could lead to new strategies that assist in the diagnosis and management of neuropathic pain--strategies not previously anticipated by a neuron-centric view of pain plasticity in the dorsal horn.  相似文献   

17.
18.
19.
Of the seven P2X receptor subtypes, P2X4 receptor (P2X4R) is widely distributed in the central nervous system, including in neurons, astrocytes, and microglia. Accumulating evidence supports roles for P2X4R in the central nervous system, including regulating cell excitability, synaptic transmission, and neuropathic pain. However, little information is available about the distribution and function of P2X4R in the peripheral nervous system. In this study, we find that P2X4R is mainly localized in the lysosomes of Schwann cells in the peripheral nervous system. In cultured Schwann cells, TNF-a not only enhances the synthesis of P2X4R protein but also promotes P2X4R trafficking to the surface of Schwann cells. TNF-a-induced BDNF secretion in Schwann cells is P2X4R dependent. in vivo experiments reveal that expression of P2X4R in Schwann cells of injured nerves is strikingly upregulated following nerve crush injury. Moreover, overexpression of P2X4R in Schwann cells by genetic manipulation promotes motor and sensory functional recovery and accelerates nerve remyelination via BDNF release following nerve injury. Our results suggest that enhancement of P2X4R expression in Schwann cells after nerve injury may be an effective approach to facilitate the regrowth and remyelination of injured nerves.  相似文献   

20.
Under stressful conditions nucleotides are released from dying cells into the extracellular space, where they can bind to purinergic P2X and P2Y receptors. High concentrations of extracellular ATP in particular induce P2X7‐mediated signaling, which leads to inflammasome activation. This in turn leads to the processing and secretion of pro‐inflammatory cytokines, like interleukin (IL)−1β. During neurodegenerative diseases, innate immune responses are shaped by microglia and we have previously identified microglia‐specific features of inflammasome‐mediated responses. Here, we compared ATP‐induced IL‐1β secretion in primary rhesus macaque microglia and bone marrow‐derived macrophages (BMDM). We assessed the full expression profile of P2 receptors and characterized the induction and modulation of IL‐1β secretion by extracellular nucleotides. Microglia secreted significantly lower levels of IL‐1β in response to ATP when compared to BMDM. We demonstrate that this is not due to differences in sensitivity, kinetics or expression of ATP‐processing enzymes, but rather to differences in purinergic receptor expression levels and usage. Using a combined approach of purinergic receptor agonists and antagonists, we demonstrate that ATP‐induced IL‐1β secretion in BMDM was fully dependent on P2X7 signaling, whereas in microglia multiple purinergic receptors were involved, including P2X7 and P2X4. These cell type‐specific features of conserved innate immune responses may reflect adaptations to the vulnerable CNS microenvironment. GLIA 2016;64:2231–2246  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号