共查询到7条相似文献,搜索用时 62 毫秒
1.
2.
Yamada KI Kuppusamy P English S Yoo J Irie A Subramanian S Mitchell JB Krishna MC 《Acta radiologica (Stockholm, Sweden : 1987)》2002,43(4):433-440
Purpose:
To test the feasibility of electron paramagnetic resonance imaging (EPRI) to provide non-invasive images of tissue redox status using redox-sensitive paramagnetic contrast agents. Material and Methods:
Nitroxide free radicals were used as paramagnetic agents and a custom-built 300 MHz EPR spectrometer/imager was used for all studies. A phantom was constructed consisting of four tubes containing equal concentrations of a nitroxide. Varying concentrations of hypoxanthine/xanthine oxidase were added to each tube and reduction of the nitroxide was monitored by EPR as a function of time. Tumor-bearing mice were intravenously infused with a nitroxide and the corresponding reduction rate was monitored on a pixel-by-pixel basis using 2D EPR of the tumor-bearing leg and normal leg serving as control. For animal studies, nitroxides were injected intravenously (1.25 mmol/kg) and EPR projections were collected every 3 min after injection using a magnetic field gradient of 2.5 G/cm. The reduction rates of signal intensity on a pixel-by-pixel basis were calculated and plotted as a redox map. Redox maps were also collected from the mice treated with diethylmaleate (DEM), which depletes tissue thiols and alters the global redox status. Results:
Redox maps obtained from the phantoms were in agreement with the intensity change in each of the tubes where the signals were decreasing as a function of the enzymatic activity, validating the ability of EPRI to accurately access changes in nitroxide reduction. Redox imaging capability of EPR was next evaluated in vivo. EPR images of the nitroxide distribution and reduction rates in tumor-bearing leg of mice exhibited more heterogeneity than in the normal tissue. Reduction rates were found to be significantly decreased in tumors of mice treated with DEM, consistent with the depletion of thiols and the consequent alteration of the redox status. Conclusion:
Using redox-sensitive paramagnetic contrast agents, EPRI can non-invasively discriminate redox status differences between normal tissue and tumors. 相似文献
To test the feasibility of electron paramagnetic resonance imaging (EPRI) to provide non-invasive images of tissue redox status using redox-sensitive paramagnetic contrast agents. Material and Methods:
Nitroxide free radicals were used as paramagnetic agents and a custom-built 300 MHz EPR spectrometer/imager was used for all studies. A phantom was constructed consisting of four tubes containing equal concentrations of a nitroxide. Varying concentrations of hypoxanthine/xanthine oxidase were added to each tube and reduction of the nitroxide was monitored by EPR as a function of time. Tumor-bearing mice were intravenously infused with a nitroxide and the corresponding reduction rate was monitored on a pixel-by-pixel basis using 2D EPR of the tumor-bearing leg and normal leg serving as control. For animal studies, nitroxides were injected intravenously (1.25 mmol/kg) and EPR projections were collected every 3 min after injection using a magnetic field gradient of 2.5 G/cm. The reduction rates of signal intensity on a pixel-by-pixel basis were calculated and plotted as a redox map. Redox maps were also collected from the mice treated with diethylmaleate (DEM), which depletes tissue thiols and alters the global redox status. Results:
Redox maps obtained from the phantoms were in agreement with the intensity change in each of the tubes where the signals were decreasing as a function of the enzymatic activity, validating the ability of EPRI to accurately access changes in nitroxide reduction. Redox imaging capability of EPR was next evaluated in vivo. EPR images of the nitroxide distribution and reduction rates in tumor-bearing leg of mice exhibited more heterogeneity than in the normal tissue. Reduction rates were found to be significantly decreased in tumors of mice treated with DEM, consistent with the depletion of thiols and the consequent alteration of the redox status. Conclusion:
Using redox-sensitive paramagnetic contrast agents, EPRI can non-invasively discriminate redox status differences between normal tissue and tumors. 相似文献
3.
The use of pH-sensitive probes permits the measurement of the proton activity in biological systems by EPR spectroscopy. To illustrate the potential of this technique for in vivo purposes, the authors took advantage of the oral administration of nitroxides to monitor the pH value inside the stomach of mice after administration of different antacidics. The results indicate that EPR can be a valuable tool to characterize the pH in vivo in a continuous and noninvasive way. 相似文献
4.
Jeffrey M Macdonald Olga Schmidlin Thomas L James 《Magnetic resonance in medicine》2002,48(3):430-439
A method for in vivo (13)C NMR monitoring of hepatic glutathione (GSH) in intact, anesthetized rats has been developed. Studies were conducted using a triple-tuned, surgically implanted surface coil designed for this animal model. The coil permitted complete decoupling and sufficient resolution in the (13)C NMR spectrum to monitor the time course of hepatic (13)C-metabolites of intravenously administered 2-(13)C-glycine, particularly GSH at 44.2 ppm and serine signals at 61.1 and 57.2 ppm, respectively. It further allowed concomitant monitoring of high-energy phosphagens and intracellular pH by (31)P NMR. To confirm in vivo NMR peak assignments, we compared high-resolution 2D (1)H[(13)C] heteronuclear multiple quantum coherence and 1D (13)C spectra of hepatic perchloric acid extracts to those of authentic standards. The fractional isotopic enrichment of hepatic (13)C-glycine increased exponentially at a rate of 1.68 h(-1) and reached its plateau level of 81% in 2 h. The (13)C fractional isotopic enrichment of GSH increased exponentially at a rate of 0.316 h(-1) and reached 55% after 4 h of 2-(13)C-glycine infusion, but without achieving a plateau. To confirm that the resonance at 44.2 ppm resulted from GSH, a rat was given an intravenous dose of 2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine precursor that increases intracellular GSH. As expected, with OTC administration the hepatic (13)C GSH-to-glycine peak area increased more than sevenfold. 相似文献
5.
Ken-ichiro Matsumoto Baby Chandrika Joost A B Lohman James B Mitchell Murali C Krishna Sankaran Subramanian 《Magnetic resonance in medicine》2003,50(4):865-874
In this study we report the application of continuous-wave (CW) electron paramagnetic resonance (EPR) constant-time spectral spatial imaging (CTSSI) for in vivo oxymetry. 2D and 3D SSI studies of a phantom and live mice were carried out using projection reconstruction (PR) and constant-time (CT) modalities using a CW-EPR spectrometer/imager operating at 300 MHz frequency. Distortion of line shape, which is inherent in the PR method, was minimized by the CTSSI modality. It was also found that CTSSI offers improved noise reduction, restores a smoother line shape, and gives high convergence of estimated values. Spatial resolution was also improved by CTSSI, although fundamental spectral line-width broadening was observed. Although additional corrections are required for accurate estimations of spectral line width, CTSSI was able to demonstrate distinct differences in oxygen tension between a tumor and the normal legs of a C3H mouse. The PR method, on the other hand, was unable to make such a distinction unequivocally with the triarylmethyl spin probes. CTSSI promises to be a more suitable method for quantitative in vivo oxymetric studies using radiofrequency EPR imaging (EPRI). 相似文献
6.
Stability analysis and design of an automatic frequency control (AFC) system for in vivo continuous-wave EPR spectroscopy is described. The open-loop function of the feedback control system for the AFC was derived and the stability of the feedback loop systematically examined. A stability analysis of the system is demonstrated and a systematic design procedure is proposed. The design is started from the required system specifications (phase margin, steady-state error, and system bandwidth) and clear guidelines for designing an AFC system are given. A case study of the design is presented based on the specific needs of in vivo EPR measurements. A phase margin of 53 degrees, a steady-state error of 1.6%, and a system bandwidth of up to 1.8 kHz were obtained in the designed AFC system. The system specifications defined in advance are satisfied in this case study. 相似文献
7.
Govindasamy Ilangovan Haiquan Li Jay L Zweier Murali C Krishna James B Mitchell Periannan Kuppusamy 《Magnetic resonance in medicine》2002,48(4):723-730
The purpose of this study was to noninvasively monitor tumor oxygenation and redox status during hyperoxygenation treatment, such as carbogen-breathing, in a murine tumor model using in vivo electron paramagnetic resonance (EPR) spectroscopy and imaging techniques. The study was performed using implanted lithium phthalocyanine (LiPc) microcrystals as the oximetry probe and 3-carbamoylproxyl (3-CP) as the redox probe in RIF-1 tumors implanted in the upper hind leg of C3H mice. Repetitive measurements of pO(2) from the same tumors as a function of tumor growth (8-24 mm in size) showed that the tumors were hypoxic and that the tumor pO(2) values were decreasing with tumor growth. Carbogen-breathing mostly showed an increase in the tumor oxygenation, although there were considerable variations in the magnitude of change among the tumors. The pharmacokinetic studies with 3-CP showed a significant decrease in the overall tumor reduction status in the carbogen-breathing mice. Spatially resolved (imaging) pharmacokinetic data over the tumor volume were obtained to visualize the distribution of the redox status within the tumor. The redox images of the tumor in the air-breathing mice showed significant heterogeneity in the magnitude and spatial distribution of reducing equivalents. On carbogen-breathing the tissue reduction status decreased considerably, with a concomitant decrease in the heterogeneity of distribution of the redox status. The results suggest that 1) carbogen-breathing considerably enhances tissue oxygenation and significantly decreases the redox status in RIF-1 tumor, and 2) changes in the magnitude and distribution of the redox status within the tumor volume during carbogen-breathing are correlated with the increased tissue oxygenation. 相似文献