首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have identified human cord blood (CB)-derived CD34-negative (CD34(-)) severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection (IBMI) method (Blood 2003;101:2924). In contrast to murine CD34(-) Kit(+)Sca-1(+)Lineage(-) (KSL) cells, human CB-derived Lin(-)CD34(-) cells did not express detectable levels of c-kit by flow cytometry. In this study, we have investigated the function of flt3 in our identified human CB-derived CD34(-) SRCs. Both CD34(+)flt3(+/-) cells showed SRC activity. In the CD34(-) cell fraction, only CD34(-)flt3(-) cells showed distinct SRC activity by IBMI. Although CD34(+)flt3(+) cells showed a rather weak secondary repopulating activity, CD34(+)flt3(-) cells repopulated many more secondary recipient mice. However, CD34(-)flt3(-) cells repopulated all of the secondary recipients, and the repopulating rate was much higher. Next, we cocultured CD34(-)flt3(-) cells with the murine stromal cell line HESS-5. After 1 week, significant numbers of CD34(+)flt3(+/-) cells were generated, and they showed distinct SRC activity. These results indicated that CB-derived CD34(-)flt3(-) cells produced CD34(+)flt3(-) as well as CD34(+)flt3(+) SRCs in vitro. The present study has demonstrated for the first time that CB-derived CD34(-) SRCs, like murine CD34(-) KSL cells, do not express flt3. On the basis of these data, we propose that the immunophenotype of very primitive long-term repopulating human hematopoietic stem cells is Lin(-)CD34(-)c-kit(-)flt3(-). Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

2.
Although umbilical cord blood (CB) is increasingly being used as an alternative to bone marrow (BM) as a source of transplantable hematopoietic stem cells (HSC), information on the hematopoietic repopulating ability of CB HSC is still limited. We recently established a xenotransplantation system in NOD/Shi-scid mice to evaluate human stem cell activity. In the present study, we transplanted 5 to 10 x 10(4) CB CD34(+) cells into six NOD/Shi-scid mice treated with anti-asialo GM1 antiserum to investigate the hematopoietic repopulating ability of CB. The BM of all recipients contained human CD45(+) cells 10 to 12 weeks after the transplantation (43.8 +/- 17.7%). Clonal culture of the recipient BM cells revealed the formation of various types of human hematopoietic colonies, including myelocytic, erythroid, megakaryocytic, and multilineage colonies, indicating that CB HSC can differentiate into hematopoietic progenitors of various lineages. However, the extent of the differentiation and maturation differed with each lineage. CD13(+)/CD14(+)/CD33(+) myelocytic cells were mainly repopulated in BM and peripheral blood (PB). While CD41(+) megakaryocytic cells and platelets were present, few glycophorin A(+)CD71(+) or hemoglobin alpha-containing erythroid cells were detected. CD19(+) B cells were the most abundantly repopulated in NOD/Shi-scid mice, but their maturational stage differed among the hematopoietic organs. Most of the BM CD19(+) cells were immature B cells expressing CD10 but not surface immunoglobulin (Ig) M, whereas more mature CD19(+)CD10(-) surface IgM(+) B cells were predominantly present in spleen and PB. CD3(+) T cells were not detected even in the recipient thymus. The transplantation to the NOD/Shi-scid mouse may provide a useful tool for evaluating the repopulating ability of transplantable human HSC.  相似文献   

3.
人源化NOD/SCID小鼠免疫细胞的动态变化与鉴定   总被引:5,自引:0,他引:5       下载免费PDF全文
目的: 比较脐血干细胞与单个核细胞移植NOD/SCID鼠所建立的人源化SCID模型,分析人源化淋巴细胞重建。方法: 磁珠分选法分离脐血中CD34+细胞,淋巴细胞分层液分离脐血单个核细胞,分别经尾静脉输入NOD/SCID小鼠。每隔2周采血至10周,流式细胞术动态检测人源淋巴细胞CD45、CD19、CD3抗原。第10周处死小鼠收集外周血、骨髓、胸腺组织,RT-PCR检测模型鼠组织中人β2M基因及RAG2基因。结果: 两种类型细胞移植均可重建人源免疫细胞,人源淋巴细胞表达水平均在第8周达高峰。骨髓中人源淋巴细胞表达水平明显高于外周血。RT-PCR在外周血与骨髓检测到人β2M基因及RAG2基因标志。结论: CD34+细胞移植重建人源化NOD/SCID免疫系统模型效果要好于脐血单个核细胞。人源T淋巴细胞在模型鼠骨髓中分化成熟。  相似文献   

4.
In contrast to conventional assumption, recent reports propose the possibility that hematopoietic stem cells (HSCs) may have broader potential to differentiate into various cell types. Here, we tested the pluripotency of HSCs by comparing vascular lesions induced by mechanical injury after bone marrow reconstitution with total bone marrow (TBM) cells, c-Kit+ Sca-1+ Lin- (KSL) cells, or a single HSC cell (Tip-SP CD34-KSL cell, CD34- c-Kit+ Sca-1+ Lin- cell with the strongest dye-efflux activity) harboring green fluorescent protein (GFP). The lesions contained a significant number of GFP-positive cells in the TBM and KSL groups, whereas GFP-positive cells were rarely detected in the HSC group. These results suggest that transdifferentiation of a highly purified HSC seems to be a rare event, if it occurs at all, whereas bone marrow cells including the KSL fraction can give rise to vascular cells that substantially contribute to repair or lesion formation after mechanical injury.  相似文献   

5.
6.
CD26, a surface serine dipeptidylpeptidase IV (DPPIV) expressed on different cell types, cleaves the amino-terminal dipeptide from some chemokines, including stromal-derived factor-1 (SDF-1/CXCL12). SDF-1/CXCL12 plays important roles in hematopoietic stem cell (HSC) homing, engraftment, and mobilization. Inhibition of CD26 peptidase activity enhances homing, engraftment, and competitive repopulation in congenic mouse bone marrow cell transplants. Our studies evaluated a role for CD26 in in vivo engraftment of HSCs from human umbilical cord blood (CB) into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Pretreating purified CD34(+) human CB cells with Diprotin A, a DPPIV inhibitor, for 15 min significantly enhanced engraftment. Treatment did not affect differentiation of CD34(+) cells in vivo, as measured phenotypically by human markers CD33, CD38, CD19, and CD34. We found that the percentage of CD26(+) cells within the more immature cells (CD34(+)CD38()) was significantly higher than in the more mature population (CD34(+)CD38(+)). These results suggest that inhibition of CD26 may be one way to enhance engraftment of limiting numbers of stem cells during CB transplantation.  相似文献   

7.
Cord blood (CB) cells are a useful source of hematopoietic cells for transplantation. The hematopoietic activities of CB cells are different from those of bone marrow and peripheral blood (PB) cells. Platelet recovery is significantly slower after transplantation with CB cells than with cells from other sources. However, the cellular mechanisms underlying these differences have not been elucidated. We compared the surface marker expression profiles of PB and CB hematopoietic cells. We focused on two surface markers of hematopoietic cell immaturity, i.e., CD34 and AC133. In addition to differences in surface marker expression, the PB and CB cells showed nonidentical differentiation pathways from AC133(+)CD34(+) (immature) hematopoietic cells to terminally differentiated cells. The majority of the AC133(+)CD34(+) PB cells initially lost AC133 expression and eventually became AC133(-)CD34(-) cells. In contrast, the AC133(+)CD34(+) CB cells did not go through the intermediate AC133(-)CD34(+) stage and lost both markers simultaneously. Meanwhile, the vast majority of megakaryocyte progenitors were of the AC133(-)CD34(+) phenotype. We conclude that the delayed recovery of platelets after CB transplantation is due to both subpopulation distribution and the process of differentiation from AC133(+)CD34(+) cells.  相似文献   

8.
T-cell re-constitution after allogeneic stem cell transplantation (alloSCT) is often dampened by the slow differentiation of human peripheral blood CD34(+) (huCD34(+) ) hematopoietic stem cells (HSCs) into mature T cells. This process may be accelerated by the co-transfer of in vitro-pre-differentiated committed T/NK-lymphoid progenitors (CTLPs). Here, we analysed the developmental potential of huCD34(+) HSCs compared with CTLPs from a third-party donor in a murine NOD-scid IL2Rγ(null) model of humanised chimeric haematopoiesis. CTLPs (CD34(+) lin(-) CD45RA(+) CD7(+) ) could be generated in vitro within 10 days upon co-culture of huCD34(+) or cord blood CD34(+) (CB-CD34) HSCs on murine OP9/N-DLL-1 stroma cells but not in a novel 3-D cell-culture matrix with DLL-1(low) human stroma cells. In both in vitro systems, huCD34(+) and CB-CD34(+) HSCs did not give rise to mature T cells. Upon transfer into 6-wk-old immune-deficient mice, CTLPs alone did not engraft. However, transplantation of CTLPs together with huCD34(+) HSCs resulted in rapid T-cell engraftment in spleen, bone marrow and thymus at day 28. Strikingly, at this early time point mature T cells originated exclusively from CTLPs, whereas descendants of huCD34(+) HSCs still expressed a T-cell-precursor phenotype (CD7(+) CD5(+) CD1a(+/-) ). This strategy to enhance early T-cell re-constitution with ex vivo-pre-differentiated T-lymphoid progenitors could bridge the gap until full T-cell recovery in severely immunocompromised patients after allogeneic stem cell transplantation.  相似文献   

9.
Expansion of multipotent, undifferentiated and proliferating cord blood (CB)-hematopoietic stem cells (HSC) in?vitro is limited and insufficient. Bone marrow (BM) engineering in?vitro allows mimicking the main components of the hematopoietic niche compared to conventional expansion strategies. In this study, four different 3D biomaterial scaffolds (PCL, PLGA, fibrin and collagen) were tested for freshly isolated cord blood (CB)-CD34(+) cell expansion in presence of (i) efficient exogenous cytokine supplementation and (ii) umbilical cord (UC)-mesenchymal stem cells (MSC). Cell morphology, growth and proliferation were analyzed in?vitro as well as multi-organ engraftment and multilineage differentiation in a murine transplantation model. All scaffolds, except 3D PLGA meshes, supported CB-CD34(+) cell expansion, which was additionally stimulated by UC-MSC support. CB-CD34(+) cells cultured on human-derived 3D fibrin scaffolds with UC-MSC support i) reached the highest overall growth (5?×?10(8)-fold expansion of total nuclear cells after fourteen days and 3?×?10(7)-fold expansion of CD34(+) cells after seven days, p?相似文献   

10.
Given the tremendous need for and potential of umbilical cord blood (CB) to be utilized as a donor source for hematopoietic stem cell (HSC) transplantation in adults, there is a strong push to overcome the constraints created by the limited volumes and subsequent limited HSC and hematopoietic progenitor cell (HPC) numbers available for HSC transplantation from a single collection. We have previously described the use of CD26 inhibitor treatment of donor cells as a method to increase the transplant efficiency of mouse HSCs and HPCs into a mouse recipient. To study the use of CD26 inhibitors as a method of improving the transplantation of human CB HSCs and HPCs, we utilized the nonobese diabetic/severe combined immunodeficient/beta 2 microglobulin null (NOD/SCID/B2m(null)) immunodeficient mouse model of HSC transplantation. We report here significant improvements in the engraftment of long-term repopulating cells following the treatment of either CD34(+) or lineage negative (lin()) donor CB with the CD26 inhibitor, Diprotin A, prior to transplant. These results establish a basis on which to propose the use of CD26 inhibitor treatment of donor CB units prior to transplantation for the purpose of improving transplant efficiency and subsequently patient outcome.  相似文献   

11.
12.
目的: 探讨主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)来源的基质细胞对造血干细胞(HSC)增殖的促进作用,为探寻HSC的体外扩增方法奠定实验基础。 方法: 分别从孕11 d BALB/c小鼠胚胎AGM区及6周龄小鼠骨髓分离、培养基质细胞,流式细胞仪等对基质细胞进行鉴定;利用小鼠胚胎干细胞(ESC)向造血细胞定向分化的模型,结合高增殖潜能集落(HPP-CFC)、原始细胞集落(BL-CFC)形成实验及流式细胞仪分析CD34+、CD34+Sca-1+细胞比例,对比研究AGM及骨髓基质细胞对ESC来源的HSC的扩增作用。 结果: 小鼠AGM和骨髓基质细胞在形态及表型上基本相似,均符合基质细胞的特征。AGM和骨髓基质细胞均可促进ESC来源的HPP-CFC的形成,但AGM基质细胞还可促进ESC来源的 BL-CFC的形成;流式细胞仪检测发现:在骨髓基质细胞支持下,CD34+细胞增加了3-4倍,但CD34+/Sca-1+却无明显增加;而在AGM基质细胞支持下CD34+、CD34+Sca-1+细胞均明显增加了4-5倍。 结论: AGM基质细胞在有效扩增小鼠HSC同时,能很好地维持HSC自我更新及多向分化的潜能。  相似文献   

13.
Expansion of hematopoietic stem cells (HSCs) from cord blood is highly desired for treatment and transplantation of adult patients for hematologic diseases. For efficient proliferation of HSCs, CD34(+) cells from cord blood were co-cultured with microencapsulated murine stromal cells (HESS-5) or immortalized human mesenchymal stem cells (MSCs) in their conditioned media (CM). Bioactive substances for HSC proliferation in CM at the onset of culture are likely consumed by HSCs with time, and co-culturing with microencapsulated feeder cells ensures a continuous supply. The cell number of CD34(+) cell progeny efficiently increased under these culture conditions, and progeny were analyzed by flow cytometry, the colony assay and the cobblestone area-forming cell (CAFC) assay. Total nucleated cells and CD34(+) cell number increased 194- and 7.4-fold, respectively, in the presence of microencapsulated HESS-5 in CM. Colony forming cells and CAFCs were well maintained. The effective expansion of total cells and maintenance of primitive progenitor cells suggest that transfusion of the progeny obtained from CD34(+) cell culture with microencapsulated HESS-5 in CM could shorten the time to engraftment by bridging the pancytopenic period and support functional hematopoietic repopulation.  相似文献   

14.
Polystyrene derivatives, poly[N-pvinylbenzyl-O-D-glucopyranosyl-(1-4)-D-glucoamide] (PV Maltose) and poly[N-p-vinylbenzyl-O-mannopyranosyl-(1-4)-D-glucoamide] (PV Mannose), which contain glucose and mannose moieties, respectively, have the specific binding ability with murine hematopoietic cells. In this study, we confirm the ability of these glycopolymers to interact specifically with human hematopoietic stem cells (HSCs) and mature cells derived from human cord blood (CB) and peripheral blood (PB). Using fluorescence isothiocyanate (FITC)-labeled glycopolymers, we observed that 98% to 93% of hematopoietic cells interacted very strongly with PV Mannose, and 63% of CB and 29% PB interacted with PV Maltose. Both glycopolymers bound better to cells from CB than from PB. Cytotoxic studies revealed that a 0.1 mM dose of PV Mannose induced apoptosis in 20% CB cells, in contrast to 3-5% PB cells. Furthermore, we demonstrated that all of CD34(+) HSCs of both origins bound specifically to PV Mannose, whereas 33-47% bound to PV Maltose. In addition, the majority of B cells (CD19(+)), T cells (CD3(+)), monocytes (CD14(+)), and erythrocytes (CD235a(+)) bound to PV Mannose, but a lower percentage interacted with PV Maltose. In vivo study, bone marrow, spleen, and liver tissues in NOD-SCID mice injected with PV Mannose conjugated CB, were detected PV Mannose positive hematopoietic cells. These data suggest that the use of PV Mannose and PV Maltose might be used for gene and drug delivery for hematopoietic cells and thus, may be useful in therapeutic settings.  相似文献   

15.
Homing-associated cell adhesion molecules (H-CAM) on the CD34+ cells play an important role for the engraftment process following hematopoietic stem cell transplantation (HSCT). However, it seems that not only CD34+ cells but also other nucleated cells (NCs) with H-CAM could be implicated in the engraftment process and the proliferation of hematopoietic stem cells. We investigated the differences of HCAM and cell cycle status on the NCs in cord blood (CB), bone marrow (BM), and mobilized peripheral blood (PB). The proportions of CXCR4+ cells within the NC populations were greater in CB than in PB or BM (p=0.0493), although the proportions of CXCR4+, CD44+, and CD49d+ cells within the CB CD34+ cell populations were same within BM or PB. A lower proportion of CD34+CD49d+ cells within the CD34+ cell populations was more noted in CB than in PB or BM (p=0.0085). There were no differences in cell cycle status between CB and BM or PB. Our results suggest that the migrating potential of CB would be enhanced with increased CXCR4 expression on the NCs, but the adhesion potential of CB CD34+ cells would be less than that of PB and BM. These findings may help explain why the lower cell dose is required and engraftment is delayed in cord blood stem cell transplantation.  相似文献   

16.
Human bone marrow (BM) or mobilized peripheral blood (mPB) CD34(+) cells have been shown to loose their stem cell quality during culture period more easily than those from cord blood (CB). We previously reported that human umbilical CB stem cells could effectively be expanded in the presence of human recombinant cytokines and a newly established murine bone marrow stromal cell line HESS-5. In this study we assessed the efficacy of this xenogeneic coculture system using human BM and mPB CD34(+) cells as materials. We measured the generation of CD34(+)CD38(-) cells and colony-forming units, and assessed severe-combined immunodeficient mouse-repopulating cell (SRC) activity using cells five days after serum-free cytokine-containing culture in the presence or the absence of a direct contact with HESS-5 cells. As compared with the stroma-free culture, the xenogeneic coculture was significantly superior on expansion of CD34(+)CD38(-) cells and colony-forming cells and on maintenance of SRC activity. The PKH26 study demonstrated that cell division was promoted faster in cells cocultured with HESS-5 cells than in cells cultured without HESS-5 cells. These results indicate that HESS-5 supports rapid generation of primitive progenitor cells (PPC) and maintains reconstituting ability of newly generated stem cells during ex vivo culture irrespective of the source of samples. This xenogeneic coculture system will be useful for ex vivo manipulation such as gene transduction to promote cell division and the generation of PPC and to prevent loss of stem cell quality.  相似文献   

17.
DEK is a biochemically distinct protein that is generally found in the nucleus, where it is vital to global heterochromatin integrity. However, DEK is also secreted by cells (eg, macrophages) and influences other adjacent cells (eg, acts as a chemoattractant for certain mature blood cells). We hypothesized that DEK may modulate functions of hematopoietic stem (HSCs) and progenitor (HPCs) cells. C57Bl/6 mice were used to demonstrate that absolute numbers and cycling status of HPCs (colony forming unit-granulocyte macrophage [CFU-GM], burst forming unit-erythroid [BFU-E], and colony forming unit-granulocyte erythroid macrophage megakaryocyte [CFU-GEMM]) in bone marrow (BM) and spleen were significantly enhanced in DEK -/- as compared with wild-type (WT) control mice. Moreover, purified recombinant DEK protein inhibited colony formation in vitro by CFU-GM, BFU-E, and CFU-GEMM from WT BM cells and human cord blood (CB) cells in a dose-dependent fashion, demonstrating that DEK plays a negative role in HPC proliferation in vitro and in vivo. Suppression was direct acting as determined by inhibition of proliferation of single isolated CD34(+) CB cells in vitro. In contrast, DEK -/- BM cells significantly demonstrated reduced long term competitive and secondary mouse repopulating HSC capacity compared with WT BM cells, demonstrating that DEK positively regulates engrafting capability of self-renewing HSCs. This demonstrates that DEK has potent effects on HSCs, HPCs, and hematopoiesis, information of biological and potential clinical interest.  相似文献   

18.
The macrophage colony-stimulating factor-deficient bone marrow stromal cell line OP9, derived from osteopetrotic mice, is known to support hematopoietic stem cell (HSC) expansion as well as hematopoietic differentiation of embryonic stem cells. Coculture of HSC in the OP9 system requires cytokine support to achieve significant cell expansion. Recently, we reported extensive expansion without cell senescence of cord blood (CB)-derived HSC cocultured with OP9 stromal cells for more than 18 weeks with a single cytokine support using human thrombopoietin (TPO). In this study, we evaluated the efficiency of the OP9/TPO coculture system to sustain long-term hematopoiesis of adult, granulocyte colony-stimulating factor mobilized human peripheral blood (PB) CD34(+) cells. Maximum cell expansion was attained during the first 4 weeks of coculture. At the same time, the maximum progenitor cell expansion was demonstrated by the production of colony-forming cells and cobblestone area-forming cells. In contrast to the expansion of CB CD34(+) cells, PB CD34(+) cells showed termination of cultures after 8 weeks, independent of the cell expansion rates attained. The evaluation of cell senescence by assessing the telomere length in most cultures showed no relevant telomere shortening, despite rapid decrease in telomerase activity. Interestingly, increases in telomere length were demonstrated. In conclusion, OP9/TPO system provides extensive stem cell expansion without concomitant telomere erosion for both CB and adult CD34(+) cells. Termination of adult CD34(+) cell cocultures seems to be independent of telomere length.  相似文献   

19.
Single-cell transplantation analysis revealed that the cells that had the strongest dye efflux activity ("Tip"-SP cells) and had the phenotype CD34- c-Kit+ Sca-1+ Lin- (CD34- KSL cells) exhibited very strong proliferation and multilineage differentiation capacity. Ninety-six percent of the lethally irradiated mice that received a single "Tip"-SP CD34- KSL cell showed significant donor cell engraftment for long term. These findings support the hypothesis that "Tip"-SP CD34- KSL cells represent the most primitive hematopoietic stem cells that are capable of migrating into the primary site and surviving and/or proliferating with nearly absolute efficiency. This led us to propose high marrow-seeding efficiency as a specific characteristic of primitive HSCs, in addition to their self-renewal and multipotent capacity.  相似文献   

20.
NK cells play a central role in the haploidentical HSC transplantation (HSCT) to cure high‐risk leukemias. Other innate lymphoid cells (ILCs) have been proposed to exert a protective role in graft‐versus‐host disease and could also contribute to anti‐microbial defence and to lymphoid tissue remodeling. Thus, we investigated the ILC differentiation potential of HSCs isolated from BM, mobilized peripheral blood (PB), and umbilical cord blood (UCB). BM CD34+ cells are enriched in lymphoid‐committed precursors, while PB CD34+ cells preferentially contain myeloid precursors. In vitro differentiation experiments revealed that the highest and the lowest CD56+CD161+ ILC recovery was detected in UCB and PB HSC cultures, respectively. Among CD56+CD161+ ILCs, the ratio between NK cells and ILC3s was similar for all HSC analyzed. ILC recovery in PB CD34+ cultures was lower for G‐CSF‐mobilized HSCs (good mobilizers) than for G‐CSF+plerixafor‐mobilized HSC (poor mobilizers). Moreover, G‐CSF inhibited in vitro ILC recovery and the degree of inhibition was proportional to the time of exposure to the cytokine. Thus, although all common sources of HSC for transplant differentiate towards ILCs, substantial differences exist among different sources and G‐CSF may influence ILC recovery. These data offer new clues for a better understanding of the immune reconstitution after HSCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号