首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bgamma), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects.  相似文献   

2.
A new method for hepatitis C virus (HCV) genotyping that analyzes products generated with the HCV Amplicor Monitor Test has been developed. One hundred and sixty-two Japanese patients with chronic hepatitis C, including 59 patients with hemophilia, were tested for HCV genotypes and viral loads with this new test, and the results were compared with those of a genotyping assay that involved direct sequencing of the E1 region. HCV genotypes and viral loads were also compared between patients with and without hemophilia. There were no discrepancies between the two methods in determining genotypes 2a, 2b, and 3a. However, two patients infected with 1a were mistyped as 1b with the new assay. One patient not classified by this assay was genotype 4. Genotypes found in patients without hemophilia were 1b, 2a, and 2b. Genotypes 1a, 3a, and 4, which were minor variants in Japan, were detected only in patients with hemophilia. In addition, J type, which is a subtype of 1b that originated in Japan, was found at low frequency in hemophiliacs. Thus, the HCV genotypes in patients with hemophilia are likely to be of foreign origin. Overall, this new assay was accurate except for genotype 1a and 4, and allowed simultaneous assessment of genotype and viral load.  相似文献   

3.
4.
Hepatitis C virus (HCV) is a major causative agent of liver diseases such as chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Because the current standard therapy, interferon (IFN) or pegylated-IFN alone or in combination with ribavirin, is ineffective on approximately half of the HCV-infected patients, alternative therapeutics are greatly needed. The chemical genetics method is a useful strategy to elucidate molecular mechanisms of the viral life cycle and screen for anti-viral agents. This review focuses on the use of chemical genetics approach to virology, which could be called 'chemical virology', and introduces an example of such analysis. From a cell culture-based screening, an immunosuppressant cyclosporin A (CsA) was identified as an anti-HCV compound. Analysis using CsA as a bioprobe showed that cyclophilin (CyP) B, a cellular target of CsA, regulates the function of HCV RNA polymerase NS5B, which is essential for efficient viral genome replication. By targeting CyP, HCV genome replication was drastically suppressed. Thus, chemical genetics analysis identified CyPB as a cellular cofactor of HCV genome replication and a target for novel anti-HCV agents.  相似文献   

5.
We previously developed a cell-based luciferase reporter assay system for monitoring genome-length hepatitis C virus (HCV) RNA replication (OR6 assay system). Here, we aimed to develop a new living cell-based reporter assay system using enhanced green fluorescent protein (EGFP). Genome-length HCV RNAs encoding EGFP were introduced into a subline of HuH-7 cells and G418 selection was performed. One cloned cell line, OGF7, was successfully selected from among the several G418-resistant cell lines obtained, and the robust expression of HCV RNA and proteins in OGF7 cells was confirmed. The fluorescent intensity of OGF7 cells was decreased by interferon-alpha treatment in a dose-dependent manner, and it correlated well with the HCV RNA concentration. We demonstrated that the interferon-alpha sensitivity in the OGF7 assay system measuring the fluorescent intensity was equivalent to that of the OR6 assay system, and that the OGF7 assay system was useful for quantitative evaluation of anti-HCV reagents. The OGF7 assay system is expected to be the most time-saving and inexpensive assay system for high-throughput screening of anti-HCV reagents.  相似文献   

6.
Interfering with hepatitis C virus RNA replication   总被引:13,自引:0,他引:13  
Randall G  Rice CM 《Virus research》2004,102(1):19-25
The emergence of RNA interference (RNAi) as a powerful tool for silencing gene expression has spurred considerable interest in its experimental and therapeutic potential. RNAi is a cellular process of gene silencing in which small duplexes of RNA specifically target a homologous sequence for cleavage by cellular ribonucleases. The introduction of 21-23 nucleotide RNA duplexes, termed small interfering RNAs (siRNAs), into mammalian cells can specifically degrade homologous mRNAs. RNAi efficiently silences the expression of both cellular and viral RNAs. A number of groups have demonstrated that siRNAs interfere with hepatitis C virus (HCV) gene expression and replication. Additionally, cellular genes are efficiently silenced in the presence of replicating HCV. These studies lay the foundation for using RNAi as an experimental tool for studying HCV replication and defining host genes that are significant for viral replication. The potential for RNAi as an antiviral therapy remains less clear, as it will face many of the challenges that have hindered nucleic acid therapies in the past.  相似文献   

7.
The treatment of infection with lamivudine-resistant mutants of hepatitis B virus (HBV) with mutations in the YMDD motif has become a crucial issue in the clinic. In this work, the plasmids pcDNA3.1 (+)-HBV/C-YVDD and pcDNA3.1 (+)-HBV/C-YMDD were constructed and injected into BALB/c mice using a hydrodynamics-based procedure to investigate viral replication and expression of HBV lamivudine-resistant YVDD mutants in vivo. Compared with the YMDD group, HBsAg levels were higher in sera of mice in the YVDD group, but HBeAg levels were lower on day 1 after injection. Levels of HBcAg in hepatocytes were higher in the YVDD group on day 1, whereas the HBsAg levels were lower. The levels of HBV mRNA in the liver were higher in mice in the YVDD group on day 1 after injection. The results showed that injection with these plasmids resulted in efficient initiation of replication of HBV in mice and also suggested that the combined mutations in YVDD mutants could affect the replication process.  相似文献   

8.
Replication of hepatitis C virus (HCV) RNA is influenced by a variety of microRNAs, with the main player being the liver-specific microRNA-122 (miR-122). Binding of miR-122 to two binding sites near the 5′ end of the 5′ untranslated region (UTR) of the HCV genomic RNA results in at least two different effects. On the one hand, binding of miR-122 and the resulting recruitment of protein complexes containing Argonaute (Ago) proteins appears to mask the viral RNA′s 5′ end and stabilizes the viral RNA against nucleolytic degradation. On the other hand, this interaction of miR-122 with the 5′-UTR also stimulates HCV RNA translation directed by the internal ribosome entry site (IRES) located downstream of the miR-122 binding sites. However, it is suspected that additional, yet undefined roles of miR-122 in HCV replication may also contribute to HCV propagation. Accordingly, miR-122 is considered to contribute to the liver tropism of the virus. Besides miR-122, let-7b, miR-196, miR-199a* and miR-448 have also been reported to interact directly with the HCV RNA. However, the latter microRNAs inhibit HCV replication, and it has been speculated that miR-199a* contributes indirectly to HCV tissue tropism, since it is mostly expressed in cells other than hepatocytes. Other microRNAs influence HCV replication indirectly. Some of those are advantageous for HCV propagation, while others suppress HCV replication. Consequently, HCV up-regulates or down-regulates, respectively, the expression of most of these miRNAs.  相似文献   

9.
10.
Hepatitis C virus (HCV) is a hepatotropic single-stranded RNA virus. HCV infection is causally linked with development of liver cirrhosis and hepatocellular carcinoma. Enhanced production of reactive oxygen species by HCV has been implicated to play an important role in HCV-induced pathogenesis. Mangosteen has been widely used as a traditional medicine as well as a dietary supplement ,thanks to its powerful anti-oxidant effect. In the present study, we demonstrated that the ethanol extract from mangosteen fruit peels (MG-EtOH) is able to block HCV genome replication using HCV genotype 1b Bart79I subgenomic (EC50 5.1 μg/mL) and genotype 2a J6/JFH-1 infectious replicon systems (EC50 3.8 μg/mL). We found that inhibition of HCV replication by MG-EtOH led to subsequent down-regulation of expression of HCV proteins. Interestingly, MG-EtOH exhibited a modest inhibitory effect on in vitro RNA polymerase activity of NS5B. Among a number of xanthones compounds identified within this MG-EtOH, we discovered α-MG (EC50 6.3 μM) and γ-MG (EC50 2.7 μM) as two major single molecules responsible for suppression of HCV replication. This finding will provide a valuable molecular basis to further develop mangosteen as an important dietary supplement to combat HCV-induced liver diseases.  相似文献   

11.
Xue Q  Ding H  Liu M  Zhao P  Gao J  Ren H  Liu Y  Qi ZT 《Archives of virology》2007,152(5):955-962
Summary. Small interfering RNA (siRNA) is a powerful tool for functional genomics and gene therapy. Viral replication and gene expression are strongly inhibited by siRNA treatment of infected mammalian cells. However, the high sequence specificity of siRNAs, combined with prolonged treatment, promote the emergence of siRNA-resistant virus variants, especially among viruses that encode a polymerase lacking proofreading capabilities, indicating that the antiviral properties of specific siRNAs are not as effective as expected. To investigate the silencing effect of siRNAs against selected host cellular proteins that promote replication of hepatitis C virus (HCV), several siRNAs against human VAMP-associated protein (hVAP-A), La antigen and polypyrimidine-tract-binding protein (PTB) were evaluated. The data show that several siRNAs markedly decreased the expression levels of corresponding cellular genes that inhibited HCV replication in Huh-7 cells. These treatments were also shown to have no impact upon cell viability. These findings provide an alternative approach for blocking HCV replication. Hence, combination therapies with siRNAs against both the virus and host genes that support virus replication are likely to be a potent approach in the treatment of chronic hepatitis C. First and second authors contributed equally to this work.  相似文献   

12.
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus(HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5'-untranslatable regions(5'UTRs) and 3'UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5' terminus of the viral genome and regulated by distal functional RNA domains placed at the 3' end. Subsequent RNA replication strongly depends on the 3'UTR folding and is also influenced by the 5' end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNARNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.  相似文献   

13.
Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. Approximately 80% of those acutely infected clear the infection, whereas the remaining 20% progress to chronic infection. Hepatitis C thus provides a model in which successful and unsuccessful responses can be compared to better understand the human response to viral infection. Our laboratory studies the strategies by which HCV evades the adaptive immune response. This review describes the impact of viral mutation on T cell recognition, the role of cell surface inhibitory receptors in recognition of HCV, and the development of antibodies that neutralize HCV infection. Understanding what constitutes an effective immune response in the control of HCV may enable the development of prophylactic and therapeutic vaccines for HCV and other chronic viral infections.  相似文献   

14.
Hepatitis C virus (HCV) replication at the cellular level is not fully understood. This study describes an optimized system for quantifying replication of HCV in hepatocytes and in liver tissues. A digital image analysis method was developed to quantify signal intensities of HCV genomic and replicative-intermediate RNAs in infected human liver tissues and to examine their spatial distribution. The average number of viral genomes per productively infected hepatocyte ranged from 7 to 64 RNA molecules. The maximal concentrations of genomic and replicative-intermediate RNAs at the single cell level were 74 and 34 molecules per hepatocyte, respectively. A gradient dispersion of genomes was observed around virus-producing cells, suggesting infection of neighboring hepatocytes as one mechanism of viral spread in the liver. There was no significant difference in total hepatic load of HCV genomes between the post- and nontransplant patients, whereas serum titers in the former group were much higher that that in the latter group. HCV replication varied among infected hepatocytes, occurred in a subset of cells, and proceeded at a low level, confirming one mechanism by which individual hepatocytes are cumulatively able to generate steady state concentrations of millions of HCV genomes per milliliter of blood. Lower viral clearance rates in circulating blood may explain the phenomenon of increased serum titers of viral RNA in posttransplant immunosuppressed patients.  相似文献   

15.
Hepatitis C virus (HCV) nonstructural protein 3 (NS3), with its protease, helicase, and NTPase enzymatic activities, plays a crucial role in viral replication, and therefore represents an ideal target for the development of anti-viral agents. We have developed a recombinant human antibody (Fab) that reacts with the helicase domain of HCV NS3. The affinity-purified Fab antibody completely inhibited the helicase activity of HCV NS3 at equimolar concentration. To evaluate the effect of the Fab on HCV replication, the clone encoding the Fab gene was put into an expression vector, which converts Fab into a complete IgG1 antibody. Using a DNA-based transfection model, we demonstrated that intracellular expression of this antibody resulted in significant reduction of HCV-negative strand RNA synthesis. Intracellular expression of this antibody into either a stable cell line replicating subgenomic RNA, or a transient full-length HCV replication model, reduced both HCV RNA and viral protein expression. These results support the use of recombinant antibody fragments to inhibit NS3 enzyme as a novel, feasible, and effective approach for inhibiting HCV replication.  相似文献   

16.
Hepatocytes, the cells responsible for the metabolic and detoxification processes in the liver, are the predominant target of hepatitis B virus (HBV) infections, a major cause of liver cancer. The limited availability of normal human hepatocytes for cell-culture based studies is a significant challenge in HBV-associated liver cancer research. Therefore, there is a need for miniaturized cell-culture systems that can serve as a platform for studying the effect of HBV infections on hepatocyte physiology. Here, we present a microfluidic platform that can be used to study HBV replication in both rat and human hepatocytes. Polydimethylsiloxane (PDMS) microchannels fabricated using soft lithography techniques served as a culture vessel for both primary rat hepatocytes (PRH) and a human hepatoblastoma cell line, HepG2. The micro cell-culture chamber was then used as a model for HBV replication studies. Cells were grown in static culture conditions and either transfected with an HBV-genome cDNA or infected with the viral genome expressed from a recombinant adenovirus. Supernatants collected from the microchannels were assayed for secreted HBV using polymerase chain reaction (PCR). We achieved approximately 40 and 10% transfection efficiencies in HepG2 cells and PRH respectively, and 80–100% adenoviral infection efficiency in PRH comparable to standard tissue culture methods. Moreover, we successfully detected replicated HBV using our novel platform. This platform can be easily extended to studies involving DNA transfection or HBV infection of primary human hepatocytes since only a small number of cells are required for studies in microfluidic chambers.  相似文献   

17.
18.
Serum samples from 56 patients with biopsy-proven chronic B viral hepatitis without superimposed delta hepatitis were analyzed for the various markers of viral replication, including serum hepatitis B e Ag (HBeAg), hepatitis B virus deoxyribonucleic acid (HBV-DNA), and hepatitis B core antigen (HBcAg) in the liver tissues. Twenty-seven patients had persistent viral hepatitis (PH) and 29 patients had chronic active hepatitis (CAH) with or without cirrhosis. HBV-DNA was identified in the sera of 81% of patients with PH and 60% of patients with CAH. Significantly higher levels of HBV-DNA were found in patients with PH than in those with CAH. Both HBeAg in serum and HBcAg in liver correlated positively with serum HBV-DNA. Nine patients had serum HBV-DNA in the absence of HBeAg (four had anti-HBe), and seven of these nine patients had stainable HBcAg in the liver (two did not have staining). None of these patients had hepatic HBcAg in the absence of serum HBV-DNA. When these patients were stratified according to their epidemiologic background, serum HBV-DNA was present in a significantly higher number of male homosexuals than in any other groups. This was unrelated to their status of human immunodeficiency viral serology.  相似文献   

19.
The diagnosis of HBV reactivation during cytotoxic chemotherapy is based on an abrupt rise in levels of serum HBV DNA in conjunction with a hepatitic picture and in the absence of other causes of hepatitis. However, several cases of "hepatitis" have been noted during chemotherapy in HBsAg-positive patients, for which no cause could be found and in which HBV DNA levels were negative. One possible explanation is that HBV reactivation may, indeed, have been the cause but that HBV DNA levels became negative by the time ALT levels peaked and the clinical diagnosis of hepatitis was made. During the course of a longitudinal study of HBsAg-seropositive cancer patients who were monitored during standard chemotherapy, the opportunity was available to test this hypothesis.  相似文献   

20.
During infection, hepatitis C virus (HCV) NS4B protein remodels host membranes to form HCV replication complexes (RC) which appear as foci under fluorescence microscopy (FM). To understand the role of Rab proteins in forming NS4B foci, cells expressing the HCV replicon were examined biochemically and via FM. First, we show that an isolated NS4B-bound subcellular fraction is competent for HCV RNA synthesis. Further, this fraction is differentially enriched in Rab1, 2, 5, 6 and 7. However, when examined via FM, NS4B foci appear to be selectively associated with Rab5 and Rab7 proteins. Additionally, dominant negative (DN) Rab6 expression impairs Rab5 recruitment into NS4B foci. Further, silencing of Rab5 or Rab7 resulted in a significant decrease in HCV genome replication. Finally, expression of DN Rab5 or Rab7 led to a reticular NS4B subcellular distribution, suggesting that endocytic proteins Rab5 and Rab7, but not Rab11, may facilitate NS4B foci formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号