首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied the role of protein kinase C isoform PKCdelta in ceramide (Cer) formation, as well as in the mitochondrial apoptosis pathway induced by anticancer drugs in prostate cancer (PC) cells. Etoposide and paclitaxel induced Cer formation and apoptosis in PKCdelta-positive LNCaP and DU145 cells but not in PKCdelta-negative LN-TPA or PC-3 cells. In contrast, these drugs induced mitotic cell cycle arrest in all PC cell lines. Treatment with Rottlerin, a specific PKCdelta inhibitor, significantly inhibited drug-induced Cer formation and apoptosis in LNCaP cells, as did overexpression of dominant negative-type PKCdelta. Overexpression of wild-type PKCdelta had an opposite effect in PC-3 cells. Notably, etoposide induced biphasic Cer formation in LNCaP cells. The early and transient Cer increase resulted from de novo Cer synthesis, while the late and sustained Cer accumulation was derived from sphingomyelin hydrolysis by neutral sphingomyelinase (nSMase). Cer, in turn, induced mitochondrial translocation of PKCdelta and stimulated the activity of this kinase, promoting cytochrome c release and caspase-9 activation. Furthermore, the specific caspase-9 inhibitor LEHD-fmk significantly inhibited etoposide-induced nSMase activation, Cer accumulation, and PKCdelta mitochondrial translocation. These results indicate that PKCdelta plays a crucial role in activating anticancer drug-induced apoptosis signaling by amplifying the Cer-mediated mitochondrial amplification loop.  相似文献   

3.
Clinical trials have shown that chemotherapy with docetaxel combined with prednisone can improve survival of patients with androgen-independent prostate cancer. It is likely that the combination of docetaxel with other novel chemotherapeutic agents would also improve the survival of androgen-independent prostate cancer patients. We investigated whether the combination of docetaxel and flavopiridol, a broad cyclin-dependent kinase inhibitor, can increase apoptotic cell death in prostate cancer cells. Treatment of DU 145 prostate cancer cells with 500 nmol/L flavopiridol and 10 nmol/L docetaxel inhibited apoptosis probably because of their opposing effects on cyclin B1-dependent kinase activity. In contrast, when LNCaP prostate cancer cells were treated with flavopiridol for 24 hours followed by docetaxel for another 24 hours (FD), there was a maximal induction of apoptosis. However, there was greater induction of apoptosis in DU 145 cells when docetaxel was followed by flavopiridol or docetaxel. These findings indicate a heterogeneous response depending on the type of prostate cancer cell. Substantial decreases in X-linked inhibitor of apoptosis (XIAP) protein but not survivin, both being members of the IAP family, were required for FD enhanced apoptosis in LNCaP cells. Androgen ablation in androgen-independent LNCaP cells increased activated AKT and chemoresistance to apoptosis after treatment with FD. The proteasome inhibitor MG-132 blocked FD-mediated reduction of XIAP and AKT and antagonized apoptosis, suggesting that the activation of the proteasome pathway is one of the mechanisms involved. Overall, our data suggest that the docetaxel and flavopiridol combination requires a maximal effect on cyclin B1-dependent kinase activity and a reduction of XIAP and AKT prosurvival proteins for augmentation of apoptosis in LNCaP cells.  相似文献   

4.
Addition of proteasome inhibitor PS-341 (VELCADE, bortezomib) to prostate cancer cells enhances cell death mediated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). PS-341 sensitizes prostate cancer cells to TRAIL-induced apoptosis by increasing TRAIL receptors (DR5), inhibiting protein degradation, and elevating DR5 mRNA. Investigations into how PS-341 regulates the stability of DR5 mRNA revealed that PS-341 increased DR5 mRNA by extending its half-life from 4 to 10 h. The 2.5-kb 3'-untranslated region of the DR5 gene stabilized a heterologous gene in LNCaP human prostate cancer cells, suggesting the importance of this mRNA sequence. In contrast, human prostate cancer cell lines PC-3 and DU145 do not show this stabilization, suggesting cell specificity. PS-341 treatment of LNCaP cells increases the level of specific cytoplasmic mRNA-binding proteins, including AUF-1 isoforms, hnRNP C1/C2, and HuR proteins. In UV cross-linking experiments, after PS-341 treatment, the HuR protein markedly increases binding to specific sequences in the DR5 3'-untranslated region. In LNCaP cells treated with PS-341, small interfering RNA-mediated knockdown of HuR markedly decreases the half-life of DR5 mRNA, indicating that HuR is essential for mRNA stabilization. HuR protein is ubiquitinated, suggesting that PS-341 increases this protein by preventing its degradation. These experiments implicate modulation of mRNA stability as a novel mechanism by which proteasome inhibitors function, sensitizing cancer cells to antineoplastic agents.  相似文献   

5.
Resveratrol and epigallocatechin-3-gallate (EGCG) are important candidates as chemopreventive agents by virtue of their ability to induce apoptosis in cancer cells. Casein kinase 2 (CK2) is a ubiquitous protein ser/thr kinase that plays diverse roles in cell proliferation and apoptosis. We have previously shown that overexpression of CK2 suppresses apoptosis induced by a variety of agents, whereas down-regulation of CK2 sensitizes cells to induction of apoptosis. We therefore investigated whether or not CK2 played a role in resveratrol and EGCG signaling in androgen-sensitive (ALVA-41) and androgen-insensitive (PC-3) prostate cancer cells. Resveratrol- and EGCG-induced apoptosis is associated with a significant down-regulation of CK2 activity and protein expression in both the ALVA-41 and PC-3 cells. Overexpression of CK2alpha protected prostatic cancer cells against resveratrol- and EGCG-induced apoptosis. Relatively low doses (10 mumol/L) of resveratrol and EGCG induced a modest proliferative response in cancer cells that could be switched to cell death by moderate inhibition of CK2. These findings characterize, for the first time, the effects of polyphenolic compounds on CK2 signaling in androgen-sensitive and androgen-insensitive prostatic carcinoma cells and suggest that resveratrol and EGCG may mediate their cellular activity, at least in part, via their targeting of CK2. Further, the data hint at the potential of using these polyphenols alongside CK2 inhibitors in combination chemotherapy.  相似文献   

6.
Androgen-insensitive prostate cancer cells are highly resistant to several chemotherapeutic drugs and are characterized by the appearance of apoptosis-resistant cells. In this study, we identified the critical role of X-linked inhibitor of apoptosis protein (XIAP), a potent antiapoptotic factor, in conferring chemotherapy resistance in an androgen-insensitive DU145 human prostate cancer cell line. Results reveal that DU145 cells were highly resistant to cisplatin, but this resistance was overridden when the cells were treated for a prolonged time (>96 hours) with cisplatin (IC(50) = 27.5 to 35.5 micromol/L). A decrease in levels of XIAP and Akt/phospho-Akt and an increase in caspase-3 activity were identified to be key factors in cisplatin sensitivity (40% to 55% decrease in cell viability) at later time points. In contrast, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment caused a 40% to 50% decrease in cell viability within 6 hours (IC(50) = 135 to 145 ng/mL). However, increasing concentrations or prolonged treatment with TRAIL did not change drug potency. A significant increase in caspase-3 activity was observed with TRAIL treatment with no apparent change in XIAP levels. Specific inhibition of XIAP expression using an antisense XIAP phosphorodiamidate morpholino oligomer induced apoptosis and increased caspase-3 activity. Combination of cisplatin with XIAP antisense potentiated cisplatin sensitivity by decreasing the IC(50) from >200 micromol/L with cisplatin alone to 9 to 20 micromol/L and decreasing incubation time required for activity from 96 to 24 hours. Similarly, TRAIL in combination with XIAP antisense phosphorodiamidate morpholino oligomer enhanced TRAIL potency by 12- to 13-fold. In conclusion, abrogation of XIAP expression is essential for therapeutic apoptosis and enhanced chemotherapy sensitization in androgen-refractory prostate cancer cells.  相似文献   

7.
8.
Resveratrol, a naturally occurring stilbene with antitumor properties, caused mitogen-activated protein kinase [MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2)] activation, nuclear translocation of Ser15-phosphorylated p53, and p53-dependent apoptosis in hormone-insensitive DU145 prostate cancer cells. Exposure of these cells to epidermal growth factor (EGF) for up to 4 hours resulted in brief activation of MAPK followed by inhibition of resveratrol-induced signal transduction, p53 phosphorylation, and apoptosis. Resveratrol stimulated c-fos and c-jun expression in DU145 cells, an effect also suppressed by EGF. An inhibitor of protein kinase C (PKC)-alpha, -beta, and -gamma (CGP41251) enhanced Ser15 phosphorylation of p53 by resveratrol in the absence of EGF and blocked EGF inhibition of the resveratrol effect. EGF caused PKC-alpha/beta phosphorylation in DU145 cells, an effect reversed by CGP41251. Activation of PKC by phorbol ester (phorbol 12-myristate 13-acetate) enhanced EGF action on ERK1/2 phosphorylation without significantly altering p53 phosphorylation by resveratrol. DU145 cells transfected with a dominant-negative PKC-alpha construct showed resveratrol-induced ERK1/2 phosphorylation and Ser15 phosphorylation of p53 but were unresponsive to EGF. Thus, resveratrol and EGF activate MAPK by discrete mechanisms in DU145 cells. The stilbene promoted p53-dependent apoptosis, whereas EGF opposed induction of apoptosis by resveratrol via a PKC-alpha-mediated mechanism. Resveratrol also induced p53 phosphorylation in LNCaP prostate cancer cells, an effect also inhibited by EGF. Inhibition of PKC activation in LNCaP cells, however, resulted in a reduction, rather than increase, in p53 activation and apoptosis, suggesting that resveratrol-induced apoptosis in these two cell lines occurs through different PKC-mediated and MAPK-dependent pathways.  相似文献   

9.
The issue of p53 requirement for the caspase-mediated apoptosis induced by selenium in a cancer chemoprevention or chemotherapy context has not been critically addressed. We and others have shown that selenite induces apoptotic DNA laddering in the p53-mutant DU145 prostate cancer cells and the p53-null HL60 leukemia cells without the cleavage of poly(ADP-ribose) polymerase (PARP; i.e., caspase-independent apoptosis), whereas selenium compounds leading to the formation of methylselenol induce caspase-mediated apoptosis in these cells. Because selenite induces DNA single strand breaks, and because certain types of DNA damage activate p53, we investigated whether the human LNCaP prostate cancer cells, which contain a wild-type p53, execute selenite-induced apoptosis through caspase pathways. The results showed that exposure of LNCaP cells for 24 hours to lower micromolar concentrations of selenite led to DNA laddering, and to the cleavage of PARP and several pro-caspases. In contrast to this apoptosis sensitivity, LNCaP cells were rather resistant to similar concentrations of the methylselenol precursor methylseleninic acid. Selenite treatment led to a significant increase in p53 phosphorylation on Ser-15 (Ser15P). Time course experiments showed that p53 Ser15P occurred several hours before caspase activation and PARP cleavage. The general caspase inhibitor zVADfmk completely blocked PARP cleavage, and significantly decreased DNA laddering, but did not affect p53 Ser15P. An inhibitor for caspase-8 was equally as protective as that for caspase-9 against the selenite-induced apoptosis. Attenuating p53 by a chemical inhibitor pifithrin-alpha decreased the selenite-induced p53 Ser15P and led to concordant reductions of PARP cleavage and apoptosis. In summary, selenite-induced p53 Ser15P appeared to be important for activating the caspase-mediated apoptosis involving both the caspase-8 and the caspase-9 pathways in the LNCaP cells.  相似文献   

10.
Prostate cancer is the second leading cancer diagnosed in elderly males in the Western world. Epidemiologic studies suggest that dietary modifications could be an effective approach in reducing various cancers, including prostate cancer, and accordingly cancer-preventive efficacy of dietary nutrients has gained increased attention in recent years. We have recently shown that grape seed extract (GSE) inhibits growth and induces apoptotic death of advanced human prostate cancer DU145 cells in culture and xenograft. Because prostate cancer is initially an androgen-dependent malignancy, here we used LNCaP human prostate cancer cells as a model to assess GSE efficacy and associated mechanisms. GSE treatment of cells led to their detachment within 12 hours, as occurs in anoikis, and caused a significant decrease in live cells mostly due to their apoptotic death. GSE-induced anoikis and apoptosis were accompanied by a strong decrease in focal adhesion kinase levels, but an increase in caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage; however, GSE caused both caspase-dependent and caspase-independent apoptosis as evidenced by cytochrome c and apoptosis-inducing factor release into cytosol. Additional studies revealed that GSE causes DNA damage-induced activation of ataxia telangiectasia mutated kinase and Chk2, as well as p53 Ser(15) phosphorylation and its translocation to mitochondria, suggesting this to be an additional mechanism for apoptosis induction. GSE-induced apoptosis, cell growth inhibition, and cell death were attenuated by pretreatment with N-acetylcysteine and involved reactive oxygen species generation. Together, these results show GSE effects in LNCaP cells and suggest additional in vivo efficacy studies in prostate cancer animal models.  相似文献   

11.
Prostate cancer is the second leading cause of cancer-related deaths in males in the United States. This warrants the development of novel mechanism-based strategies for the prevention and/or treatment of prostate cancer. Several studies have shown that plant-derived alkaloids possess remarkable anticancer effects. Sanguinarine, an alkaloid derived from the bloodroot plant Sanguinaria canadensis, has been shown to possess antimicrobial, anti-inflammatory, and antioxidant properties. Previously, we have shown that sanguinarine possesses strong antiproliferative and proapoptotic properties against human epidermoid carcinoma A431 cells and immortalized human HaCaT keratinocytes. Here, employing androgen-responsive human prostate carcinoma LNCaP cells and androgen-unresponsive human prostate carcinoma DU145 cells, we studied the antiproliferative properties of sanguinarine against prostate cancer. Sanguinarine (0.1-2 micromol/L) treatment of LNCaP and DU145 cells for 24 hours resulted in dose-dependent (1) inhibition of cell growth [as evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], (2) arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis), and (3) induction of apoptosis (as evaluated by DNA ladder formation and flow cytometry). To define the mechanism of antiproliferative effects of sanguinarine against prostate cancer, we studied the effect of sanguinarine on critical molecular events known to regulate the cell cycle and the apoptotic machinery. Immunoblot analysis showed that sanguinarine treatment of both LNCaP and DU145 cells resulted in significant (1) induction of cyclin kinase inhibitors p21/WAF1 and p27/KIP1; (2) down-regulation of cyclin E, D1, and D2; and (3) down-regulation of cyclin-dependent kinase 2, 4, and 6. A highlight of this study was the fact that sanguinarine induced growth inhibitory and antiproliferative effects in human prostate carcinoma cells irrespective of their androgen status. To our knowledge, this is the first study showing the involvement of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery during cell cycle arrest and apoptosis of prostate cancer cells by sanguinarine. These results suggest that sanguinarine may be developed as an agent for the management of prostate cancer.  相似文献   

12.
BACKGROUND: Currently, prostate cancer (CaP) cytogenetics is not well defined, largely because of technical difficulties in obtaining primary tumor metaphases. METHODS AND RESULTS: We examined three CaP cell lines (LNCaP, DU145, PC-3) using sequential Giemsa banding and spectral karyotyping (SKY) to search for a common structural aberration or translocation breakpoint. No consistent rearrangement common to all three cell lines was detected. A clustering of centromeric translocation breakpoints was detected in chromosomes 4, 5, 6, 8, 11, 12, 14, and 15 in DU145 and PC-3. Both these lines were found to have karyotypes with a greater level of complexity than LNCaP. CONCLUSION: The large number of structural aberrations present in DU145 and PC-3 implicate an underlying chromosomal instability and subsequent accumulation of cytogenetic alterations that confer a selective growth advantage. The high frequency of centromeric rearrangements in these lines indicates a potential role for mitotic irregularities associated with the centromere in CaP tumorigenesis.  相似文献   

13.
14.
The natural BH3-mimetic (-)-gossypol shows promising efficacy in ongoing phase II/III clinical trials for human prostate cancer. Here, we show for the first time, that treatment with (-)-gossypol and multikinase inhibitor sorafenib synergistically suppresses the growth of androgen-independent prostate cancer cells (AI-PC) in vitro and in vivo. Our data suggest that sorafenib attenuates (-)-gossypol-induced Mcl-1 upregulation in AI-PCs. In this way, it serves as a potent chemosensitizer to affect cell death. Interestingly, (-)-gossypol and sorafenib induce cell death via two distinct pathways among different AI-PCs; DU145 cells via apoptosis and PC-3 via autophagy. The appointed death pathway may depend on the level of proapoptotic protein Bak, although the level of antiapoptotic protein Bcl-2 plays some role in it. DU145 cells with high Bak level prefer apoptosis induction, whereas PC-3 cells with low Bak prefer the induction of autophagy. Furthermore, inhibiting nondominant death pathways, that is, autophagy in DU145 and apoptosis in PC-3, enhances cell killing by (-)-gossypol/sorafenib combination therapy. Ultimately, our data expose a new action for sorafenib as an enhancer of (-)-gossypol-induced cell growth suppression and reveal a novel cell death mode by Bak activation manners in AI-PCs. These new insights may facilitate the rational design of clinical trials by selecting patients most likely to benefit from the Bcl-2-targeted molecular therapy.  相似文献   

15.
Histone deacetylase (HDAC) inhibitors are a new class of anticancer agents that act by inhibiting cancer cell proliferation and inducing apoptosis in various cancer cell lines. To investigate the anticancer effect of a novel histone deacetylase (HDAC) inhibitor MHY219, its efficacy was compared to that of suberoylanilide hydroxamic acid (SAHA) in human prostate cancer cells. The anticancer effects of MHY219 on cell viability, HDAC enzyme activity, cell cycle regulation, apoptosis and other biological assays were performed. MHY219 was shown to enhance the cytotoxicity on DU145 cells (IC50, 0.36 μM) when compared with LNCaP (IC50, 0.97 μM) and PC3 cells (IC50, 5.12 μM). MHY219 showed a potent inhibition of total HDAC activity when compared with SAHA. MHY219 increased histone H3 hyperacetylation and reduced the expression of class I HDACs (1, 2 and 3) in prostate cancer cells. MHY219 effectively increased the sub-G1 fraction of cells through p21 and p27 dependent pathways in DU145 cells. MHY219 significantly induced a G2/M phase arrest in DU145 and PC3 cells and arrested the cell cycle at G0/G1 phase in LNCaP cells. Furthermore, MHY219 effectively increased apoptosis in DU145 and LNCaP cells, but not PC3 cells, according to Annexin V/PI staining and Western blot analysis. These results indicate that MHY219 is a potent HDAC inhibitor that targets regulating multiple aspects of cancer cell death and might have preclinical value in human prostate cancer chemotherapy, warranting further investigation.  相似文献   

16.
17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in prostate cancer cells through DR4 and DR5 death receptors, but not in normal prostate cells, which do not express these receptors. Therefore, TRAIL has excellent potential to be a selective prostate cancer therapeutic agent with minimal toxic side effects. However, prostate cancer cells, as many other cancer types, develop resistance to TRAIL, and the underlying molecular mechanisms require further investigation. We hypothesize that selenium may sensitize TRAIL-resistant cells to undergo caspase-mediated apoptosis and increase therapeutic efficacy. Here, we report that TRAIL signaling in LNCaP prostate cancer cells stalled at downstream of caspase-8 and BID cleavage, as indicated by the lack of Bax translocation into mitochondria, and no subsequent activation of the caspase-9 cascade. Selenite induced a rapid generation of superoxide and p53 Ser(15) phosphorylation and increased Bax abundance and translocation into the mitochondria. Selenite and TRAIL combined treatment led to synergistic increases of Bax abundance and translocation into mitochondria, loss of mitochondrial membrane potential, cytochrome c release, and cleavage activation of caspase-9 and caspase-3. Inactivating p53 with a dominant-negative mutant abolished apoptosis without affecting superoxide generation, whereas a superoxide dismutase mimetic agent blocked p53 activation, Bax translocation to mitochondria, cytochrome c release, and apoptosis induced by selenite/TRAIL. In support of Bax as a crucial target for cross-talk between selenite and TRAIL pathways, introduction of Bax into p53 mutant DU145 cells enabled selenite to sensitize these cells for TRAIL-induced apoptosis. Taken together, the results indicate that selenite induces a rapid superoxide burst and p53 activation, leading to Bax up-regulation and translocation into mitochondria, which restores the cross-talk with stalled TRAIL signaling for a synergistic caspase-9/3 cascade-mediated apoptosis execution.  相似文献   

18.
Lycopene, the red pigment of the tomato, is under investigation for the chemoprevention of prostate cancer. Because dietary lycopene has been reported to concentrate in the human prostate, its uptake and subcellular localization were investigated in the controlled environment of cell culture using the human prostate cancer cell lines LNCaP, PC-3, and DU145. After 24 hours of incubation with 1.48 micromol/L lycopene, LNCaP cells accumulated 126.6 pmol lycopene/million cells, which was 2.5 times higher than PC-3 cells and 4.5 times higher than DU145 cells. Among these cell lines, only LNCaP cells express prostate-specific antigen and fully functional androgen receptor. Levels of prostate-specific antigen secreted into the incubation medium by LNCaP cells were reduced 55% as a result of lycopene treatment at 1.48 micromol/L. The binding of lycopene to the ligand-binding domain of the human androgen receptor was carried out, but lycopene was not found to be a ligand for this receptor. Next, subcellular fractionation of LNCaP cells exposed to lycopene was carried out using centrifugation and followed by liquid chromatography-tandem mass spectrometry quantitative analysis to determine the specific cellular locations of lycopene. The majority of lycopene (55%) was localized to the nuclear membranes, followed by 26% in nuclear matrix, and then 19% in microsomes. No lycopene was detected in the cytosol. These data suggest that the rapid uptake of lycopene by LNCaP cells might be facilitated by a receptor or binding protein and that lycopene is stored selectively in the nucleus of LNCaP cells.  相似文献   

19.
目的:探讨肝细胞核因子1B(HNF1B)在前列腺癌中表达及其对肿瘤细胞生长和迁移的影响。方法:免疫组化检测HNF1B基因在患者前列腺癌组织中的表达;Western印迹法检测前列腺癌细胞系中HNF1B的表达水平。在DU-145细胞中过表达HNF1B,利用MTS检测HNF1B表达改变对细胞增殖的影响;克隆形成实验检测克隆情况;Transwell实验检测迁移情况。结果:前列腺癌组织中HNF1B蛋白表达低于癌旁组织(P0.000 1),高转移、激素治疗抵抗的前列腺癌细胞HNF1B表达低于低转移前列腺癌细胞(P0.05)。过表达HNF1B可抑制前列腺癌细胞增殖、迁移和克隆形成(P0.05或P0.01)。结论:HNF1B是前列腺癌抑癌基因,体外可通过抑制前列腺癌的增殖、迁移和生长发挥抑癌作用。  相似文献   

20.
Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due to proteasome-mediated degradation of Cdc25C and Cdk1, and ectopic expression of Bcl-2 fails to confer resistance to PEITC-induced apoptosis. Furthermore, the results of the present study point toward involvement of both caspase-8- and caspase-9-mediated pathways in apoptosis induction by PEITC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号