首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tonic gonadotrophin secretion throughout the menstrual cycle is regulated by the negative‐feedback actions of ovarian oestradiol (E2) and progesterone. Although kisspeptin neurones in the arcuate nucleus (ARC) of the hypothalamus appear to play a major role in mediating these feedback actions of the steroids in nonprimate species, this issue has been less well studied in the monkey. In the present study, we used immunohistochemistry and in situ hybridisation to examine kisspeptin and KISS1 expression, respectively, in the mediobasal hypothalamus (MBH) of adult ovariectomised (OVX) rhesus monkeys. We also examined kisspeptin expression in the MBH of ovarian intact females, and the effect of E2, progesterone and E2 + progesterone replacement on KISS1 expression in OVX animals. Kisspeptin or KISS1 expressing neurones and pronounced kisspeptin fibres were readily identified throughout the ARC of ovariectomised monkeys but, on the other hand, in intact animals, kisspeptin cell bodies were small in size and number and only fine fibres were observed. Replacement of OVX monkeys with physiological levels of E2, either alone or with luteal phase levels of progesterone, abolished KISS1 expression in the ARC. Interestingly, progesterone replacement alone for 14 days also resulted in a significant down‐regulation of KISS1 expression. These findings support the view that, in primates, as in rodents and sheep, kisspeptin signalling in ARC neurones appears to play an important role in mediating the negative‐feedback action of E2 on gonadotrophin secretion, and also indicate the need to study further their regulation by progesterone.  相似文献   

2.
3.
Insulin in the brain plays an important role in regulating reproductive function, as demonstrated via conditional brain‐specific insulin receptor (Insr) deletion (knockout). However, the specific neuronal target cells mediating the central effects of insulin on the reproductive axis remain unidentified. We first investigated whether insulin can act via direct effects on gonadotrophin‐releasing hormone (GnRH) neurones. After clearly detecting Insr mRNA in an immunopurified GnRH cell fraction, we confirmed the presence of insulin receptor protein (InsR) in approximately 82% of GnRH neurones using dual‐label immunohistochemistry. However, we did not observe any insulin‐induced phospho‐Akt (pAkt) or phospho‐extracellular‐signal‐regulated kinase 1/2 in GnRH neurones, and therefore we investigated whether insulin signals via kisspeptin neurones to modulate GnRH release. Using dual‐label immunohistochemistry, InsRs were detected only in approximately 5% of kisspeptin‐immunoreactive cells. Insulin‐induced pAkt was not observed in any kisspeptin‐immunoreactive cells in either the rostral periventricular region of the third ventricle or arcuate nucleus in response to 200 mU of insulin treatment, although a more pharmacological dose (10 U) induced pronounced (> 20%) pAkt–kisspeptin coexpression in both regions. To confirm that insulin signalling via kisspeptin neurones does not critically modulate reproductive function, we generated kisspeptin‐specific InsR knockout (KIRKO) mice and assessed multiple reproductive and metabolic parameters. No significant differences in puberty onset, oestrous cyclicity or reproductive competency were observed in the female or male KIRKO mice compared to their control littermates. However, significantly decreased fasting insulin (P < 0.05) and a nonsignificant trend towards reduced body weight were observed in male KIRKO mice. Thus, InsR signalling in kisspeptin cells is not critical for puberty onset or reproductive competency, although it may have a small metabolic effect in males.  相似文献   

4.
The oestrogen‐induced luteinising hormone (LH) surge is evident in male primates, including humans, whereas male rodents never show the LH surge, even when treated with a preovulatory level of oestrogen. This suggests that the central mechanism governing reproductive hormones in primates is different from that in rodents. The present study aimed to investigate whether male Japanese monkeys conserve a brain mechanism mediating the oestrogen‐induced LH surge via activation of kisspeptin neurones. Adult male and female Japanese monkeys were gonadectomised and then were treated with oestradiol‐17β for 2 weeks followed by a bolus injection of oestradiol benzoate. Both male and female monkeys showed an oestrogen‐induced LH surge. In gonadectomised monkeys sacrificed just before the anticipated time of the LH surge, oestrogen treatment significantly increased the number of KISS1‐expressing cells in the preoptic area (POA) and enhanced the expression of c‐fos in POA KISS1‐positive cells of males and females. The oestrogen treatment failed to induce c‐fos expression in the arcuate nucleus (ARC) kisspeptin neurones in both sexes just prior to LH surge onset. Thus, kisspeptin neurones in the POA but not in the ARC might be involved in the positive‐feedback action of oestrogen that induces LH surge in male Japanese monkeys, as well as female monkeys. The present results indicate that oestrogen‐induced activation of POA kisspeptin neurones may contribute to the LH surge generation in both sexes. The conservation of the LH surge generating system found in adult male primates, unlike rodents, could be a result of the capability of oestrogen to induce POA kisspeptin expression and activation.  相似文献   

5.
Kisspeptin neurones located in the arcuate nucleus (ARC) and preoptic area (POA) are critical mediators of gonadal steroid feedback onto gonadotrophin‐releasing hormone (GnRH) neurones. ARC kisspeptin cells that co‐localise neurokinin B (NKB) and dynorphin (Dyn), are collectively referred to as KNDy (Kisspeptin/NKB/Dyn) neurones, and have been shown in mice to also co‐express the vesicular glutamate transporter, vGlut2, an established glutamatergic marker. The ARC in rodents has long been known as a site of hormone‐induced neuroplasticity, and changes in synaptic inputs to ARC neurones in rodents occur over the oestrous cycle. Based on this evidence, the the present study aimed to examine possible changes across the ovine oestrous cycle in synaptic inputs onto kisspeptin cells in the ARC (KNDy) and POA, and inputs onto GnRH neurones. Gonadal‐intact breeding season ewes were perfused using 4% paraformaldehyde during either the luteal or follicular phase of the oestrous cycle, with the latter group killed at the time of the luteinising hormone (LH) surge. Hypothalamic sections were processed for triple‐label immunodetection of kisspeptin/vGlut2/synaptophysin or kisspeptin/vGlut2/GnRH. The total numbers of synaptophysin‐ and vGlut2‐positive inputs to ARC KNDy neurones were significantly increased at the time of the LH surge compared to the luteal phase; because these did not contain kisspeptin, they do not arise from KNDy neurones. By contrast to the ARC, the total number of synaptophysin‐positive inputs onto POA kisspeptin neurones did not differ between luteal phase and surge animals. The total number of kisspeptin and vGlut2 inputs onto GnRH neurones in the mediobasal hypothalamus (MBH) was also increased during the LH surge, and could be attributed to an increase in the number of KNDy (double‐labelled kisspeptin + vGlut2) inputs. Taken together, these results provide novel evidence of synaptic plasticity at the level of inputs onto KNDy and GnRH neurones during the ovine oestrous cycle. Such changes may contribute to the generation of the preovulatory GnRH/LH surge.  相似文献   

6.
A luteinising hormone (LH) surge is fundamental to the induction of ovulation in mammalian females. The administration of a preovulatory level of oestrogen evokes an LH surge in ovariectomised females, whereas the response to oestrogen in castrated males differs among species; namely, the LH surge‐generating system is sexually differentiated in some species (e.g. rodents and sheep) but not in others (e.g. primates). In the present study, we aimed to determine whether there is a functional LH surge‐generating system in male goats, and whether hypothalamic kisspeptin neurones in male goats are involved in the regulation of surge‐like LH secretion. By i.v. infusion of oestradiol (E2; 6 μg/h) for 16 h, a surge‐like LH increase occurred in both castrated male and ovariectomised female goats, although the mean peak LH concentration was lower and the mean peak of the LH surge was later in males compared to females. Dual staining with KISS1 in situ hybridisation and c‐Fos immunohistochemistry revealed that E2 treatment significantly increased c‐Fos expression in the medial preoptic area (mPOA) KISS1 cells in castrated males, as well as ovariectomised females. By contrast, dual‐labelled cells were scarcely detected in the arcuate nucleus (ARC) after E2 treatment in both sexes. These data suggest that kisspeptin neurones in the mPOA, but not those in the ARC, are involved in the induction of surge‐like LH secretion in both male and female goats. In summary, our data show that the mechanism that initiates the LH surge in response to oestrogen, the mPOA kisspeptin neurones, is functional in male goats. Thus, sexual differentiation of the LH surge‐generating system would not be applicable to goats.  相似文献   

7.
Puberty is a process that integrates multiple inputs ultimately resulting in an increase in gonadotrophin‐releasing hormone (GnRH) secretion. Although kisspeptin neurones play an integral role in GnRH secretion and puberty onset, other systems are also likely important. One potential component is nitric oxide (NO), a gaseous neurotransmitter synthesised by nitric oxide synthase (NOS). The present study aimed to neuroanatomically characterise neuronal NOS (nNOS) in prepubertal female sheep and determine whether oestradiol exerts effects on this system. Luteinising hormone secretion was reduced by oestradiol treatment in prepubertal ovariectomised ewes. Neurones immunoreactive for nNOS were identified in several areas, with the greatest number present in the ventrolateral portion of the ventromedial hypothalamus, followed by the ventromedial hypothalamus, preoptic area (POA) and arcuate nucleus (ARC). Next, we determined whether nNOS neurones contained oestrogen receptor (ER)α and could potentially communicate oestradiol (E2) feedback to GnRH neurones. Neuronal NOS neurones contained ERα with the percentage of coexpression (12%‐40%) depending upon the area analysed. We next investigated whether a neuroanatomical relationship existed between nNOS and kisspeptin or nNOS and GnRH neurones. A high percentage of kisspeptin neurones in the POA (79%) and ARC (98%) colocalised with nNOS. Kisspeptin close contacts were also associated with nNOS neurones. A greater number of close contacts were observed in the ARC than the POA. A high percentage of POA GnRH neurones (79%) also expressed nNOS, although no GnRH close contacts were observed onto nNOS neurones. Neither the numbers of nNOS neurones in the POA or hypothalamus, nor the percentage of nNOS coexpression with GnRH, kisspeptin or ERα were influenced by oestradiol. These experiments reveal that a neuroanatomical relationship exists between both nNOS and kisspeptin and nNOS and GnRH in prepubertal ewes. Therefore, nNOS may act both directly and indirectly to influence GnRH secretion in prepubertal sheep.  相似文献   

8.
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin‐releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually‐dimorphic factors that influence reproductive status have remained poorly defined. The recently‐identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus–periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone‐independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.  相似文献   

9.
Kisspeptin, encoded by the Kiss1 gene, has attracted attention as a key candidate neuropeptide in controlling puberty and reproduction via regulation of gonadotrophin‐releasing hormone (GnRH) secretion in mammals. Pioneer studies with Kiss1 or its cognate receptor Gpr54 knockout (KO) mice showed the indispensable role of kisspeptin‐GPR54 signalling in the control of animal reproduction, although detailed analyses of gonadotrophin secretion, especially pulsatile and surge‐mode of luteinising hormone (LH) secretion, were limited. Thus, in the present study, we have generated Kiss1 KO rats aiming to evaluate a key role of kisspeptin in governing reproduction via pulse and surge modes of GnRH/LH secretion. Kiss1 KO male and female rats showed a complete suppression of pulsatile LH secretion, which is responsible for folliculogenesis and spermatogenesis, and an absence of puberty and atrophic gonads. Kiss1 KO female rats showed no spontaneous LH/follicle‐stimulating hormone surge and an oestrogen‐induced LH surge, suggesting that the GnRH surge generation system, which is responsible for ovulation, does not function without kisspeptin. Furthermore, challenge of major stimulatory neurotransmitters, such as monosodium glutamate, NMDA and norepinephrine, failed to stimulate LH secretion in Kiss1 KO rats, albeit they stimulated LH release in wild‐type controls. Taken together, the results of the present study confirm that kisspeptin plays an indispensable role in generating two modes (pulse and surge) of GnRH/gonadotrophin secretion to regulate puberty onset and normal reproductive performance. In addition, the present study suggests that kisspeptin neurones play a critical role as a hub integrating major stimulatory neural inputs to GnRH neurones, using newly established Kiss1 KO rats, which serve as a useful model for detailed analysis of hormonal profiles.  相似文献   

10.
Since Ernst Knobil proposed the concept of the gonadotrophin‐releasing hormone (GnRH) pulse‐generator in the monkey hypothalamus three decades ago, we have made significant progress in this research area with cellular and molecular approaches. First, an increase in pulsatile GnRH release triggers the onset of puberty. However, the question of what triggers the pubertal increase in GnRH is still unclear. GnRH neurones are already mature before puberty but GnRH release is suppressed by a tonic GABA inhibition. Our recent work indicates that blocking endogenous GABA inhibition with the GABAA receptor blocker, bicuculline, dramatically increases kisspeptin release, which plays an important role in the pubertal increase in GnRH release. Thus, an interplay between the GABA, kisspeptin, and GnRH neuronal systems appears to trigger puberty. Second, cultured GnRH neurones derived from the olfactory placode of monkey embryos exhibit synchronised intracellular calcium, [Ca2+]i, oscillations and release GnRH in pulses at approximately 60‐min intervals after 14 days in vitro (div). During the first 14 div, GnRH neurones undergo maturational changes from no [Ca2+]i oscillations and little GnRH release to the fully functional state. Recent work also shows GnRH mRNA expression increases during in vitro maturation. This mRNA increase coincides with significant demethylation of a CpG island in the GnRH 5′‐promoter region. This suggests that epigenetic differentiation occurs during GnRH neuronal maturation. Third, oestradiol causes rapid, direct, excitatory action in GnRH neurones and this action of oestradiol appears to be mediated through a membrane receptor, such as G‐protein coupled receptor 30.  相似文献   

11.
Puberty onset involves increased gonadotrophin‐release (GnRH) release as a result of decreased sensitivity to oestrogen (E2)‐negative feedback. Because GnRH neurones lack E2 receptor α, this pathway must contain interneurones. One likely candidate is KNDy neurones (kisspeptin, neurokinin B, dynorphin). The overarching hypothesis of the present study was that the prepubertal hiatus in luteinising hormone (LH) release involves reduced kisspeptin and/or heightened dynorphin input. We first tested the specific hypothesis that E2 would reduce kisspeptin‐immunopositive cell numbers and increase dynorphin‐immunopositive cell numbers. We found that kisspeptin cell numbers were higher in ovariectomised (OVX) lambs than OVX lambs treated with E2 (OVX+ E2) or those left ovary‐intact. Very few arcuate dynorphin cells were identified in any group. Next, we hypothesised that central blockade of κ‐opioid receptor (KOR) would increase LH secretion at a prepubertal (6 months) but not postpubertal (10 months) age. Luteinising hormone pulse frequency and mean LH increased during infusion of a KOR antagonist, norbinaltorphimine, in OVX + E2 lambs at the prepubertal age but not in the same lambs at the postpubertal age. We next hypothesised that E2 would increase KOR expression in GnRH neurones or alter synaptic input to KNDy neurones in prepubertal ewes. Oestrogen treatment decreased the percentage of GnRH neurones coexpressing KOR (approximately 68%) compared to OVX alone (approximately 78%). No significant differences in synaptic contacts per cell between OVX and OVX + E2 groups were observed. Although these initial data are consistent with dynorphin inhibiting pulsatile LH release prepubertally, additional work will be necessary to define the source and mechanisms of this inhibition.  相似文献   

12.
The adipocyte‐derived hormone leptin plays a critical role in the control of reproduction via signalling in hypothalamic neurones. The drivers of the hypothalamic‐pituitary‐gonadal axis, the gonadotrophin‐releasing hormone (GnRH) neurones, do not have the receptors for leptin. Therefore, intermediate leptin responsive neurones must provide leptin‐to‐GnRH signalling. We investigated the populations of leptin responsive neurones that provide input to the rostral preoptic area (rPOA) where GnRH cell bodies reside. Fluorescent retrograde tracer beads (RetroBeads; Lumafluor Inc., Naples, FL, USA) were injected into the rPOA of transgenic leptin receptor enhanced green fluorescent protein (Lepr‐eGFP) reporter mice. Uptake of the RetroBeads by Lepr‐eGFP neurones was assessed throughout the hypothalamus. RetroBead uptake was most evident in the medial arcuate nucleus (ARC), the dorsomedial nucleus (DMN) and the ventral premammillary nucleus (PMV) of the hypothalamus. The uptake of RetroBeads specifically by Lepr‐eGFP neurones was highest in the medial ARC (18% of tracer‐labelled neurones Lepr‐eGFP‐positive). Because neurones that are both leptin responsive and GABAergic play a critical role in the regulation of fertility by leptin, we next focussed on the location of these populations. To address whether GABAergic neurones in leptin‐responsive hypothalamic regions project to the rPOA, the experiment was repeated in GABA neurone reporter mice (Vgat‐tdTomato). Between 10% and 45% of RetroBead‐labelled neurones in the ARC were GABAergic, whereas uptake of tracer by GABAergic neurones in the DMN and PMV was very low (< 5%). These results show that both leptin responsive and GABAergic neurones from the ARC project to the region of the GnRH cell bodies. Our findings suggest that LEPR‐expressing GABA neurones from the ARC may be mediators of leptin‐to‐GnRH signalling.  相似文献   

13.
Kisspeptin is a neuroendocrine hormone with a critical role in the activation of gonadotrophin‐releasing hormone (GnRH) neurones, which is vital for the onset of puberty in mammals. However, the functions of kisspeptin neurones in non‐mammalian vertebrates are not well understood. We have used transgenics to labell kisspeptin neurones (Kiss1 and Kiss2) with mCherry in zebrafish (Danio rerio). In kiss1:mCherry transgenic zebrafish, Kiss1 cells were located in the dorsomedial and ventromedial habenula, with their nerve fibres contributing to the fasciculus retroflexus and projecting to the ventral parts of the interpeduncular and raphe nuclei. In kiss2:mCherry zebrafish, Kiss2 cells were primarily located in the dorsal zone of the periventricular hypothalamus and, to a lesser extent, in the periventricular nucleus of the posterior tuberculum and the preoptic area. Kiss2 fibres formed a wide network projecting into the telencephalon, the mesencephalon, the hypothalamus and the pituitary. To study the relationship of kisspeptin neurones and GnRH3 neurones, these fish were crossed with gnrh3:EGFP zebrafish to obtain kiss1:mCherry/gnrh3:EGFP and kiss2:mCherry/gnrh3:EGFP double transgenic zebrafish. The GnRH3 fibres ascending to the habenula were closely associated with Kiss1 fibres projecting from the ventral habenula. On the other hand, GnRH3 fibres and Kiss2 fibres were adjacent but scarcely in contact with each other in the telencephalon and the hypothalamus. The Kiss2 and GnRH3 fibres in the ventral hypothalamus projected into the pituitary via the pituitary stalk. In the pituitary, Kiss2 fibres were directly in contact with GnRH3 fibres in the pars distalis. These results reveal the pattern of kisspeptin neurones and their connections with GnRH3 neurones in the brain, suggesting distinct mechanisms for Kiss1 and Kiss2 in regulating reproductive events in zebrafish.  相似文献   

14.
Pulsatile release of gonadotrophin-releasing hormone (GnRH) is indispensable to maintain normal gonadotrophin secretion. The pulsatile secretion of GnRH is associated with synchronised electrical activity in the mediobasal hypothalamus (i.e. multiple unit activity; MUA), which is considered to reflect the rhythmic oscillations in the activity of the neuronal network that drives pulsatile GnRH secretion. However, the cellular source of this ultradian rhythm in GnRH activity is unknown. Direct input from kisspeptin neurones in the arcuate nucleus (ARC) to GnRH cell bodies in the medial preoptic area or their terminals in the median eminence could be the intrinsic source for driving the GnRH pulse generator. To determine whether kisspeptin signalling could be responsible for producing pulsatile GnRH secretion, we studied goats, measured plasma levels of luteinising hormone (LH) and recorded MUA in the posterior ARC, where the majority of kisspeptin neuronal cell bodies are located. Rhythmic volleys of MUA were found to be accompanied by LH pulses with regular intervals in the ARC, where kisspeptin neuronal cell bodies were found. Exogenous administration of kisspeptin stimulated a sustained increase in LH secretion, without influencing MUA, suggesting that the GnRH pulse generator, as reflected by MUA, originated from outside of the network of GnRH neurones, and could plausibly reflect the pacemaker activity of kisspeptin neurones, whose projections reach the median eminence where GnRH fibres project. These observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator.  相似文献   

15.
Kisspeptin is essential in reproduction and acts by stimulating neurones expressing gonadotrophin‐releasing hormone (GnRH). Recent studies suggest that kisspeptin has multiple roles in the modulation of neuronal circuits in systems outside the hypothalamic‐pituitary‐gonadal axis. Our recent research using in situ hybridisation (ISH) clarified the histological distribution of Kiss1r (Gpr54)expressing neurones in the rat brain that were presumed to be putative targets of kisspeptin. The arcuate nucleus (ARN) of the hypothalamus is one of the brain regions in which Kiss1r expression in non‐GnRH neurones is prominent. However, the characteristics of Kiss1r‐expressing neurones in the ARN remain unclear. The present study aimed to determine the neurochemical characteristics of Kiss1r‐expressing neurones in the ARN using ISH and immunofluorescence. We revealed that the majority (approximately 63%) of Kiss1r‐expressing neurones in the ARN were pro‐opiomelanocortin (POMC) neurones, which have an anorexic effect in mammals. Additionally, a few Kiss1r‐expressing neurones in the dorsal ARN are tuberoinfundibular dopamine (TIDA) neurones, which control milk production by inhibiting prolactin secretion from the anterior pituitary. TIDA neurones showed a relatively weak Kiss1r ISH signal compared to POMC neurones, as well as low co‐expression of Kiss1r (approximately 15%). We also examined the expression of Kiss1r in neuropeptide Y and kisspeptin neurones, which are reported to arise from POMC‐expressing progenitor cells during development. However, the vast majority of neuropeptide Y and kisspeptin neurones in the ARN did not express Kiss1r. These results suggest that kisspeptin may directly regulate energy homeostasis and milk production by modulating the activity of POMC and TIDA neurones, respectively. Our results provide an insight into the wide variety of roles that kisspeptin plays in homeostatic and neuroendocrine functions.  相似文献   

16.
We investigated the effects of the phytoestrogen genistein on gonadotrophin‐releasing hormone (GnRH) neurones using single‐cell electrophysiology on GnRH‐green fluorescent protein (GFP) transgenic juvenile female mice. Perforated patch‐clamp recordings from GnRH‐GFP neurones showed that approximately 83% of GnRH neurones responded to 30 μm genistein with a markedly prolonged membrane depolarisation. This effect not only persisted in the presence of tetrodotoxin, but also in the presence of amino acid receptor antagonists, indicating the direct site of action on postsynaptic GnRH neurones. Using a voltage clamp technique, we found that 30 μm genistein increased the frequency of synaptic current of GnRH neurones clamped at ?60 mV in the presence of glutamate receptor blocker but not GABAA receptor blocker. Pre‐incubation of GnRH neurones with 30 μm genistein enhanced kisspeptin‐induced membrane depolarisation and firing. GnRH neurones of juvenile mice injected with genistein in vivo showed an enhanced kisspeptin response compared to vehicle‐injected controls. The transient receptor potential channel (TRPC) blocker 2‐aminoethoxydiphenyl borate (75 μm ) blocked the genistein‐mediated response on GnRH neurones. These results demonstrate that genistein acts on GnRH neurones in juvenile female mice to induce excitation via GABA neurotransmission and TRPCs to enhance kisspeptin‐induced activation.  相似文献   

17.
The neuropeptides neurokinin B (NKB) and kisspeptin are potent stimulators of gonadotrophin‐releasing hormone (GnRH)/luteinsing hormone (LH) secretion and are essential for human fertility. We have recently demonstrated that selective activation of NKB receptors (NK3R) within the retrochiasmatic area (RCh) and the preoptic area (POA) triggers surge‐like LH secretion in ovary‐intact ewes, whereas blockade of RCh NK3R suppresses oestradiol‐induced LH surges in ovariectomised ewes. Although these data suggest that NKB signalling within these regions of the hypothalamus mediates the positive‐feedback effects of oestradiol on LH secretion, the pathway through which it stimulates GnRH/LH secretion remains unclear. We proposed that the action of NKB on RCh neurones drives the LH surge by stimulating kisspeptin‐induced GnRH secretion. To test this hypothesis, we quantified the activation of the preoptic/hypothalamic populations of kisspeptin neurones in response to POA or RCh administration of senktide by dual‐label immunohistochemical detection of kisspeptin and c‐Fos (i.e. marker of neuronal activation). We then administered the NK3R agonist, senktide, into the RCh of ewes in the follicular phase of the oestrous cycle and conducted frequent blood sampling during intracerebroventricular infusion of the kisspeptin receptor antagonist Kp‐271 or saline. Our results show that the surge‐like secretion of LH induced by RCh senktide administration coincided with a dramatic increase in c‐Fos expression within arcuate nucleus (ARC) kisspeptin neurones, and was completely blocked by Kp‐271 infusion. We substantiate these data with evidence of direct projections of RCh neurones to ARC kisspeptin neurones. Thus, NKB‐responsive neurones in the RCh act to stimulate GnRH secretion by inducing kisspeptin release from KNDy neurones.  相似文献   

18.
The present study examined the effect of short‐term psychosocial and metabolic stress in a monkey model of stress‐induced amenorrhaea on the hypothalamic‐pituitary‐gonadal axis. KISS1 expression was determined by in situ hybridisation in the infundibular arcuate nucleus. Downstream of KISS1, gonadotrophin‐releasing hormone (GnRH) axons in lateral areas rostral to the infundibular recess, serum luteinising hormone (LH) and serum oestradiol were measured by immunohistochemistry and radioimmunoassay. Upstream of KISS1, norepinephrine axons in the rostral arcuate nucleus and serotonin axons in the anterior hypothalamus and periaqueductal grey were measured by immunohistochemistry. Female cynomolgus macaques (Macaca fascicularis) characterised as highly stress resilient (HSR) or stress sensitive (SS) were examined. After characterisation of stress sensitivity, monkeys were either not stressed, or mildly stressed for 5 days before euthanasia in the early follicular phase. Stress consisted of 5 days of 20% food reduction in a novel room with unfamiliar conspecifics. There was a significant increase in KISS1 expression in HSR and SS animals in the presence versus absence of stress (P = 0.005). GnRH axon density increased with stress in HSR and SS animals (P = 0.015), whereas LH showed a gradual but nonsignificant increase with stress. Oestradiol trended higher in HSR animals and there was no effect of stress (P = 0.83). Norepinephrine axon density (marked with dopamine β‐hydroxylase) increased with stress in both HSR and SS groups (P ≤ 0.002), whereas serotonin axon density was higher in HSR compared to SS animals and there was no effect of stress (P = 0.03). The ratio of dopamine β‐hydroxylase/oestradiol correlated with KISS1 (P = 0.052) and GnRH correlated with serum LH (P = 0.039). In conclusion, oestradiol inhibited KISS1 in the absence of stress, although stress increased norepinephrine, which may over‐ride oestradiol inhibition of KISS1 expression. We speculate that neural pathways transduce stress to KISS1 neurones, which changes their sensitivity to oestradiol.  相似文献   

19.
Pulsatile secretion of gonadotrophin‐releasing hormone (GnRH)/luteinising hormone is indispensable for the onset of puberty and reproductive activities at adulthood in mammalian species. A cohort of neurones expressing three neuropeptides, namely kisspeptin, encoded by the Kiss1 gene, neurokinin B (NKB) and dynorphin A, localised in the hypothalamic arcuate nucleus (ARC), so‐called KNDy neurones, comprises a putative intrinsic source of the GnRH pulse generator. Synchronous activity among KNDy neurones is considered to be required for pulsatile GnRH secretion. It has been reported that gap junctions play a key role in synchronising electrical activity in the central nervous system. Thus, we hypothesised that gap junctions are involved in the synchronised activities of KNDy neurones, which is induced by NKB‐NK3R signalling. We determined the role of NKB‐NK3R signalling in Ca2+ oscillation (an indicator of neuronal activities) of KNDy neurones and its synchronisation mechanism among KNDy neurones. Senktide, a selective agonist for NK3R, increased the frequency of Ca2+ oscillations in cultured Kiss1‐GFP cells collected from the mediobasal hypothalamus of the foetal Kiss1‐green fluorescent protein (GFP) mice. The senktide‐induced Ca2+ oscillations were synchronised in the Kiss1‐GFP and neighbouring glial cells. Confocal microscopy analysis of these cells, which have shown synchronised Ca2+ oscillations, revealed close contacts between Kiss1‐GFP cells, as well as between Kiss1‐GFP cells and glial cells. Dye coupling experiments suggest cell‐to‐cell communication through gap junctions between Kiss1‐GFP cells and neighbouring glial cells. Connexin‐26 and ‐37 mRNA were found in isolated ARC Kiss1 cells taken from adult female Kiss1‐GFP transgenic mice. Furthermore, 18β‐glycyrrhetinic acids and mefloquine, which are gap junction inhibitors, attenuated senktide‐induced Ca2+ oscillations in Kiss1‐GFP cells. Taken together, these results suggest that NKB‐NK3R signalling enhances synchronised activities among neighbouring KNDy neurones, and that both neurone‐neurone and neurone‐glia communications via gap junctions possibly contribute to synchronised activities among KNDy neurones.  相似文献   

20.
Galanin‐like peptide (GALP) is a known mediator of metabolism and reproduction; however, the role that GALP plays in the onset of puberty is unknown. First, we tested the hypothesis that central GALP administration could rescue puberty in food‐restricted weanling rats. GALP treatment in food‐restricted rats of both sexes rescued the timing of the onset of puberty to that seen in ad lib. fed controls. Second, we tested whether GALP translation knocked‐down in ad lib. fed, prepubertal rats would alter the timing of puberty. Knock‐down females, but not males, showed a significant (P < 0.01) delay in the onset of puberty compared to controls. Third, we sought evidence that the role of GALP in pubertal onset is mediated by the kisspeptin system. In situ hybridisation analyses showed a significant (P < 0.01) reduction in Kiss1 mRNA within the hypothalamic arcuate nucleus in food‐restricted rats compared to ad lib. fed controls and this reduction was prevented with i.c.v. GALP administration. Furthermore, analyses of Fos‐immunoreactivity (‐IR) after i.c.v. GALP treatment did not elicit Fos‐IR within any kisspeptin neurones, nor are GALP and kisspeptin peptides or mRNA colocalised. These data demonstrate that hypothalamic GALP infusion maintained the onset of puberty in food‐restricted weanling rats, although probably not via direct innervation of kisspeptin neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号