首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kisspeptin is essential in reproduction and acts by stimulating neurones expressing gonadotrophin‐releasing hormone (GnRH). Recent studies suggest that kisspeptin has multiple roles in the modulation of neuronal circuits in systems outside the hypothalamic‐pituitary‐gonadal axis. Our recent research using in situ hybridisation (ISH) clarified the histological distribution of Kiss1r (Gpr54)expressing neurones in the rat brain that were presumed to be putative targets of kisspeptin. The arcuate nucleus (ARN) of the hypothalamus is one of the brain regions in which Kiss1r expression in non‐GnRH neurones is prominent. However, the characteristics of Kiss1r‐expressing neurones in the ARN remain unclear. The present study aimed to determine the neurochemical characteristics of Kiss1r‐expressing neurones in the ARN using ISH and immunofluorescence. We revealed that the majority (approximately 63%) of Kiss1r‐expressing neurones in the ARN were pro‐opiomelanocortin (POMC) neurones, which have an anorexic effect in mammals. Additionally, a few Kiss1r‐expressing neurones in the dorsal ARN are tuberoinfundibular dopamine (TIDA) neurones, which control milk production by inhibiting prolactin secretion from the anterior pituitary. TIDA neurones showed a relatively weak Kiss1r ISH signal compared to POMC neurones, as well as low co‐expression of Kiss1r (approximately 15%). We also examined the expression of Kiss1r in neuropeptide Y and kisspeptin neurones, which are reported to arise from POMC‐expressing progenitor cells during development. However, the vast majority of neuropeptide Y and kisspeptin neurones in the ARN did not express Kiss1r. These results suggest that kisspeptin may directly regulate energy homeostasis and milk production by modulating the activity of POMC and TIDA neurones, respectively. Our results provide an insight into the wide variety of roles that kisspeptin plays in homeostatic and neuroendocrine functions.  相似文献   

2.
Kisspeptin neuropeptides are encoded by the Kiss1 gene and play a critical role in the regulation of the mammalian reproductive axis. Kiss1 neurones are found in two locations in the rodent hypothalamus: one in the arcuate nucleus (ARC) and another in the RP3V region, which includes the anteroventral periventricular nucleus (AVPV). Detailed mapping of the fibre distribution of Kiss1 neurones will help with our understanding of the action of these neurones in other regions of the brain. We have generated a transgenic mouse in which the Kiss1 coding region is disrupted by a CRE‐GFP transgene so that expression of the CRE recombinase protein is driven from the Kiss1 promoter. As expected, mutant mice of both sexes are sterile with hypogonadotrophic hypogonadism and do not show the normal rise in luteinising hormone after gonadectomy. Mutant female mice do not develop mature Graafian follicles or form corpora lutea consistent with ovulatory failure. Mutant male mice have low blood testosterone levels and impaired spermatogenesis beyond the meiosis stage. Breeding Kiss‐CRE heterozygous mice with CRE‐activated tdTomato reporter mice allows fluorescence visualisation of Kiss1 neurones in brain slices. Approximately 80‐90% of tdTomato positive neurones in the ARC were co‐labelled with kisspeptin and expression of tdTomato in the AVPV region was sexually dimorphic, with higher expression in females than males. A small number of tdTomato‐labelled neurones was also found in other locations, including the lateral septum, the anterodorsal preoptic nucleus, the amygdala, the dorsomedial and ventromedial hypothalamic nuclei, the periaquaductal grey, and the mammillary nucleus. Three dimensional visualisation of Kiss1 neurones and fibres by CLARITY processing of whole brains showed an increase in ARC expression during puberty and higher numbers of Kiss1 neurones in the caudal region of the ARC compared to the rostral region. ARC Kiss1 neurones sent fibre projections to several hypothalamic regions, including rostrally to the periventricular and pre‐optic areas and to the lateral hypothalamus.  相似文献   

3.
The neuropeptides kisspeptin (encoded by Kiss1) and RFamide‐related peptide‐3 (also known as GnIH; encoded by Rfrp) are potent stimulators and inhibitors, respectively, of reproduction. Whether kisspeptin or RFRP‐3 might act directly on each other's neuronal populations to indirectly modulate reproductive status is unknown. To examine possible interconnectivity of the kisspeptin and RFRP‐3 systems, we performed double‐label in situ hybridisation (ISH) for the RFRP‐3 receptors, Gpr147 and Gpr74, in hypothalamic Kiss1 neurones of adult male and female mice, as well as double‐label ISH for the kisspeptin receptor, Kiss1r, in Rfrp‐expressing neurones of the hypothalamic dorsal‐medial nucleus (DMN). Only a very small proportion (5‐10%) of Kiss1 neurones of the anteroventral periventricular region expressed Gpr147 or Gpr74 in either sex, whereas higher co‐expression (approximately 25%) existed in Kiss1 neurones in the arcuate nucleus. Thus, RFRP‐3 could signal to a small, primarily arcuate, subset of Kiss1 neurones, a conclusion supported by the finding of approximately 35% of arcuate kisspeptin cells receiving RFRP‐3‐immunoreactive fibre contacts. By contrast to the former situation, no Rfrp neurones co‐expressed Kiss1r in either sex, and Tacr3, the receptor for neurokinin B (NKB; a neuropeptide co‐expressed with arcuate kisspeptin neurones) was found in <10% of Rfrp neurones. Moreover, kisspeptin‐immunoreactive fibres did not readily appose RFRP‐3 cells in either sex, further excluding the likelihood that kisspeptin neurones directly communicate to RFRP‐3 neurones. Lastly, despite abundant NKB in the DMN region where RFRP‐3 soma reside, NKB was not co‐expressed in the majority of Rfrp neurones. Our results suggest that RFRP‐3 may modulate a small proportion of kisspeptin‐producing neurones in mice, particularly in the arcuate nucleus, whereas kisspeptin neurones are unlikely to have any direct reciprocal actions on RFRP‐3 neurones.  相似文献   

4.
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin‐releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually‐dimorphic factors that influence reproductive status have remained poorly defined. The recently‐identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus–periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone‐independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.  相似文献   

5.
In seasonally breeding animals, the circadian and photoperiodic regulation of neuroendocrine system is important for precisely‐timed reproduction. Kisspeptin, encoded by the Kiss1 gene, acts as a principal positive regulator of the reproductive axis by stimulating gonadotrophin‐releasing hormone (GnRH) neurone activity in vertebrates. However, the precise mechanisms underlying the cyclic regulation of the kisspeptin neuroendocrine system remain largely unknown. The grass puffer, Takifugu niphobles, exhibits a unique spawning rhythm: spawning occurs 1.5–2 h before high tide on the day of spring tide every 2 weeks, and the spawning rhythm is connected to circadian and lunar‐/tide‐related clock mechanisms. The grass puffer has only one kisspeptin gene (kiss2), which is expressed in a single neural population in the preoptic area (POA), and has one kisspeptin receptor gene (kiss2r), which is expressed in the POA and the nucleus dorsomedialis thalami. Both kiss2 and kiss2r show diurnal variations in expression levels, with a peak at Zeitgeber time (ZT) 6 (middle of day time) under the light/dark conditions. They also show circadian expression with a peak at circadian time 15 (beginning of subjective night‐time) under constant darkness. The synchronous and diurnal oscillations of kiss2 and kiss2r expression suggest that the action of Kiss2 in the diencephalon is highly dependent on time. Moreover, midbrain GnRH2 gene (gnrh2) but not GnRH1 or GnRH3 genes show a unique semidiurnal oscillation with two peaks at ZT6 and ZT18 within a day. The cyclic expression of kiss2, kiss2r and gnrh2 may be important in the control of the precisely‐timed diurnal and semilunar spawning rhythm of the grass puffer, possibly through the circadian clock and melatonin, which may transmit the photoperiodic information of daylight and moonlight to the reproductive neuroendocrine centre in the hypothalamus.  相似文献   

6.
The kisspeptin/Gpr54 signalling pathway plays a critical role in reproduction by stimulating the secretion of gonadotrophin‐releasing hormone (GnRH), yet mice carrying mutations in Kiss1 (which encodes kisspeptin) or Gpr54 exhibit partial sexual maturation. For example, a proportion of female Kiss1?/? and Gpr54?/? mice exhibit vaginal oestrus, and some male Kiss1?/? and Gpr54?/? mice exhibit spermatogenesis. To characterise this partial sexual maturation, we examined the vaginal cytology of female Kiss1?/? and Gpr54?/? mice over time. Almost all mutant mice eventually enter oestrus, and then spontaneously transition from oestrus to dioestrus and back to oestrus again. These transitions are not associated with ovulation, and the frequency of these transitions increases with age. The oestrus exhibited by female Kiss1?/? and Gpr54?/? mice was disrupted by the administration of the competitive GnRH antagonist acyline, which also resulted in lower uterine weights and, in Kiss1?/? mice, lower serum follicle‐stimulating hormone (FSH) and luteinising hormone (LH) concentrations. Similarly, male Kiss1?/? and Gpr54?/? mice treated with acyline had smaller testicular sizes and an absence of mature sperm. In addition to examining intact Kiss1?/? and Gpr54?/? mice, we also assessed the effects of acyline on gonadotrophin concentrations in gonadectomised mice. Gonadectomy resulted in a significant increase in serum FSH concentrations in male Gpr54?/? and Kiss1?/? mice. Acyline administration to gonadectomised Kiss1?/? and Gpr54?/? male mice lowered serum FSH and LH concentrations significantly. By contrast to males, gonadectomy did not result in significant gonadotrophin changes in female Kiss1?/? and Gpr54?/? mice, but acyline administration was followed by a decrease in LH concentrations. These results demonstrate that, although kisspeptin signalling is critical for the high levels of GnRH activity required for normal sexual maturation and for ovulation, Kiss1?/? and Gpr54?/? mice retain some degree of GnRH activity. This GnRH activity is sufficient to produce significant effects on vaginal cytology and uterine weights in female mice and on spermatogenesis and testicular weights in male mice.  相似文献   

7.
8.
In spontaneously ovulating rodent species, the timing of the luteinising hormone (LH) surge is controlled by the master circadian pacemaker in the suprachiasmatic nucleus (SCN). The SCN initiates the LH surge via the coordinated control of two opposing neuropeptidergic systems that lie upstream of the gonadotrophin‐releasing hormone (GnRH) neuronal system: the stimulatory peptide, kisspeptin, and the inhibitory peptide, RFamide‐related peptide‐3 (RFRP‐3; the mammalian orthologue of avian gonadotrophin‐inhibitory hormone [GnIH]). We have previously shown that the GnRH system exhibits time‐dependent sensitivity to kisspeptin stimulation, further contributing to the precise timing of the LH surge. To examine whether this time‐dependent sensitivity of the GnRH system is unique to kisspeptin or a more common mechanism of regulatory control, we explored daily changes in the response of the GnRH system to RFRP‐3 inhibition. Female Syrian hamsters were ovariectomised to eliminate oestradiol (E2)‐negative‐feedback and RFRP‐3 or saline was centrally administered in the morning or late afternoon. LH concentrations and Lhβ mRNA expression did not differ between morning RFRP‐3‐and saline‐treated groups, although they were markedly suppressed by RFRP‐3 administration in the afternoon. However, RFRP‐3 inhibition of circulating LH at the time of the surge does not appear to act via the GnRH system because no differences in medial preoptic area Gnrh or RFRP‐3 receptor Gpr147 mRNA expression were observed. Rather, RFRP‐3 suppressed arcuate nucleus Kiss1 mRNA expression and potentially impacted pituitary gonadotrophs directly. Taken together, these findings reveal time‐dependent responsiveness of the reproductive axis to RFRP‐3 inhibition, possibly via variation in the sensitivity of arcuate nucleus kisspeptin neurones to this neuropeptide.  相似文献   

9.
The vertebrate gonadotrophin‐releasing hormone (GnRH) neurones are considered to consist of one group of hypothalamic neuroendocrine and two groups of extrahypothalamic neuromodulatory GnRH neurones, and each group of neurones expresses different molecular species of GnRH peptide. Different GnRH peptides are produced by one of the three paralogous GnRH genes, gnrh1, gnrh2 and gnrh3, which are considered to have originated from gene duplications. All three GnRH systems are well developed in teleost brains. By taking advantage of this, and especially the use of GnRH‐green fluoresecent protein transgenic fish, the anatomical and electrophysiological properties of all three types of GnRH neurones can now be studied. The hypophysiotropic GnRH1 neurones in the preoptic area show episodic spontaneous electrical activities, whereas the extrahypothalamic GnRH2 neurones in the midbrain and GnRH3 neurones in the terminal nerve show regular intrinsic pacemaker activities. It is suggested that these different electrophysiological properties are related to their different functions (i.e. GnRH1 neurones act as hypophysiotropic neuroendocrine regulators and GnRH2 and GnRH3 neurones act as neuromodulators). The present review focuses on recent electrophysiological analyses of GnRH3 neurones, which have revealed the excitatory GABAergic and the inhibitory FMRFamide‐like peptidergic regulations acting upon them, as well as gap junctional electrotonic coupling.  相似文献   

10.
11.
The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro‐opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic‐sensing pathway controlling the reproductive neuroendocrine axis. α‐Melanocyte‐stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin‐releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4–8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P < 0.05) in the ARC in heifers that gained 1 kg/day of body weight (high‐gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low‐gain, LG; n = 5). The number of KISS1‐expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double‐immunofluorescence showed limited αMSH‐positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin‐immunoreactive cells in the ARC were observed in close proximity to αMSH‐containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC‐kisspeptin pathway may be important in mediating the nutritional acceleration of puberty in heifers.  相似文献   

12.
Kisspeptin, encoded by the Kiss1 gene, has attracted attention as a key candidate neuropeptide in controlling puberty and reproduction via regulation of gonadotrophin‐releasing hormone (GnRH) secretion in mammals. Pioneer studies with Kiss1 or its cognate receptor Gpr54 knockout (KO) mice showed the indispensable role of kisspeptin‐GPR54 signalling in the control of animal reproduction, although detailed analyses of gonadotrophin secretion, especially pulsatile and surge‐mode of luteinising hormone (LH) secretion, were limited. Thus, in the present study, we have generated Kiss1 KO rats aiming to evaluate a key role of kisspeptin in governing reproduction via pulse and surge modes of GnRH/LH secretion. Kiss1 KO male and female rats showed a complete suppression of pulsatile LH secretion, which is responsible for folliculogenesis and spermatogenesis, and an absence of puberty and atrophic gonads. Kiss1 KO female rats showed no spontaneous LH/follicle‐stimulating hormone surge and an oestrogen‐induced LH surge, suggesting that the GnRH surge generation system, which is responsible for ovulation, does not function without kisspeptin. Furthermore, challenge of major stimulatory neurotransmitters, such as monosodium glutamate, NMDA and norepinephrine, failed to stimulate LH secretion in Kiss1 KO rats, albeit they stimulated LH release in wild‐type controls. Taken together, the results of the present study confirm that kisspeptin plays an indispensable role in generating two modes (pulse and surge) of GnRH/gonadotrophin secretion to regulate puberty onset and normal reproductive performance. In addition, the present study suggests that kisspeptin neurones play a critical role as a hub integrating major stimulatory neural inputs to GnRH neurones, using newly established Kiss1 KO rats, which serve as a useful model for detailed analysis of hormonal profiles.  相似文献   

13.
The KISS1/Kiss1/kiss1 gene product kisspeptin is suggested to be involved in the steroid feedback system in vertebrates. In addition to kiss1, kiss2 has been identified in many vertebrates, including some mammals, suggesting that the both genes were originally expressed in the common ancestor of teleosts and tetrapods. Moreover, peptides from both genes have been shown to activate the kisspeptin receptors. To investigate the involvement of kiss1 or kiss2 neurones in steroid feedback, we used a seasonal breeder, the goldfish (Carassius auratus). We found that kiss2 is expressed in the preoptic area (POA), nucleus lateralis tuberis and nucleus recessus lateralis, and that kiss1 is expressed in the habenula. Greater mRNA expression in breeding than in nonbreeding condition animals and conspicuous up-regulation of gene expression by gonadal steroids was seen only in the kiss2 neurones of the POA. Furthermore, double in situ hybridisation suggested that these neurones express oestrogen receptors. Given that amphibians express kiss2 in POA and mammalian anteroventral periventricular nucleus/POA Kiss1 neurones show similar expression dynamics as goldfish POA Kiss2 neurones, we hypothesise that kiss1 and kiss2 share the same evolutionary origin; and, after the loss of kiss2, kiss1 became active for steroid feedback in mammals.  相似文献   

14.
Pulsatile secretion of gonadotrophin‐releasing hormone (GnRH)/luteinising hormone is indispensable for the onset of puberty and reproductive activities at adulthood in mammalian species. A cohort of neurones expressing three neuropeptides, namely kisspeptin, encoded by the Kiss1 gene, neurokinin B (NKB) and dynorphin A, localised in the hypothalamic arcuate nucleus (ARC), so‐called KNDy neurones, comprises a putative intrinsic source of the GnRH pulse generator. Synchronous activity among KNDy neurones is considered to be required for pulsatile GnRH secretion. It has been reported that gap junctions play a key role in synchronising electrical activity in the central nervous system. Thus, we hypothesised that gap junctions are involved in the synchronised activities of KNDy neurones, which is induced by NKB‐NK3R signalling. We determined the role of NKB‐NK3R signalling in Ca2+ oscillation (an indicator of neuronal activities) of KNDy neurones and its synchronisation mechanism among KNDy neurones. Senktide, a selective agonist for NK3R, increased the frequency of Ca2+ oscillations in cultured Kiss1‐GFP cells collected from the mediobasal hypothalamus of the foetal Kiss1‐green fluorescent protein (GFP) mice. The senktide‐induced Ca2+ oscillations were synchronised in the Kiss1‐GFP and neighbouring glial cells. Confocal microscopy analysis of these cells, which have shown synchronised Ca2+ oscillations, revealed close contacts between Kiss1‐GFP cells, as well as between Kiss1‐GFP cells and glial cells. Dye coupling experiments suggest cell‐to‐cell communication through gap junctions between Kiss1‐GFP cells and neighbouring glial cells. Connexin‐26 and ‐37 mRNA were found in isolated ARC Kiss1 cells taken from adult female Kiss1‐GFP transgenic mice. Furthermore, 18β‐glycyrrhetinic acids and mefloquine, which are gap junction inhibitors, attenuated senktide‐induced Ca2+ oscillations in Kiss1‐GFP cells. Taken together, these results suggest that NKB‐NK3R signalling enhances synchronised activities among neighbouring KNDy neurones, and that both neurone‐neurone and neurone‐glia communications via gap junctions possibly contribute to synchronised activities among KNDy neurones.  相似文献   

15.
Since Ernst Knobil proposed the concept of the gonadotrophin‐releasing hormone (GnRH) pulse‐generator in the monkey hypothalamus three decades ago, we have made significant progress in this research area with cellular and molecular approaches. First, an increase in pulsatile GnRH release triggers the onset of puberty. However, the question of what triggers the pubertal increase in GnRH is still unclear. GnRH neurones are already mature before puberty but GnRH release is suppressed by a tonic GABA inhibition. Our recent work indicates that blocking endogenous GABA inhibition with the GABAA receptor blocker, bicuculline, dramatically increases kisspeptin release, which plays an important role in the pubertal increase in GnRH release. Thus, an interplay between the GABA, kisspeptin, and GnRH neuronal systems appears to trigger puberty. Second, cultured GnRH neurones derived from the olfactory placode of monkey embryos exhibit synchronised intracellular calcium, [Ca2+]i, oscillations and release GnRH in pulses at approximately 60‐min intervals after 14 days in vitro (div). During the first 14 div, GnRH neurones undergo maturational changes from no [Ca2+]i oscillations and little GnRH release to the fully functional state. Recent work also shows GnRH mRNA expression increases during in vitro maturation. This mRNA increase coincides with significant demethylation of a CpG island in the GnRH 5′‐promoter region. This suggests that epigenetic differentiation occurs during GnRH neuronal maturation. Third, oestradiol causes rapid, direct, excitatory action in GnRH neurones and this action of oestradiol appears to be mediated through a membrane receptor, such as G‐protein coupled receptor 30.  相似文献   

16.
We investigated the effects of the phytoestrogen genistein on gonadotrophin‐releasing hormone (GnRH) neurones using single‐cell electrophysiology on GnRH‐green fluorescent protein (GFP) transgenic juvenile female mice. Perforated patch‐clamp recordings from GnRH‐GFP neurones showed that approximately 83% of GnRH neurones responded to 30 μm genistein with a markedly prolonged membrane depolarisation. This effect not only persisted in the presence of tetrodotoxin, but also in the presence of amino acid receptor antagonists, indicating the direct site of action on postsynaptic GnRH neurones. Using a voltage clamp technique, we found that 30 μm genistein increased the frequency of synaptic current of GnRH neurones clamped at ?60 mV in the presence of glutamate receptor blocker but not GABAA receptor blocker. Pre‐incubation of GnRH neurones with 30 μm genistein enhanced kisspeptin‐induced membrane depolarisation and firing. GnRH neurones of juvenile mice injected with genistein in vivo showed an enhanced kisspeptin response compared to vehicle‐injected controls. The transient receptor potential channel (TRPC) blocker 2‐aminoethoxydiphenyl borate (75 μm ) blocked the genistein‐mediated response on GnRH neurones. These results demonstrate that genistein acts on GnRH neurones in juvenile female mice to induce excitation via GABA neurotransmission and TRPCs to enhance kisspeptin‐induced activation.  相似文献   

17.
Pheromones are interesting molecules given their ability to evoke changes in the endocrine state and behaviours of animals. In goldfish, a sex pheromone, 17α,20β‐dihydroxy‐4‐pregnen‐3‐one (17,20β‐P), which is released by preovulatory females, is known to trigger the elevation of luteinising hormone (LH) levels, as well as reproductive behaviour in males. Interestingly, when 11‐ketotestosterone (11‐KT) is implanted into adult female fish, LH levels increase in response to the pheromone at any time of the day, which is normally a male‐specific response. However, the neural mechanisms underlying the male‐specific information processing of 17,20β‐P and its androgen dependence are yet unknown. In the present study, we focused on the preoptic area (POA), which plays important roles in the regulation of reproduction and reproductive behaviours. We mapped activity in the POA evoked by 17,20β‐P exposure using the immediate‐early gene c‐fos. We found that a population of ventral POA neurones close to kisspeptin2 (kiss2) neurones that appear to have important roles in reproduction was activated by 17,20β‐P exposure, suggesting that these activated neurones are important for the 17,20β‐P response. Next, we investigated the distribution of androgen receptor (ar) in the POA and its relationship with 17,20β‐P‐responsive and kiss2 neurones. We found that ar is widely expressed in the ventral POA, whereas it is only expressed in approximately 10% of 17,20β‐P‐activated neurones. On the other hand, it is expressed in almost 90% of the kiss2 neurones. Taken together, it is possible that ar expressing neurones in the ventral POA, most of which were not labelled by c‐fos in the present study, may at least partly account for androgen effects on responses to primer pheromones; the ar‐positive kiss2 neurones in the ventral POA may be a candidate. These results offer a novel insight into the mechanisms underlying male‐specific information processing of 17,20β‐P in goldfish.  相似文献   

18.
19.
20.
Gonadotrophin‐releasing hormone (GnRH) is the primary hypothalamic factor responsible for the control of gonadotrophin secretion in vertebrates. However, within the last decade, two other hypothalamic neuropeptides have been found to play key roles in the control of reproductive functions: gonadotrophin‐inhibitory hormone (GnIH) and kisspeptin. In 2000, we discovered GnIH in the quail hypothalamus. GnIH inhibits gonadotrophin synthesis and release in birds through actions on GnRH neurones and gonadotrophs, mediated via GPR147. Subsequently, GnIH orthologues were identified in other vertebrate species from fish to humans. As in birds, mammalian and fish GnIH orthologues inhibit gonadotrophin release, indicating a conserved role for this neuropeptide in the control of the hypothalamic‐pituitary‐gonadal axis across species. Subsequent to the discovery of GnIH, kisspeptin, encoded by the KiSS‐1 gene, was discovered in mammals. By contrast to GnIH, kisspeptin has a direct stimulatory effect on GnRH neurones via GPR54. GPR54 is also expressed in pituitary cells, but whether gonadotrophs are targets for kisspeptin remains unresolved. The KiSS‐1 gene is also highly conserved and has been identified in mammals, amphibians and fish. We have recently found a second isoform of KiSS‐1, designated KiSS‐2, in several vertebrates, but not birds, rodents or primates. In this review, we highlight the discovery, mechanisms of action, and functional significance of these two chief regulators of the reproductive axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号