首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Residential radon and risk of lung cancer in Eastern Germany   总被引:2,自引:0,他引:2  
BACKGROUND: There is suggestive evidence that residential radon increases lung cancer risk. To elucidate this association further, we conducted a case-control study in Thuringia and Saxony in Eastern Germany during 1990-1997. METHODS: Histologically confirmed lung cancer patients from hospitals and a random sample of population controls matched on age, sex and geographical area were personally interviewed with respect to residential history, smoking, and other risk factors. One-year radon measurements were performed in houses occupied during the 5-35 years prior to the interview. The final analysis included a total of 1,192 cases and 1,640 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. RESULTS: Measurements covered on average 72% of the exposure time window, with mean radon concentrations of 76 Bq/m3 among the cases and 74 Bq/m3 among the controls. The smoking- and asbestos-adjusted ORs for categories of radon (50-80, 80-140 and >140 Bq/m*3, compared with 0-50 Bq/m3) were 0.95 (CI = 0.77 to 1.18), 1.13 (CI = 0.86 to1.50) and 1.30 (CI = 0.88 to 1.93). The excess relative risk per 100 Bq/m? was 0.08 (CI = -0.03 to 0.20) for all subjects and 0.09 (CI = -0.06 to 0.27) for subjects with complete measurements for all 30 years. CONCLUSIONS: Our data indicate a small increase in lung cancer risk as a result of residential radon that is consistent with the findings of previous indoor radon and miner studies.  相似文献   

2.
In the general population, evaluation of lung cancer risk from radon in houses is hampered by low levels of exposure and by dosimetric uncertainties due to residential mobility. To address these limitations, the authors conducted a case-control study in a predominantly rural area of China with low mobility and high radon levels. Included were all lung cancer cases diagnosed between January 1994 and April 1998, aged 30-75 years, and residing in two prefectures. Randomly selected, population-based controls were matched on age, sex, and prefecture. Radon detectors were placed in all houses occupied for 2 or more years during the 5-30 years prior to enrollment. Measurements covered 77% of the possible exposure time. Mean radon concentrations were 230.4 Bq/m(3) for cases (n = 768) and 222.2 Bq/m(3) for controls (n = 1,659). Lung cancer risk increased with increasing radon level (p < 0.001). When a linear model was used, the excess odds ratios at 100 Bq/m(3) were 0.19 (95% confidence interval: 0.05, 0.47) for all subjects and 0.31 (95% confidence interval: 0.10, 0.81) for subjects for whom coverage of the exposure interval was 100%. Adjusting for exposure uncertainties increased estimates by 50%. Results support increased lung cancer risks with indoor radon exposures that may equal or exceed extrapolations based on miner data.  相似文献   

3.
Residential radon exposure and lung cancer: risk in nonsmokers   总被引:4,自引:0,他引:4  
Lung cancer is a disease that is almost entirely caused by smoking; hence, it is almost totally preventable. Yet there are a small percentage of cases, perhaps as many as 5 to 15%, where there are other causes. Risk factors identified for this other group include passive smoking, occupational exposure to certain chemicals and ionizing radiation, diet, and family history of cancer. In the United States cigarette smoking is on the decline among adults, occupational exposures are being reduced, and people are being made more aware of appropriate diets. These changes are gradually resulting in a reduced risk for this disease. Lung cancer in the U.S. may, therefore, eventually become largely a disease of the past. It remains important, however, to continue to study the cause(s) of lung cancer in non-smokers, particularly never smokers. Because of our interest in the effects of residential radon exposure on the development of lung cancer in non-smokers, we conducted a critical review of the scientific literature to evaluate this issue in detail. Strict criteria were utilized in selecting studies, which included being published in a peer reviewed journal, including non-smokers in the studied populations, having at least 100 cases, and being of case-control design. A total of 12 individual studies were found that met the criteria, with 10 providing some information on non-smokers. Most of these studies did not find any significant association between radon and lung cancer in non-smokers. Furthermore, data were not presented in sufficient detail for non-smokers in a number of studies. Based on the most recent findings, there is some evidence that radon may contribute to lung cancer risk in current smokers in high residential radon environments. The situation regarding the risk of lung cancer from radon in non-smokers (ex and never) is unclear, possibly because of both the relatively limited sample size of non-smokers and methodological limitations in most of the individual studies. A summary of these studies is provided concerning the state of knowledge of the lung cancer risk from radon, methodological problems with the residential studies, the need for the provision of additional data on non-smokers from researchers, and recommendations for future research in non-smokers.  相似文献   

4.
Residential radon exposure and risk of lung cancer in Missouri.   总被引:10,自引:0,他引:10  
OBJECTIVES: This study investigated residential radon exposure and lung cancer risk, using both standard radon dosimetry and a new radon monitoring technology that, evidence suggests, is a better measure of cumulative radon exposure. METHODS: Missouri women (aged 30 to 84 years) newly diagnosed with primary lung cancer during the period January 1, 1993, to January 31, 1994, were invited to participate in this population-based case-control study. Both indoor air radon detectors and CR-39 alpha-particle detectors (surface monitors) were used. RESULTS: When surface monitors were used, a significant trend in lung cancer odds ratios was observed for 20-year time-weighted-average radon concentrations. CONCLUSIONS: When surface monitors were used, but not when standard radon dosimetry was used, a significant lung cancer risk was found for radon concentrations at and above the action level for mitigation of houses currently used in the United States (148 Bqm-3). The risk was below the action level used in Canada (750 Bqm-3) and many European countries (200-400 Bqm-3).  相似文献   

5.
Heath CW  Bond PD  Hoel DG  Meinhold CB 《Health physics》2004,87(6):647-55; discussion 656-8
The large United States county-based study () in which an inverse relationship has been suggested between residential low-dose radon levels and lung cancer mortality has been reviewed. While this study has been used to evaluate the validity of the linear nonthreshold theory, the grouped nature of its data limits the usefulness of this application. Our assessment of the study's approach, including a reanalysis of its data, also indicates that the likelihood of strong, undetected confounding effects by cigarette smoking, coupled with approximations of data values and uncertainties in accuracy of data sources regarding levels of radon exposure and intensity of smoking, compromises the study's analytic power. The most clear data for estimating lung cancer risk from low levels of radon exposure continue to rest with higher-dose studies of miner populations in which projections to zero dose are consistent with estimates arising from most case-control studies regarding residential exposure.  相似文献   

6.
Residential radon exposure and lung cancer: an overview of ongoing studies.   总被引:1,自引:0,他引:1  
This review paper summarizes the ongoing case/control studies of residential radon exposure and lung cancer. Discussion is offered in the areas of lung cancer risk factors, sample size requirements, radon exposure assessment, and meta-analysis. This is an important topic that deserves a "best effort" study design.  相似文献   

7.
The most direct way to derive risk estimates for residential radon progeny exposure is through epidemiologic studies that examine the association between residential radon exposure and lung cancer. However, the National Research Council concluded that the inconsistency among prior residential radon case-control studies was largely a consequence of errors in radon dosimetry. This paper examines the impact of applying various epidemiologic dosimetry models for radon exposure assessment using a common data set from the Iowa Radon Lung Cancer Study (IRLCS). The IRLCS uniquely combined enhanced dosimetric techniques, individual mobility assessment, and expert histologic review to examine the relationship between cumulative radon exposure, smoking, and lung cancer. The a priori defined IRLCS radon-exposure model produced higher odds ratios than those methodologies that did not link the subject's retrospective mobility with multiple, spatially diverse radon concentrations. In addition, the smallest measurement errors were noted for the IRLCS exposure model. Risk estimates based solely on basement radon measurements generally exhibited the lowest risk estimates and the greatest measurement error. The findings indicate that the power of an epidemiologic study to detect an excess risk from residential radon exposure is enhanced by linking spatially disparate radon concentrations with the subject's retrospective mobility.  相似文献   

8.
Residential radon and lung cancer among never-smokers in Sweden.   总被引:6,自引:0,他引:6  
In this study, we attempted to reduce existing uncertainty about the relative risk of lung cancer from residential radon exposure among never-smokers. Comprehensive measurements of domestic radon were performed for 258 never-smoking lung cancer cases and 487 never-smoking controls from five Swedish case-control studies. With additional never-smokers from a previous case-control study of lung cancer and residential radon exposure in Sweden, a total of 436 never-smoking lung cancer cases diagnosed in Sweden between 1980 and 1995 and 1,649 never-smoking controls were included. The relative risks (with 95% confidence intervals in parentheses) of lung cancer in relation to categories of time-weighted average domestic radon concentration during three decades, delimited by cutpoints at 50, 80, and 140 Bq m(-3), were 1.08 (0.8--1.5), 1.18 (0.9--1.6), and 1.44 (1.0--2.1), respectively, with average radon concentrations below 50 Bq m(-3) used as reference category and with adjustment for other risk factors. The data suggested that among never-smokers residential radon exposure may be more harmful for those exposed to environmental tobacco smoke. Overall, an excess relative risk of 10% per 100 Bq m(-3) average radon concentration was estimated, which is similar to the summary effect estimate for all subjects in the main residential radon studies to date.  相似文献   

9.
Residential radon exposure and lung cancer in Swedish women.   总被引:7,自引:0,他引:7  
A case-control study was undertaken to investigate the role of residential radon exposure for lung cancer. The study included 210 women with lung cancer diagnosed from 1983-1986 in the county of Stockholm and 191 hospital and 209 population controls. Interviews provided information on lifetime residences and smoking. Radon concentrations measured in 1,573 residences of the study subjects showed a lognormal distribution with arithmetic and geometric means of 127.7 and 96.0 Bq m-3, respectively. Lung cancer risks tended to increase with estimated radon exposure, reaching a relative risk of 1.7 (95% confidence interval: 1.0-2.9) in women having an average radon level exceeding 150 Bq m-3 (4 pCi L-1). Stronger associations were suggested in younger persons and risk estimates appeared to be within the same range as those projected for miners. However, further studies are needed to clarify the level of risk associated with exposure to residential radon.  相似文献   

10.
BACKGROUND: Underground miners exposed to high levels of radon have an excess risk of lung cancer. Residential exposure to radon is at much lower levels, and the risk of lung cancer with residential exposure is less clear. We conducted a systematic analysis of pooled data from all North American residential radon studies. METHODS: The pooling project included original data from 7 North American case-control studies, all of which used long-term alpha-track detectors to assess residential radon concentrations. A total of 3662 cases and 4966 controls were retained for the analysis. We used conditional likelihood regression to estimate the excess risk of lung cancer. RESULTS: Odds ratios (ORs) for lung cancer increased with residential radon concentration. The estimated OR after exposure to radon at a concentration of 100 Bq/m3 in the exposure time window 5 to 30 years before the index date was 1.11 (95% confidence interval = 1.00-1.28). This estimate is compatible with the estimate of 1.12 (1.02-1.25) predicted by downward extrapolation of the miner data. There was no evidence of heterogeneity of radon effects across studies. There was no apparent heterogeneity in the association by sex, educational level, type of respondent (proxy or self), or cigarette smoking, although there was some evidence of a decreasing radon-associated lung cancer risk with age. Analyses restricted to subsets of the data with presumed more accurate radon dosimetry resulted in increased estimates of risk. CONCLUSIONS: These results provide direct evidence of an association between residential radon and lung cancer risk, a finding predicted using miner data and consistent with results from animal and in vitro studies.  相似文献   

11.
12.
13.
Lachet B 《Epidemiology (Cambridge, Mass.)》2006,17(1):121; author reply 121-121; author reply 122
  相似文献   

14.
Exposure to high concentrations of radon progeny (radon) produces lung cancer in both underground miners and experimentally exposed laboratory animals. To determine the risk posed by residential radon exposure, the authors performed a population-based, case-control epidemiologic study in Iowa from 1993 to 1997. Subjects were female Iowa residents who had occupied their current home for at least 20 years. A total of 413 lung cancer cases and 614 age-frequency-matched controls were included in the final analysis. Excess odds were calculated per 11 working-level months for exposures that occurred 5-19 years (WLM(5-19)) prior to diagnosis for cases or prior to time of interview for controls. Eleven WLM(5-19) is approximately equal to an average residential radon exposure of 4 pCl/liter (148 Bq/m3) during this period. After adjustment for age, smoking, and education, the authors found excess odds of 0.50 (95% confidence interval: 0.004, 1.81) and 0.83 (95% percent confidence interval: 0.11, 3.34) using categorical radon exposure estimates for all cases and for live cases, respectively. Slightly lower excess odds of 0.24 (95 percent confidence interval: -0.05, 0.92) and 0.49 (95 percent confidence interval: 0.03, 1.84) per 11 WLM(5-19) were noted for continuous radon exposure estimates for all subjects and live subjects only. The observed risk estimates suggest that cumulative ambient radon exposure presents an important environmental health hazard.  相似文献   

15.
Recently there has been considerable public and regulatory concern that radon, produced by the decay of naturally occurring uranium, can accumulate in homes, offices, and schools at levels that may substantially increase the risk of lung cancer. The major cause of lung cancer is smoking, and radon appears to interact multiplicatively with smoking in causing lung cancer. Thus, the most effective way to reduce the increased risk of lung cancer resulting from radon exposure is to cease smoking. In this paper, a model for the risks associated with radon exposure that was developed by a committee of the National Academy of Sciences is used to calculate the benefits, in terms of reduction in lifetime risk of lung cancer, of ceasing to smoke, ceasing radon exposure, or ceasing both. Ceasing to smoke is considerably more beneficial than ceasing radon exposure, and thus policymakers addressing the health effects of radon should place priority on encouraging individuals to stop smoking.  相似文献   

16.
17.
Indoor radon and lung cancer in France   总被引:1,自引:0,他引:1  
BACKGROUND: Several case-control studies have indicated an increased risk of lung cancer linked to indoor radon exposure; others have not supported this hypothesis, partly because of a lack of statistical power. As part of a large European project, a hospital-based case-control study was carried out in 4 areas in France with relatively high radon levels. METHODS: Radon concentrations were measured in dwellings that had been occupied by the study subjects during the 5- to 30-year period before the interview. Measurements of radon concentrations were performed during a 6-month period using 2 Kodalpha LR 115 detectors (Dosirad, France), 1 in the living room and 1 in the bedroom. We examined lung cancer risk in relation to indoor radon exposure after adjustment for age, sex, region, cigarette smoking, and occupational exposure. RESULTS: We included in the analysis 486 cases and 984 controls with radon measures in at least 1 dwelling. When lung cancer risk was examined in relation to the time-weighted average radon concentration during the 5- to 30-year period, the estimated relative risks (with 95% confidence intervals) were: 0.85 (0.59-1.22), 1.19 (0.81-1.77), 1.04 (0.64-1.67), and 1.11 (0.59-2.09) for categories 50-100, 100-200, 200-400, and 400+ becquerels per cubic meter (Bq/m), respectively (reference <50 Bq/m). The estimated relative risk per 100 Bq/m was 1.04 (0.99-1.11) for all subjects and 1.07 (1.00-1.14) for subjects with complete measurements. CONCLUSIONS: Our results support the presence of a small excess lung cancer risk associated with indoor radon exposure after precise adjustment on smoking. They are in agreement with results from some other indoor radon case-control studies and with extrapolations from studies of underground miners.  相似文献   

18.
BACKGROUND: Radon is a radioactive gas that tends to accumulate in indoor environment. A causal relationship between lung cancer and radon exposure has been demonstrated in epidemiologic studies of miners. The objective of this paper is to present the results of case-control studies of lung cancer risk associated with indoor radon exposure. METHODS: Case-control studies published since 1990 are included in this review. This type of protocol is particularly well suited for studying the relationship between indoor radon exposure and lung cancer risk, taking into account possible confounding factors such as tobacco smoking. The characteristics and results of these studies are summarized. The limitations associated with each of these studies are also discussed. RESULTS: The results of available studies are relatively concordant and suggest a positive association between lung cancer risk and indoor radon exposure with an estimated excess relative risk of about 6 to 9% per 100Bq/m3 increase in the observed time-weighted average radon concentration. The order of magnitude of this estimation agrees with extrapolations from miners but some studies may suffer from inadequate statistical power. CONCLUSION: At present, efforts are underway to pool together the data from the existing studies of indoor radon. This pooling analysis with thousands of cases and controls will provide a more precise estimate of the lung cancer risk from indoor radon exposure and explore the effect of modifying factors, such as smoking.  相似文献   

19.
Residential radon seems to represent a major health hazard. The studies, which investigate the pulmonary risk of cancer caused by radon, are of different nature and their results are divergent. Thus, there persist scientific uncertainties concerning the real size of this risk. The application of the precautionary principle is based on an analysis of these uncertainties. Studies on miners, studies concerning residential radon (at individual and ecological level), as well as experimental data allow for the organisation of the uncertainty of each one of these specific approaches taking into account their proper limitations. The first risk that is linked to radon is the risk of pulmonary cancer. Miner occupational exposure studies appear compatible with the results of case-control studies concerning residential radon. However, the case-control studies, where the risk appears more present, are contradicted by ecological studies, often not very convincing about the existence of a risk. The case-control studies have an intrinsic advantage over the ecological studies because they limit the classification errors by the individualization of the relation-exposure effect. In addition, the experimental data are not in contradiction with the existence of effects for very small exposures. Consequently, the inherent scientific uncertainties of the totality of these data, can be classified and permit the application of the precautionary principle in a better proportioned way. The utilisation of the precautionary principle implies the necessity to limit, as far as possible, the exposure to residential radon. Precautionary principle is based on the debated hypothesis of no threshold linear relation between radon exposition and health consequences. This relation has been established on professional and residential exposures. The implementation of this epidemiological model shows the "residential radon" risk as the second cause of pulmonary cancer and responsible of about 10% of these specific cancers.  相似文献   

20.
OBJECTIVES: The purpose of this paper is to provide smokers with information on the relative benefits of mitigating radon and quitting smoking in reducing radon-related lung cancer risk. METHODS: The standard radon risk model, linked with models characterizing residential radon exposure and patterns of moving to new homes, was used to estimate the risk reduction produced by remediating high-radon homes, quitting smoking, or both. RESULTS: Quitting smoking reduces lung cancer risk from radon more than does reduction of radon exposure itself. CONCLUSIONS: Smokers should understand that, in addition to producing other health benefits, quitting smoking dominates strategies to deal with the problem posed by radon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号