首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the existing repair strategies for cartilage injury, tissue engineering approach using biomaterials and chondrocytes offers hope for treatments. In this context, collagen-based biomaterials are good candidates as scaffolds for chondrocytes in cell transplantation procedures. These scaffolds are provided under different forms (gel or crosslinked sponge) made with either type I collagen or type I or type II atelocollagen molecules. The present study was undertaken to investigate how bovine articular chondrocytes sense and respond to differences in the structure and organization of these collagen scaffolds, over a 12-day culture period. When chondrocytes were seeded in the collagen scaffolds maintained in free-floating conditions, cells contracted gels to 40-60% and sponges to 15% of their original diameter. Real-time polymerase chain reaction analysis indicated that the chondrocyte phenotype, assessed notably by the ratio of COL2A1/COL1A2 mRNA and alpha10/alpha11 integrin subunit mRNA, was comparatively better sustained in type I collagen sponges when seeded at high cell density, also in type I atelocollagen gels. Besides, proteoglycan accumulation in the different scaffolds, as assessed by measuring the sulfated glycosaminoglycan content, was found be highest in type I collagen sponges seeded at high cell density. In addition, gene expression of matrix metalloproteinase-13 increased dramatically (up to 90-fold) in chondrocytes cultured in the different gels, whereas it remained stable in the sponges. Our data taken together reveal that type I collagen sponges seeded at high cell density represent a suitable material for tissue engineering of cartilage.  相似文献   

2.
This study evaluated the in vitro behaviour of bovine chondrocytes seeded in collagen gels, promising recently reported scaffolds for the treatment of full-thickness cartilage defects. To determine how chondrocytes respond to a collagen gel environment, 2 x 10(6) chondrocytes isolated from fetal, calf and adult bovine cartilage were seeded within type I collagen gels and grown for 12 days in both attached and floating (detached from the culture dish after polymerisation) conditions. Monolayer cultures were performed in parallel. All chondrocytes contracted floating gels to 55% of the initial size, by day 12. Contraction was dependent on initial cell density and inhibited by the presence of dihydrocytochalasin B as previously observed with fibroblasts. Gene expression was determined using conventional and real-time PCR. The chondrocyte phenotype was better maintained in floating gels compared to attached gels and monolayers. This was demonstrated by comparing the ratio of COL2A1/ COL1A2 mRNA and also of alpha10/alpha11 integrin mRNA. A strong up-regulation of MMP13 expression was measured at day 12 in floating gels. The composition of cartilage-like tissue obtained by growing chondrocytes in a collagen gel varied depending on the floating or attached conditions and initial cell density. It is thus important to consider these parameters when using this culture system in order to prepare a well-defined implant for cartilage repair.  相似文献   

3.
Biodegradable scaffolds, along with cells, are important components of most tissue-engineered consructs. In the study, there is a comparison of the behaviour of human fibroblasts cultured for up to six weeks in four diffeeent collagen-based three-dimensional matrices, in the form of sponges composed of pure native type I collagen (control), of collagen-GAG-chitosan (CGC) and of collagen cross-linked by two concentrations of diphenylphosphorylazide (DPPA-2 and DPPA-3). Variations in size and weight of the sponges, as well as fibroblast growth and migration, and total protein and collagen synthesis, are determined with time in culture. Owing to their low thermal stability, the partial denaturation and dissolution of the control sponges after incubation at 37°C lead to considerable contraction and low cell proliferation. CGC sponges, stabilised by ionic interactions between the different components, show, after six weeks, limited contraction (20%) and weight increase (10% when seeded) and high growth (threefold increase). Similar results are obtained with weakly, cross-linked (DPPA-2) collagen sponges. Highly crosslinked (DPPA-3) sponges do not contract, whereas weight gain and cell proliferation are no different from those found with CGC and DPPA-2 sponges. Similar levels of total protein and collagen synthesis shown for fibroblasts seeded in different matrices, with a slight general decrease (twofold) after three weeks, a much lower value than that observed with fibroblasts in culture within a contracted collagen gel (sixfold). Furthermore, the fraction of neo-synthesised collagen deposited in the sponges after six weeks represents more than 60% of the total, compared with only 10% obtained with fibroblasts in monolayer culture or 30% within a collagen gel. These results indicate that the matrices, particularly the CGC and DPPA-2 sponges, provide excellent supports for fibroblast growth and the formation of dermal and skin equivalents.  相似文献   

4.
Healing of large open dermal wounds is associated with decreased values of the tensile strength even up to 6 months post-wounding. Results of previous studies have shown that healing is facilitated in the presence of a type I collagen sponge by promoting deposition of newly synthesized large-diameter collagen fibers parallel to the fibers of the sponge. In this study healing is evaluated in dermal wounds treated with a collagen sponge seeded with fibroblasts or coated with basic fibroblast growth factor (bFGF). Experimental results indicate that the presence of a collagen sponge results in increased wound tensile strength and increased collagen fiber diameters in the upper dermis 15 days post-wounding in an excisional guinea pig dermal wound model. In comparison, dermal wounds treated with collagen sponges seeded with fibroblasts or coated with bFGF showed increased tensile strengths 15 days postimplantation and increased degree of reepithelialization. These results indicate that fibroblast seeding and bFGF coating in conjunction with a type I collagen sponge matrix facilitate early dermal and epidermal wound healing.  相似文献   

5.
EDC cross-linking improves skin substitute strength and stability   总被引:6,自引:0,他引:6  
Powell HM  Boyce ST 《Biomaterials》2006,27(34):5821-5827
Collagen-based scaffolds are extensively utilized as an analog for the extracellular matrix in cultured skin substitutes (CSS). To improve the mechanical properties and degradation rates of collagen scaffolds, chemical cross-linking is commonly employed. In this study, freeze-dried collagen-GAG sponges were crosslinked with increasing concentrations of 1-ethyl-3-3-dimethylaminopropylcarbodiimide hydrochloride (EDC; 0, 1, 5, 10, 50mm). Cross-linking with EDC at concentrations >1mm was shown to greatly decrease degradation by collagenase up to 21 days. Ultimate tensile strength (UTS) of acellular collagen sponges scaled positively with EDC concentration up to 10mm. At 50mm EDC, the UTS decreased dramatically likely due to the brittle nature of the highly crosslinked material. Co-culture of human fibroblasts (HF) and keratinocytes (HK) on these substrates reveals an apparent cytotoxicty of the EDC at high concentrations with reduced cell viability and poor cellular organization in CSS fabricated with scaffolds crosslinked with 10 or 50mm EDC. From the data gathered in this study, intermediate concentrations of EDC, specifically 5mm, increase collagen sponge stability and strength while providing an environment in which HF and HK can attach, proliferate and organize in a manner conducive to dermal and epidermal regeneration.  相似文献   

6.
The purpose of this study was to evaluate the (ultra-) morphology, biochemical behavior, and activity of ovine chondrocytes seeded on a matrix consisting of three types of collagen (I, II, III) with two different degrees of UV crosslinking. Ovine articular chondrocytes were isolated from stifle joints and seeded on both types of UV-crosslinked collagen matrices, as well as on non-crosslinked sponges, and cultured for 12 h, 7 days, 14 days, and 21 days. Histological analysis, electron microscopy, biochemical assays for glycosaminoglycans, and real-time quantitative PCR for collagens were performed for cell-seeded and unseeded matrices. There was no dramatic difference in the morphology and bioactivity of the cells; however, concerning handling characteristics and integrative stability, both types of crosslinked sponges were superior to non-crosslinked constructs. The results demonstrate that ovine articular chondrocytes express their phenotype in a sponge consisting of collagen; furthermore, because of mechanical reasons, non-crosslinked matrices cannot be recommended for implantation in vivo.  相似文献   

7.
Although collagen-containing implants are widely used in various surgical applications, there has been relatively little attention paid to the possibility that this type of biomaterial may undergo pathologic calcification which could compromise its function. The present study reports for the first time the calcification of a series of implants of purified collagen sponges prepared with graded degrees of aldehyde-induced cross-linkages (assessed by shrinkage-temperature, wetting time, and collagenase digestibility). Type I collagen sponges were pretreated with either glutaraldehyde (0.1% to 2.0% aqueous solution, for 5-180 minutes) or formaldehyde (as vapors for 15 minutes to 15 hours), and implanted subcutaneously for 21 days in weanling rats. Although specimens not pretreated with either aldehyde reagent and the formaldehyde sponges pretreated for 15 minutes were resorbed without evidence of calcification, all other aldehyde-pretreated implants mineralized. The degree of calcification did not correlate with extent of cross-linking. Formaldehyde-pretreated implants calcified more extensively (Ca2+ = 87.8 +/- 2.8 micrograms/mg, mean +/- standard error of the mean; n = 58) than did glutaraldehyde-pretreated implants (Ca2+ = 40.9 +/- 1.4 micrograms/mg; n = 52). It is concluded that both glutaraldehyde- and formaldehyde-pretreated Type I collagen sponges calcify after subdermal implantation in young rats. Although aldehyde pretreatment of Type I collagen sponge implants is a prerequisite for their eventual mineralization, the threshold level of aldehyde-induced cross-linking required to potentiate their maximal pathologic calcification is low.  相似文献   

8.
We studied the effects of dexamethasone (Dex) and basic fibroblast growth factor (bFGF) on proliferation and differentiation of rat bone marrow stromal cells (RBMSCs), using three scaffolds: collagen sponge, poly(glycolic acid) (PGA)-collagen sponge, and PGA-collagen (UV) sponge. RBMSCs were seeded into the sponges, and cultured in primary medium, primary medium with Dex, and primary medium with bFGF and Dex. Three weeks after cultivation, we examined alkaline phosphatase (ALP) activity and cell number in the sponges, and also performed macroscopic, light microscopic, and scanning electron microscopic (SEM) observations. Collagen sponge shrank considerably, but PGA-collagen and PGA-collagen (UV) sponges maintained most of their original shape. PGA-collagen (UV) sponge supplemented with bFGF and Dex together had the highest ALP activity and cell number, followed by PGA-collagen sponge. Although collagen sponge showed cell proliferation only on the surface, the other two sponges showed cell proliferation in the interior. SEM showed the best cell attachment to PGA-collagen (UV) sponge in the presence of bFGF and Dex, followed by PGA-collagen sponge. In conclusion, PGA-collagen (UV) and PGA-collagen sponges proved to be much more useful as scaffolding for bone regeneration when combined with bFGF and Dex.  相似文献   

9.
Collagen-based biomaterials in the form of sponges (bovine type I collagen, both native and cross-linked by treatment with diphenylphosphorylazide, noted control and DPPA sponges respectively) were tested as three-dimensional scaffolds to support chondrocyte proliferation with maintenance of the phenotype in order to form neocartilage. Control and DPPA sponges were initially seeded with 10(6) or 10(7) foetal bovine epiphyseal chondrocytes and maintained for 4 weeks in culture under static conditions in RPMI/NCTC medium with 10% FCS and without addition of fresh ascorbic acid. Both supports were always present during the study and a partial decrease in size and weight was detected only with control sponges, both seeded and unseeded. Cell proliferation was only noted in the 10(6) cells-seeded sponges (4-fold increase after 4 weeks of culture). Specific cartilage collagens (types II and XI) were deposited in the matrix throughout the culture and traces of type I collagen were noticed only in the culture medium after 2-3 weeks and 4 weeks in the case of 10(6) and 10(7) cells-seeded sponges, respectively. Glycosaminoglycans accumulated in the matrix, up to 1.8 and 9.8% of total dry weight after one month with both seeding conditions, which was much lower than in the natural tissue. In the 10(7) cells-seeded sponges, mineral deposition, observed with unseeded sponges, was significantly decreased (2- to 3-fold). These in vitro results indicate that both collagen matrices can support the development of tissue engineered cartilage.  相似文献   

10.
The objective of this study is to enhance in vivo ectopic bone formation by combination of plasmid DNA impregnation into three-dimensional (3-D) cell scaffolds and a developed in vitro culture method. Gelatin was cationized by introducing spermine (Sm) to the carboxyl groups for complexation with the plasmid DNA. As the MSC scaffold, collagen sponge reinforced by incorporation of poly(glycolic acid) (PGA) fibers was used. A complex of the cationized gelatin and plasmid DNA of BMP-2 was impregnated into the scaffold. MCS were seeded into each scaffold and cultured by a static and perfusion methods. When MSC were cultured in the PGA-reinforced collagen sponge, the level of BMP-2 expression was significantly enhanced by the perfusion culture compared with static method. When the osteoinduction activity of the PGA-reinforced collagen sponges seeded with PBS, MSC, naked plasmid DNA-BMP-2, cationized gelatin-plasmid DNA-BMP-2 complex, and transfected MSC by static and perfusion method, were studied following the implantation into the back subcutis of rats in terms of histological and biochemical examinations, homogeneous bone formation was histologically observed throughout the sponges seeded with cationized gelatin-plasmid DNA of BMP-2 complex and transfected MSC by perfusion method, although the extent of bone formation was higher for the later one. The level of alkaline phosphatase activity and osteocalcin content at the implanted sites of sponges seeded with transfected MSC by perfusion method were significantly high compared with those seeded with other agents. We conclude that combination of plasmid DNA-impregnated PGA-reinforced collagen sponge and the perfusion method was promising to promote the in vitro gene expression for MSC and in vivo ectopic bone formation.  相似文献   

11.
Currently, there is no adequate implant material for the correction of soft tissue defects such as after extensive deep burns, after tumor resection and in hereditary and congenital defects (e.g. Romberg's disease, Poland syndrome). The autologous transplantation of mature adipose tissue has poor results. In this study human preadipocytes of young adults were isolated and cultured. 10(6) preadipocytes were seeded onto collagen sponges with uniform 40 microm pore size and regular lamellar structure and implanted into immunodeficient mice. Collagen sponges without preadipocytes were used in the controls. Macroscopical impression, weight, thickness, histology, immunohistochemistry (scaffold structure, cellularity, penetration depth of the seeded cells) and ultrastructure were assessed after 24 h in vitro and after explantation at 3 and 8 weeks. Preadipocytes penetrated the scaffolds 24 h after seeding at a depth of 299+/-55 microm before implantation. Macroscopically after 3 and 8 weeks in vivo layers of adipose tissue accompanied by new vessels were found on all preadipocyte/collagen grafts. The control grafts appeared unchanged without vessel ingrowth. There was a significant weight loss of all grafts between 24 h in vitro and 3 weeks in vivo (p < 0.05), whereas there was only a slight weight reduction from week 3 to 8. The thickness decreased in the first 3 weeks (p < 0.05) in all grafts. The preadipocyte/collagen grafts were thinner but had a higher weight than the controls at this point in time. The histology showed adipose tissue and a rich vascularisation adherent to the scaffolds under a capsule. The control sponges contained only few cells and a capsule but no adipose tissue. Human-vimentin positive cells were found in all preadipocyte/collagen grafts but not in the controls, penetrating 1188+/-498 microm (3 weeks) and 1433+/-685 microm (8 weeks). Ultrastructural analysis showed complete in vivo differentiation of viable adipocytes in the sponge seeded with preadipocytes. Formation of extracellular matrix was more pronounced in the preadipocyte/collagen grafts. The transplantation of isolated and cultured preadipocytes within a standardised collagen matrix resulted in well-vascularised adipose-like tissue. It is assumed that a pore size greater than 40 microm is required, as preadipocytes enlarge during differentiation due to incorporation of lipids.  相似文献   

12.
Collagen gels provide a biocompatible matrix for replacing soft tissues, but it is essential to determine whether the mechanical properties of the matrix can be retained after cell ingrowth into the collagen scaffold. We have determined the mechanical strength of four collagen gel compositions (plain collagen; collagen-chrondroitin-6-sulphate glycosaminoglycan (GAG); collagen crosslinked with carbodiimide and putrescine, and collagen-GAG with the crosslinkers) in the presence of either 3T3 mouse fibroblasts or human skin fibroblasts, to determine whether cellular activity influences the mechanical properties of the matrix, and whether the crosslinking processes alter the effects of the cells. The presence of GAG and the crosslinkers increased the strength and stiffness of the unseeded gels, but there was no evidence for synergy between these treatments. In all cases, the gels became significantly weaker after 6 days in the presence of either human or mouse fibroblasts, as judged by the decrease in the values of the maximum load and stress before failure, and the stiffness decreased as shown by the lower values of the incremental modulus. With most parameters, the effect of the cells was independent of gel composition, and the presence of crosslinkers or GAG did not impart resistance to the cell-induced decrease in strength.  相似文献   

13.
The objective of this investigation was to demonstrate the effectiveness of a tissue-engineered collagen sponge as a substrate for the culture of human corneal cells. To that end, human kerotocyte, epithelial, and endothelial cells were cultured separately on collagen sponges composed of native fibrillar collagen with a pore size of approximately 0.1 mm. Co-culture experiments were also performed (epithelial/endothelial and epithelial/keratocyte cultures). Proliferation of keratocytes and matrix production was assessed. The morphology of the epithelial and endothelial cell cultures was characterized by histology and scanning electron microscopy. Keratocytes cultured on collagen sponges exhibited increased matrix synthesis over time as well as proliferation and repopulation of the matrix. Epithelial and endothelial cells showed the ability to migrate over the collagen sponge. The thickness of the epithelial layer was influenced by soluble factors produced by endothelial cells. The morphology of the bottom layer of epithelial cells was influenced by the presence of keratocytes in the culture. These studies indicate that human corneal cells exhibit normal cell phenotype when cultured individually on an engineered collagen sponge matrix and co-culture of different cell types in the cornea can influence cell behavior.  相似文献   

14.
Cyclic strain evokes the expression of the small leucine-rich proteoglycans decorin and biglycan in 2D cultures and native tissues. However, strain-dependent expression of these proteoglycans has not been demonstrated in engineered tissues. We hypothesized that the absence of decorin may compromise the effect of cyclic strain on the development of engineered tissues. Thus, we investigated the contribution of decorin to tissue organization in cyclically strained collagen gels relative to statically cultured controls. Decorin null (Dcn(-/-)) and wild-type murine embryonic fibroblasts were seeded within collagen gels and mechanically conditioned using a Flexcell Tissue Train culture system. After 8 days, the cyclically strained samples demonstrated greater collagen fibril density, proteoglycan content, and material strength for both cell types. On the other hand, increases in cell density, collagen fibril diameter, and biglycan expression were observed only in the cyclically strained gels seeded with Dcn(-/-) cells. Although cyclic strain caused an elevation in proteoglycan expression regardless of cell type, the type of proteoglycan differed between groups: the Dcn(-/-) cell-seeded gels produced an excess of biglycan not found in the wild-type controls. These results suggest that decorin-mediated tissue organization is strongly dependent upon tissue type and mechanical environment.  相似文献   

15.
16.
This article describes an investigation of collagen sponge mechanically reinforced through the incorporation of poly(glycolic acid) (PGA) fiber. A collagen solution with PGA fiber homogeneously dispersed at collagen:PGA weight ratios of 1.5, 0.8, 0.4, and 0.2 was freeze-dried, followed by dehydrothermal cross-linking to obtain collagen sponges incorporating PGA fiber to various extents. By scanning electron microscopy observation, the collagen sponges exhibited isotropic and interconnected pore structures with an average size of 180 microm, irrespective of PGA fiber incorporation. As expected, PGA fiber incorporation enabled the collagen sponges to significantly enhance their compression strength. In vitro cell culture studies revealed that the number of L929 fibroblasts initially attached was significantly greater for any collagen sponge incorporating PGA fiber than for collagen sponge. The shrinkage of sponge after cell seeding was suppressed by fiber incorporation. It is possible that shrinkage suppression results in the superior cell attachment of sponge incorporating PGA fiber. After subcutaneous implantation into the backs of mice, the residual volume of collagen sponge incorporating PGA fiber was significant compared with that of collagen sponge and increased with a decrease in the collagen:PGA ratio. The greater number of cells infiltrated and deeper infiltration were observed for collagen sponge incorporating PGA fiber implanted subcutaneously. We conclude that the incorporation of PGA fiber is a simple and promising way to reinforce collagen sponge without impairing biocompatibility.  相似文献   

17.
Collagen-based materials can be designed for use as scaffolds for connective tissue reconstruction. The goal of the present study was to evaluate the behavior of collagen materials as well as cell and tissue reactions after the conjugation of activated polyethylene glycols (PEGs) with collagen. It is known that proteins conjugated with PEGs exhibit a decrease in their biodegradation rate and their immunogenicity. Different concentrations and molecular weights of activated PEGs (PEG-750 and PEG-5000) were conjugated to collagen materials (films or sponges) which were then investigated by collagenase assay, fibroblast cell culture, and subcutaneous implantation. PEG-conjugated collagen sponge degradation by collagenase was delayed in comparison to untreated sponges. In culture, fibroblasts with a normal morphology reached confluency on PEG-conjugated collagen films. In vivo, the porous structure of non-modified sponges collapsed by day 15 with a few observable fibroblasts between the collagen fibers. In PEG-modified collagen sponges, the porous structure remained stable for 30 days. Cell infiltration was particularly enhanced in PEG-750-conjugated collagen sponges. In conclusion, PEGs conjugated onto collagen sponges stabilize the porous structure without deactivating the biological properties of collagen. These porous composite materials could function as a scaffold to organize tissue ingrowth.  相似文献   

18.
Sosnik A  Sefton MV 《Biomaterials》2005,26(35):7425-7435
Collagen-containing poloxamine hydrogels were produced with the aim of overcoming the low stiffness displayed by collagen gels that are not otherwise chemically crosslinked. Matrices were obtained by functionalization of a four-arm PEO-PPO block copolymer (poloxamine, Tetronic) with methcrylate groups and subsequent free radical polymerization of water solutions of the modified polymer in the presence of collagen. The resulting matrices had a sharp increase in stiffness, when compared to pure collagen gels. For example, whereas collagen had a storage modulus (G') around 70 Pa and a loss modulus (G') of 10 Pa, a crosslinked collagen/poloxamine system containing 8.3% crosslinked poloxamine had G' and G' values of 7400 and 1000 Pa, respectively. HepG2 cells were seeded within the gels before the crosslinking and the viability levels estimated by AlamarBlue assay were between 65% and 91% for systems containing 0.04-0.09 wt% photoinitiator. HepG2 and endothelial cells also adhered to and spread on the surface of the collagen-containing specimens, suggesting their potential utility in tissue engineering.  相似文献   

19.
In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.  相似文献   

20.
Duan X  Sheardown H 《Biomaterials》2006,27(26):4608-4617
Generation 2 polypropyleneimine octaamine dendrimers were used to generate highly crosslinked collagen with mechanical properties that would make it appropriate for use as a corneal tissue-engineering scaffold. Crosslinking of a highly concentrated collagen solution (2-4%) was effected using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC). The multifunctional dendrimers were introduced as novel multifunctional crosslinkers after the activation of the carboxylic acid groups of glutamic and aspartic acid residues in collagen. Glutaraldehyde, a common collagen crosslinker, was used as comparison, as was EDC, itself an alternative crosslinker, which forms "zero-length or self-crosslinking". The mechanical properties resultant gels were determined. Young's modulus of the dendrimer crosslinked gels was significantly higher than that observed with the other crosslinkers, increasing to 5 MPa compared with 0.1 MPa for the EDC crosslinked gels. Transmission electron microscopy (TEM) analysis of the gels demonstrated the presence of fibrils in the thermally gelled collagen controls; no fibrils were observed in the dendrimer crosslinked gels. As a result, the optical transparency of the dendrimer crosslinked collagen was significantly better than that of the collagen thermal gels. The EDC and glutaraldehyde crosslinked gels were generally less transparent than those crosslinked with the dendrimers. Glucose permeation results demonstrated that the dendrimer crosslinked collagen had higher glucose permeability than natural human cornea. Dendrimer crosslinked collagen gels supported human corneal epithelial cell growth and adhesion, with no cell toxicity. In comparison, some potentially cytotoxic effects were observed with glutaraldehyde crosslinked collagen. Overall, the dendrimer crosslinked collagen gels showed promising properties that suggest that these might be suitable scaffolds for corneal tissue engineering and potentially other tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号